New Results
BayesTME: A unified statistical framework for spatial transcriptomics
Haoran Zhang, View ORCID ProfileMiranda V. Hunter, Jacqueline Chou, Jeffrey F. Quinn, View ORCID ProfileMingyuan Zhou, Richard White, View ORCID ProfileWesley Tansey
doi: https://doi.org/10.1101/2022.07.08.499377
Haoran Zhang
1Dept. of Computer Science, University of Texas at Austin
Miranda V. Hunter
2Sloan Kettering Institute
Jacqueline Chou
3Dept. of Physiology, Biophysics, & Systems Biology, Weill Cornell Medical College
Jeffrey F. Quinn
5Computational Oncology, Memorial Sloan Kettering Cancer Center
Mingyuan Zhou
4McCombs School of Business, University of Texas at Austin
Richard White
2Sloan Kettering Institute
Wesley Tansey
5Computational Oncology, Memorial Sloan Kettering Cancer Center

- Supplement[supplements/499377_file03.pdf]
Posted July 10, 2022.
BayesTME: A unified statistical framework for spatial transcriptomics
Haoran Zhang, Miranda V. Hunter, Jacqueline Chou, Jeffrey F. Quinn, Mingyuan Zhou, Richard White, Wesley Tansey
bioRxiv 2022.07.08.499377; doi: https://doi.org/10.1101/2022.07.08.499377
Subject Area
Subject Areas
- Biochemistry (10382)
- Bioengineering (7698)
- Bioinformatics (26381)
- Biophysics (13553)
- Cancer Biology (10735)
- Cell Biology (15465)
- Clinical Trials (138)
- Developmental Biology (8509)
- Ecology (12844)
- Epidemiology (2067)
- Evolutionary Biology (16891)
- Genetics (11417)
- Genomics (15499)
- Immunology (10643)
- Microbiology (25269)
- Molecular Biology (10243)
- Neuroscience (54611)
- Paleontology (402)
- Pathology (1671)
- Pharmacology and Toxicology (2900)
- Physiology (4356)
- Plant Biology (9265)
- Synthetic Biology (2562)
- Systems Biology (6789)
- Zoology (1472)