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Abstract

The formation and viscoelastic properties of condensates of intrinsically disordered proteins (IDPs) is dictated by amino

acid sequence and solution conditions. Because of the involvement of biomolecular condensates in cell physiology and

disease, furthering our understanding of the relationship between protein sequence and phase separation (PS) may have im-

portant implications in the formulation of new therapeutic hypotheses. Here, we present CALVADOS 2, a coarse-grained

model of IDPs that accurately predicts conformational properties and propensity to undergo PS for diverse sequences and

solution conditions. In particular, we systematically study the effect of varying the range of nonionic interactions and use

our findings to improve the temperature scale of the model. We further optimize the residue-specific model parameters

against experimental data on the conformational properties of 55 proteins, while also leveraging 70 hydrophobicity scales

from the literature to avoid overfitting the training data. Extensive testing shows that the model accurately predicts chain

compaction and PS propensity for sequences of diverse length and charge patterning, as well as at different temperatures

and salt concentrations.

1 Introduction

Biomolecular condensates may form via phase separation (PS) into coexisting solvent-rich and macromolecule-rich

phases. PS is driven by multiple transient interactions which are in many cases engendered by intrinsically disordered

proteins (IDPs) and low-complexity domains (LCDs) of multi-domain proteins [1, 2, 3, 4, 5]. The propensity of IDPs to

phase separate and the viscoelastic properties of the condensates are dictated by the amino acid sequence of the constituent

IDPs. Moreover, condensates of some IDPs reconstituted in vitro tend to undergo a transition to a dynamically-arrested

state, wherein oligomeric species can nucleate and ultimately aggregate into fibrils [6, 7, 2, 3, 8, 9, 10, 11, 12, 13, 14]. As

accumulating evidence suggests that these processes may be involved in neurodegeneration and cancer [15, 16, 17, 18],

understanding how PS and rheological properties of condensates depend on protein sequence is a current research focus.

Due to the transient nature of the protein-protein interactions underpinning PS, quantitative characterization of biomolec-

ular condensates via biophysical experimental methods is challenging, and hence molecular simulations have played an

important role in aiding the interpretation of experimental data on condensates reconstituted in vitro [19]. Molecular

simulations of the PS of IDPs require a minimal system size of ∼100 chains and long simulation times to sample the

equilibrium properties of the two-phase system. Therefore, to enhance computational efficiency, it is useful to reduce the

complexity of the system by modeling the solvent as a continuum while coarse-graining the atomistic representation of

the protein to fewer interaction sites.

A widely used class of coarse-grained models of IDPs describes each residue as a single site centered at the Cα

atom. Charged residues interact via salt-screened electrostatic interactions whereas the remaining nonionic nonbonded

interactions are incorporated in a single short-range potential characterized by a set of “stickiness” parameters. The
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“stickiness” parameters are specific to either the single amino acid or pairs of residues and were originally derived from

a hydrophobicity scale [20]. Other models, based on the lattice simulation engines LaSSI [21] and PIMMS [22], classify

the amino acids into a reduced number of residue types with distinct “stickiness”, ranging from binary categorizations

into stickers and spacers [4, 23, 24] to more detailed descriptions and parameterizations [25, 26]. Recently, the accuracy

of the “stickiness” parameters has been considerably improved. This has been achieved by leveraging (i) experimental

data on single-chain properties, (ii) statistical analyses of protein structures, and (iii) residue-residue free energy profiles

calculated from all-atom simulations [27, 28, 29, 30, 31, 26]. In particular, we and others have proposed an automated

procedure to optimize the “stickiness” parameters so as to maximize the agreement with experimental small-angle X-ray

scattering (SAXS) and paramagnetic relaxation enhancement (PRE) NMR data for a large set of IDPs [28, 29, 32, 26]. To

ensure the transferability of the model across sequence space, we employed a Bayesian regularization approach [32, 33].

As the regularization term, we defined the prior knowledge on the “stickiness” parameters in terms of 87 hydrophobicity

scales reported in the literature. The resulting M1 parameters capture the relative propensities to phase separate of a wide

range of IDP sequences. However, we also observed that a systematic increase in simulation temperature of about 30 ◦C

was needed to quantitatively reproduce the experimental concentration of the dilute phase coexisting with the condensate

on an absolute scale. Herein, we refer to this model as the first version of the CALVADOS (Coarse-graining Approach to

Liquid-liquid phase separation Via an Automated Data-driven Optimisation Scheme) model (CALVADOS 1).

In this class of coarse-grained models of IDPs, nonionic interactions are modeled via a Lennard-Jones-like potential,

which decays to zero only at infinite residue-residue distances. For computational efficiency, the potential is typically

calculated up to a cutoff distance, rc, and interactions between particles that are farther apart are ignored. Although

this truncation may introduce severe artifacts, in the different implementations of the models, the value of rc has varied

considerably between 1 and 4 nm [29, 20, 34, 31, 30, 35, 32]. Here, we systematically investigate the effect of the cutoff

of nonionic interactions on single-chain compaction and PS propensity. We find that decreasing the cutoff from 4 to 2

nm results in a small increase in the radius of gyration whereas the PS propensity significantly decreases. We exploit this

effect to improve the temperature-dependence of the CALVADOS 1 model by tuning the cutoff of the nonionic potential.

Further, we perform a Bayesian optimization of the “stickiness” parameters using a cutoff of 2.4 nm and an augmented

training set. We show that the updated model (CALVADOS 2) has improved predictive accuracy.

2 Results and Discussion

When applying a cutoff scheme, we neglect the interactions of residues separated by a distance, r, larger than the cutoff,

rc. For the most strongly interacting residue pair (between two tryptophans), the nonionic potential of the CALVADOS

1 model at rc = 2 nm takes the value of -5 J mol−1, that is, only a small fraction of the thermal energy (Fig. 1A).

However, the Lennard-Jones potential falls off slowly whereas the number of interacting partners increases quadratically

with increasing r. Therefore, in a simulation of a protein-rich phase, decreasing the cutoff from 4 to 2 nm (Fig. 1A) can

imply ignoring a total interaction energy per protein of several times the thermal energy.

We first look into the effect of the choice of cutoff on the conformational ensembles of isolated proteins. We simulated

single IDPs of different sequence length, N = 71–441, and average hydropathy, 〈λ〉 = 0.33–0.63. The average radii of

gyration, 〈Rg〉, calculated from simulation trajectories are systematically larger when we use rc = 2 nm, compared to the

values obtained using rc = 4 nm. CALVADOS 1 was optimized using the longer rc and estimating the ensemble average

Rg values as the root-mean-square Rg ,
√
〈R2

g〉. Since
√
〈R2

g〉 is systematically larger than 〈Rg〉, decreasing rc to 2 nm

results in a slight improvement of the agreement between the calculated 〈Rg〉 values and the experimental data (Fig. 1B).

To gain further insight into the effect of the cutoff, we performed simulations of single chains of α-Synuclein, hn-

RNPA1 LCD, PNt and Tau 2N4R (Table S1 and S2) using rc = 2, 2.5, 3 and 4 nm. Irrespective of the sequence, 〈Rg〉
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Figure 1: Effect of cutoff size on predictions of radii of gyration, Rg , and saturation concentration, csat, from simulations
performed using the CALVADOS 1 parameters. (A) Nonionic Ashbaugh-Hatch potentials between two W residues with
cutoff, rc, of 4 (blue solid line) and 2 nm (orange dashed line). The inset highlights differences between the potentials for
rs ≤ r ≤ rc. (B) Relative difference between experimental and predicted radii of gyration, 〈Rg〉, for rc = 4 (blue) and 2
nm (orange). χ2

r values reported in the legend are calculated for all the sequences in Table S1. (C) 〈Rg〉 of α-Synuclein,
hnRNPA1 LCD, PNt and human full-length tau (Table S1 and S2) from simulations performed with increasing cutoff
size, rc, and normalized by the value at rc = 2 nm. (D) Saturation concentration, csat, for hnRNPA1 LCD, the randomly
shuffled sequence of LAF-1 RGG domain, LAF-1 RGG domain and human full-length tau for increasing values of rc and
normalized by the csat at rc = 2 nm. (E–G) Correlation between csat from simulations and experiments for (E) A1 LCD
variants, (F) A1 LCD∗ WT at [NaCl] = 0.15, 0.2, 0.3 and 0.5 M and (G) variants of LAF-1 RGG domain (Table S4).

decreases monotonically with increasing rc. However, the effect on compaction appears to be larger for long sequences

and high content of hydrophobic residues, both of which result in an increased number of shorter intramolecular distances.

For example, upon increasing the rc from 2 to 4 nm, the 〈Rg〉 of α-Synuclein (N = 140, 〈λ〉 = 0.33) decreases by 2.3%

whereas the effect is more pronounced for hnRNPA1 LCD (N = 137, 〈λ〉 = 0.61) and Tau 2N4R (N = 441, 〈λ〉 = 0.38),

with a decrease in 〈Rg〉 of 4.0% and 7.7%, respectively.
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To investigate the effect of the cutoff distance on PS propensity, we performed direct-coexistence simulations of

100 chains of hnRNPA1 LCD, LAF-1 RGG domain (WT and shuffled sequence with higher charge segregation), and

Tau 2N4R (Table S4). From the simulation trajectories of the two-phase system at equilibrium, we calculate csat, i.e.

the protein concentration in the dilute phase coexisting with the condensate. The higher the csat value, the lower the

propensity of the IDP to undergo PS. As expected from the increased contact density in the condensed phase, the choice

of cutoff has a considerably larger impact on csat than on chain compaction: decreasing rc from 4 to 2 nm results in an

increase in csat of over one order of magnitude. In contrast to what we observed for the 〈Rg〉, the decrease in csat does not

show a clear dependence on sequence length and average hydropathy. From the multi-chain trajectories of hnRNPA1 LCD,

LAF-1 RGG domain (WT and shuffled sequence) and Tau 2N4R obtained using rc = 4 nm, we estimate that the increase

in nonionic energy per protein upon decreasing the cutoff from 4 to 2 nm is 13±1 kJ mol−1 (mean±standard deviation),

respectively (Fig. S1A). Assuming that the number of interactions neglected by the shorter cutoff is proportional to the

sequence length and the amino acid concentration in the condensate, the small variance in the energy increase across

the different IDPs finds explanation in the fact that the simulated systems display similar values of N2 × ccon (Fig.

S1A), where ccon is the protein concentration in the condensate. The ratio U(rc = 2 nm)/U(rc = 4 nm) of the nonionic

energies for rc = 2 and 4 nm is also largely system independent (Fig. S1B). Moreover, decreasing the temperature by∼30

K in the range between 310 and 323 K has a rather small impact on the relative strength of the electrostatic interactions

with respect to the thermal energy, due to the decrease in the dielectric constant of water with increasing temperature (Fig.

S1C). Therefore, we speculate that the effect of decreasing rc can be compensated by simulating the system at a lower

temperature (Fig. S1B).

With these considerations in mind, we use the CALVADOS 1 model with rc = 2 nm to run direct-coexistence simu-

lations of IDPs for which csat has been measured experimentally (Table S4), i.e. variants of hnRNPA1 LCD, hnRNPA1

LCD∗ at various salt concentrations, and LAF-1 RGG domain variants. As we have shown that decreasing the range of

the nonionic interactions disfavours PS, we perform these simulations at the experimental temperatures, which are lower

by ∼30 K than those required to reproduce the experimental csat values when the model is simulated with rc = 4 nm

(Fig. 1E–G). The two-fold decrease in rc enables the model to quantitatively recapitulate the experimental csat data at

the temperature at which the experiments were conducted. Notably, we show this for diverse sequences, across a wide

range of ionic strengths, and for variants with different charge patterning and numbers of aromatic and charged residues.

These results suggest that the range of interaction of the Lennard-Jones potential may be too large [36]. While the r−6

dependence is strictly correct for dispersion interactions between atoms, the nonionic potential of our model incorporates

a variety of effective nonbonded interactions between residues, and hence the Lennard-Jones potential is not expected to

capture the correct interaction range [31].

Since CALVADOS 1 was developed using rc = 4 nm, we examined whether reoptimizing the model with the shorter

cutoff could result in a comparably accurate model. As detailed in the Methods Section, we performed a Bayesian

parameter-learning procedure [32] using an improved algorithm, an expanded training set (Table S1), and rc = 2 nm. Fig.

S2 shows that the new model tends to underestimate the csat values of the most PS-prone sequences. We hypothesize

that during the optimization the reduction of attractive forces due to the shorter cutoff is overcompensated by an overall

increase in λ. We tested this hypothesis by performing the optimization with increasing values of rc, in the range between

2.0 and 2.5 nm, and found that the csat values predicted from simulations performed with rc = 2.0 nm increased mono-

tonically with the rc used for the optimization (Fig. S3). Using rc = 2.4 nm for the optimization resulted in a model with

improved accuracy compared to CALVADOS 1 (Fig. 2), especially for the PS of LAF-1 RGG domain and the−23S+23T

variant of A1 LCD. To test the robustness of the approach, the optimization was carried out starting from λ0 = 0.5 for

all the amino acids (Fig. 2) and from λ0 =M1 (Fig. S4 and S5). The difference between the resulting sets of optimal
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Figure 2: (A) Comparison between λλλ sets of CALVADOS 1 (orange) and CALVADOS 2 (blue). (B) Distribution of the
relative difference between experimental (Table S1) and predicted radii of gyration, 〈Rg〉, for CALVADOS 1 (orange)
and CALVADOS 2 (blue). (C) Comparison between saturation concentrations, csat, at 293 K of variants of hnRNPA1
LCD measured by Bremer, Farag, Borcherds et al. [37] (closed circles) and corresponding predictions of CALVADOS
1 (open orange circles) and CALVADOS 2 (open blue squares). (D–F) Correlation between csat from simulations and
experiments for (D) A1 LCD variants, (E) A1 LCD∗ WT at [NaCl] = 0.15, 0.2, 0.3 and 0.5 M and (F) variants of LAF-1
RGG domain (Table S4).

λ values (Fig. S5A) is lower than 0.08 for all the residues and exceeds 0.05 only for S, T and A. The model obtained

starting from λ0 = 0.5 is more accurate at predicting PS propensities and will be referred to as CALVADOS 2 hereafter.

The λ values of CALVADOS 1 and 2 differ mostly for K, T, A, M, and V, whereas the smaller deviations (|∆λ| < 0.09)

observed for Q, L, I, and F (Fig. 2A) are within the range of reproducibility of the method (Fig. S5A). Although CALVA-

DOS 1 was optimized using rc = 4 nm, predictions of single-chain compaction from simulations performed using rc = 2

nm are more accurate for CALVADOS 1 than for CALVADOS 2. This result can be explained by the opposing effects

of decreasing the cutoff and calculating Rg values as 〈Rg〉 insteead of
√
〈R2

g〉. In fact, the
√
〈R2

g〉 values predicted by
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CALVADOS 1 are strikingly similar to the 〈Rg〉 values predicted by CALVADOS 2 (Fig. S6).

The correlation between experimental and predicted Rg values for the 67 proteins of Table S1 and S2 is excellent for

both CALVADOS 1 and 2 (Fig. S7A). On the other hand, CALVADOS 2 is more accurate than CALVADOS 1 at predicting

PS propensities, as evidenced by Pearson’s correlation coefficients of 0.93 and 0.82, respectively, for the experimental and

predicted csat values of the 26 sequences of Table S4 (Fig. S7B).

Capturing the interplay between short-range nonionic and long-range ionic interactions is essential for accurately

modeling the PS of IDPs [38, 39, 37, 40]. Our results show that the decrease in the range of the nonionic potential

reported in this work does not significantly perturb the balance between ionic and nonionic forces. In fact, CALVADOS

1 and 2 accurately predict the PS propensities of A1 LCD∗ at various salt concentrations, as well as the csat of variants of

A1 LCD and LAF-1 RGG domain with different charge patterning (Fig. 1E–G and 2D–F). Moreover, CALVADOS 1 and

2 recapitulate the effect of salt concentration and charge patterning on the chain compaction of A1 LCD∗ [41] and p27-C

constructs [42], respectively (Fig. S8).

As additional test systems, we considered constructs of the 1–80 N-terminal fragment of yeast Lge1, which have

been recently investigated using turbidity measurements [43]. CALVADOS 2 correctly predicts that the WT Lge11−80

construct undergoes PS at the experimental conditions, albeit with a hundred times larger csat (50 ± 6 µM at cs = 100

mM) compared to experiments (< 1 µM). In agreement with experiments, CALVADOS 2 predicts that mutating all the 11

R residues to K increases csat by over one order of magnitude whereas mutating the 14 Y residues of the 1–80 fragment

to A abrogates PS (Fig. S9).

3 Conclusions

In the context of a previously developed Cα-based IDP model (CALVADOS), we show that neglecting the long range of

attractive Lennard-Jones interactions has a small impact on the compaction of a single chain while strongly disfavouring

PS. The effect can be explained by the smaller number of neglected pair interactions for a residues in an isolated chain

compared to the dense environment of a condensate. Moreover, we find that the effect of reducing the range of interaction

by a factor of two is relatively insensitive to sequence length and composition. Therefore, decreasing the cutoff of

the Lennard-Jones potential of the Cα-based model engenders a similar generic effect on chain compaction and PS as

a corresponding increase in temperature. We take advantage of this finding to solve the temperature mismatch of the

CALVADOS model. Namely, we decrease the cutoff of the nonionic interactions from 4 to 2 nm and obtain accurate

csat predictions at the experimental conditions, whereas simulations at temperatures higher by 30 ◦C were required in

the original implementation. Finally, we used the shorter cutoff to reoptimize the “stickiness” parameters of the model

against experimental data reporting on single-chain compaction. The small expansion of the chain conformations is

overcompensated by an overall increase in “stickiness” so that the resulting model tends to underestimate the experimental

csat values. By systematically increasing the cutoff used in the development of the “stickiness” scale, we find that

performing the optimization using rc = 2.4 nm results in a model (CALVADOS 2) which yields accurate predictions

from simulations run using rc = 2 nm at the experimental conditions. We present CALVADOS 2 as an improvement of

our previous model by testing on sets of experimentalRg and csat data comprising 16 and 36 systems, respectively, which

were not used in the parameterization of the model.
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4 Methods

4.1 Molecular Simulations

Molecular dynamics simulations are conducted in the NVT ensemble using the Langevin integrator with a time step of 10

fs and friction coefficient of 0.01 ps−1. Non-bonded interactions between residues separated by one bond are excluded

from the energy calculations. Functional forms and parameters for bonded and nonbonded interactions are reported in

the “Bonded and Nonbonded Interactions” Subsection. Single chains of N residues are simulated using HOOMD-blue

v2.9.3 [44] in a cubic box of side length 0.38 × (N − 1) + 4 nm under periodic boundary conditions, starting from the

fully extended linear conformation. Each chain is simulated in ten replicas for ∼ 6× 0.3×N2 ps if N > 100 and for 18

ns otherwise. The initial 100 frames of each replica are discarded, so as to sample 5,000 weakly correlated conformations

for each protein (Fig. S10). Direct-coexistence simulations are performed using openMM v7.5 [45] in a cuboidal box

of side lengths [Lx, Ly, Lz] = [25, 25, 300], [17, 17, 300] and [15, 15, 150] nm for Tau 2N4R, Ddx4 LCD, and for the

remainder of the proteins, respectively. In the starting configuration, 100 chains are aligned along the z-axis and with

their middle beads placed in the xy-plane at random (x, y) positions which are more than 0.7 nm apart. Multi-chain

simulations are carried out for at least 2 µs, saving frames every 0.5 ns (Fig. S11, S12, and S13). After discarding

the initial 0.6 µs, the slab is centered in the box at each frame as previously described [32] and the equilibrium density

profile, ρ(z), is calculated by averaging over the trajectory of the system at equilibrium. The densities of the dilute and

protein-rich phases are estimated as the average densities in the regions |z| < zDS − t/2 and |z| > zDS + 6t nm,

where zDS and t are the position of the dividing surface and the thickness of the interface, respectively. zDS and t are

obtained by fitting the semi-profiles in z > 0 and z < 0 to ρ(z) = (ρa + ρb)/2 + (ρb − ρa)/2 × tanh [(|z| − zDS)/t],

where ρa and ρb are the densities of the protein-rich and dilute phases, respectively. The uncertainty of the density values

is estimated as the standard error obtained from the blocking approach [46] implemented in the BLOCKING software

(github.com/fpesceKU/BLOCKING).

4.2 Bonded and Nonbonded Interactions

In this study, we used the following truncated and shifted Ashbaugh-Hatch potential [47],

uSPAH(r) =


uLJ(r)− λuLJ(rc) + ε(1− λ), r ≤ 21/6σ

λ [uLJ(r)− uLJ(rc)] , 21/6σ < r < rc

0, r > rc,

(1)

where ε = 0.8368 kJ mol−1, rc = 2 or 4 nm, and uLJ is the Lennard-Jones potential:

uLJ(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (2)

σ and λ are arithmetic averages of amino acid specific parameters quantifying size and hydropathy, respectively. For σ,

we use the values calculated from van der Waals volumes by Kim and Hummer [48] whereas, for λ, we use the recently

proposed M1 parameters [32] and the values optimized in this work.

Salt-screened electrostatic interactions are modeled via the Debye-Hückel potential,

uDH(r) =
qiqje

2

4πε0εr

exp (−r/D)

r
(3)

where q is the average amino acid charge number, e is the elementary charge, D =
√

1/(8πBcs) is the Debye length of

an electrolyte solution of ionic strength cs and B(εr) is the Bjerrum length. Electrostatic interactions are truncated and

shifted at the cutoff distance rc = 4 nm, irrespective of the value of rc used for Eq. 1. We use the following empirical

relationship [49]

εr(T ) =
5321

T
+ 233.76− 0.9297× T + 1.417× 10−3 × T 2 − 8.292× 10−7 × T 3, (4)
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to model the temperature-dependent dielectric constant of the implicit aqueous solution. The Henderson–Hasselbalch

equation is used to estimate the average charge of the histidine residues, assuming a pKa value of 6 [50].

The amino acid beads are connected by harmonic potentials,

ubond(r) =
1

2
k(r − r0)2, (5)

of force constant k = 8033 kJ mol−1 nm−2 and equilibrium distance r0 = 0.38 nm.

4.3 Optimization of the “Stickiness” Scale

The optimization of the “stickiness” parameters, λλλ, is carried out to minimize the cost function L(λλλ) = 〈χ2
Rg

(λλλ)〉 +

η〈χ2
PRE(λλλ)〉 − θ ln [P (λλλ)] using an algorithm which is analogous to the one we previously described [32]. χ2

Rg
and

χ2
PRE quantify the discrepancy between model predictions and experimental data, and are defined as χ2

Rg
= [(Rexpg −

Rcalcg )/σexp]2 and χ2
PRE = 1

NlabelsN

∑Nlabels

j

∑Nres

i [(Y expij − Y calcij )/σexpij ]2, respectively, where σexp is the error on

the experimental values, Y is either PRE rates or intensity ratios and Nlabels is the number of spin-labeled mutants used

for the NMR PRE data. In the expression for the cost function, the coefficients are set to η = 0.1 and θ = 0.05.

The prior is the distribution of λ, P (λλλ), derived from a subset of the hydrophobicity scales reported in Table 3 and 4

of Simm et al. [51]. Specifically, only the 70 scales that are unique after min-max normalization (Fig. S14) are used

for the calculation of P (λ), namely Wimley, BULDG reverse, MANP780101, VHEG790101, JANIN, JANJ790102,

WOLR790101, PONP800101–6, Wilson, FAUCH, ENGEL, ROSEM, JACWH, CowanWhittacker, ROSM880101 re-

verse, ROSM880102 reverse, COWR900101, BLAS910101, CASSI, CIDH920101, CIDH920105, CIDBB, CIDA+,

CIDAB, PONG1–3, WILM950101–2, WILM950104, Bishop reverse, NADH010101–7, ZIMJ680101, NOZY710101,

JONES, LEVIT, KYTJ820101, SWER830101, SWEET, EISEN, ROSEF, GUYFE, COHEN, NNEIG, MDK0, MDK1,

JURD980101, SET1–3, CHOTA, CHOTH, Sweet & Eisenberg, KIDER, ROSEB, Welling reverse, Rao & Argos, GIBRA,

and WOLR810101 reverse. P (λλλ) is obtained via multivariate kernel density estimation, as implemented in scikit-learn

[52], using a Gaussian kernel with bandwidth of 0.05. This prior is 20-dimensional and contains information on the λ-

distribution of the single amino acid (Fig. S15) as well as on the covariance matrix (Fig. S16) inferred from our selection

of 70 hydrophobicity scales.

In the first step of the optimization procedure, the λ values for all the amino acids are set to 0.5, λ0 = 0.5, and these

parameters are used to simulate the proteins of the training set (Table S1). We proceed with the first optimization cycle,

wherein, at each k-th iteration, the λ values of a random selection of five amino acids are nudged by random numbers

picked from a normal distribution of standard deviation 0.05 to generate a trial λkλkλk set. For each ith frame, we calculate

the Boltzmann weight as wi = exp {−[U(ririri,λkλkλk)− U(ririri,λ0λ0λ0)]/kBT}, where U is the nonionic potential. The trial λkλkλk

is discarded if the effective fraction of frames, φeff = exp
[
−
∑Nframes

i wi log (wi ×Nframes)
]
, is lower than 60%.

Otherwise, the acceptance probability follows the Metropolis criterion, min
{

1, exp
[
L(λλλk−1)−L(λλλk)

ξk

]}
, where ξk is a

unitless control parameter. Each optimization cycle is divided into ten micro-cycles, wherein the control parameter, ξ, is

initially set to ξ0 = 0.1 and scaled down by 1% at each iteration until ξ < 10−8. From the complete optimization cycle,

we select the λλλ set yielding the lowest estimate of L. Consecutive optimization cycles are performed from simulations

runs carried out with the intermediate optimal λλλ set. To show that the procedure is reproducible and that the final λλλ set is

relatively independent of the initial conditions, we performed an additional optimization procedure starting from the M1

model, λ0 =M1 [32]. The optimization performed in this work differs from our previous implementation [32] also for the

following details: (i) nine additional sequences have been included in the training set (Table S1 and S3); (ii) single chains

are simulated as detailed in the “Molecular Simulations” Subsection; (v) the average radius of gyration is calculated as

〈Rg〉 instead of
√
〈R2

g〉.
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Code and Data Availability

Scripts and parameters to perform single-chain and direct-coexistence simulations using CALVADOS 1 and 2 are available

at github.com/KULL-Centre/CALVADOS and archived on Zenodo at doi.org/10.5281/zenodo.6815068. All code and

data to reproduce the results presented in this work are available at github.com/KULL-Centre/papers/tree/main/2022/CG-

cutoffs-Tesei-et-al.
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Figure S1: (A) Comparison between nonionic energy difference per protein (∆U = U(rc = 2 nm) − U(rc = 4 nm),
hatched) and N2 × ccon (orange), where N is the sequence length and ccon is the molar protein concentration in the
condensate. (B) Ratio between nonionic energies calculated with rc = 2 and 4 nm (open circles) compared to the ratio
of the thermal energy at T ′ = T − 20 K and at T (orange). (C) Increase in electrostatic energy relative to the thermal
energy upon decreasing the temperature by 30 (black) and 20 K (orange). The data shown in this figure are obtained from
simulations of hnRNPA1 LCD, LAF-1 RGG domain (WT and shuffled sequence) and Tau 2N4R performed at T = 310,
293, 323, and 277 K, respectively, and using rc = 4 nm. Error bars are standard deviations over trajectories of the systems
at equilibrium.
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Figure S2: (A) Comparison between λλλ sets of CALVADOS 1 (orange) and the model resulting from the optimization
with rc = 2.0 nm (OPTrc2.0, green). (B) Distribution of the relative difference between experimental (Table S1) and
predicted radii of gyration, 〈Rg〉, for CALVADOS 1 (orange) and OPTrc2.0 (blue). (C) Comparison between saturation
concentrations, csat, at 293 K of variants of hnRNPA1 LCD measured by Bremer, Farag, Borcherds et al. [37] (closed
circles) and corresponding predictions of CALVADOS 1 (open orange circles) and OPTrc2.0 (open green squares). (D–F)
Correlation between csat from simulations and experiments for (D) A1 LCD variants, (E) A1 LCD∗WT at [NaCl] = 0.15,
0.2, 0.3 and 0.5 M and (F) variants of LAF-1 RGG domain (Table S4).
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Figure S3: Saturation concentrations, csat, as a function of the cutoff used to optimize the model. csat values are calculated
from simulations performed using rc = 2.0 nm whereas the models are optimized using rc = 2.0, 2.2, 2.4, and 2.5 nm.
Horizontal dotted lines represent experimental csat values from the references reported in Table S4.

Figure S4: Optimization of the λ parameters starting from λ0 = 0.5 (A and B) and λ0 =M1 (C and D). (A and B) Evolution
of the λ parameters during three consecutive optimization cycles. The color gradient from light to dark shade indicates
increasing number of iterations. Open squares and circles show optimal λ sets obtained from indipendent optimizations
starting from λ0 = 0.5 and λ0 =M1, respectively. (C and D) Evolution of χ2Rg (blue triangles), 0.1 × χ2PRE (orange
squares), and the regularization term 0.05 × ln [P (λλλ)] (green circles). Dotted vertical lines indicate updated sampling
by molecular simulations, whereas the remaining points are estimated from reweighted ensembles. Solid vertical lines
indicate the optimal λ set corresponding to the lowest total cost function, L.
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Figure S5: (A) Comparison between λλλ sets optimized starting from λ0 = 0.5 (CALVADOS 2, blue) and λ0 =M1
(OPTλ0M1, green) using rc = 2.4 nm. (B) Distribution of the relative difference between experimental (Table S1) and
predicted radii of gyration, 〈Rg〉, for CALVADOS 2 (blue) and OPTλ0M1 (green). (C) Comparison between saturation
concentrations, csat, at 293 K of variants of hnRNPA1 LCD measured by Bremer, Farag, Borcherds et al. [37] (closed
circles) and corresponding predictions of CALVADOS 2 (open blue squares) and OPTλ0M1 (open green circles). (D–F)
Correlation between csat from simulations and experiments for (D) A1 LCD variants, (E) A1 LCD∗WT at [NaCl] = 0.15,
0.2, 0.3 and 0.5 M and (F) variants of LAF-1 RGG domain (Table S4).
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(blue) for (A) A1 LCD∗ at different salt concentrations (50 mM < cs < 500 mM) and (B) p27-C constructs of different
charge patterning (0.1 < κ < 0.8). Experimental conditions and references are reported in Table S2.
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Figure S9: Predictions of CALVADOS 2 direct-coexistence simulations of the PS of constructs of the 1–80 N-terminal
fragment of yeast Lge1 simulated at (A) cs = 100 mM and (B) 500 mM. Protein concentration profiles are shown as a
function of the long side of the simulation cell for WT (blue), -11R+11K variant (orange), and -14Y+14A variant (green).
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Figure S11: Time evolution of the protein concentration along the z-axis of the simulation cell, as obtained from direct-
coexistence simulations performed with the CALVADOS 1 model and rc = 4 nm.
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Figure S12: Time evolution of protein density along the z-axis of the simulation cell, as obtained from direct-coexistence
simulations performed with the CALVADOS 1 model and rc = 2 nm.
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Figure S13: Time evolution of protein density along the z-axis of the simulation cell, as obtained from direct-coexistence
simulations performed with the CALVADOS 2 model and rc = 2 nm.
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Figure S14: Hierarchical clustering dendrogram of 70 min-max normalized hydrophobicity scales selected from the set
by Simm et al. [51]. Agglomerative clustering is performed using Euclidean distances and the average linkage method as
implemented in the Python scikit-learn package [52].
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Figure S15: Probability distributions of the “stickiness” parameters, P (λ), obtained from 70 min-max normalized hy-
drophobicity scales selected from the set by Simm et al. [51]. Blue bars are histograms with bin width of 0.1. Black
lines are obtained as 1D projections of the multivariate kernel density estimation implemented in scikit-learn [52], using
a Gaussian kernel with bandwidth of 0.05.
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Figure S16: Covariance matrix of the 70 min-max normalized hydrophobicity scales selected from the set by Simm et
al. [51]. The upper triangle of the matrix shows the covariance calculated directly from the 70 min-max normalized
hydrophobicity scales whereas the lower triangle of the matrix shows the covariance calculated from the multivariate
kernel density estimation averaging over the 70 min-max normalized hydrophobicity scales.
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Table S1: Solution conditions and experimental radii of gyration of proteins included in the training set for the Bayesian
parameter-learning procedure.

Protein N Rg (nm) T (K) cs (M) pH Ref.
Hst5 24 1.38 ± 0.05 293 0.15 7.5 [53]
(Hst5)2 48 1.87 ± 0.05 298 0.15 7.0 [54]
p53 (20-70) 62 2.39 ± 0.05 277 0.1 7.0 [55]
ACTR 71 2.6 ± 0.1 278 0.2 7.4 [56]
Ash1 81 2.9 ± 0.05 293 0.15 7.5 [57, 58]
CTD2 83 2.61 ± 0.05 293 0.12 7.5 [59, 58]
Sic1 92 3.0 ± 0.4 293 0.2 7.5 [60]
SH4UD 95 2.7 ± 0.1 293 0.2 8.0 [61]
ColNT 98 2.8 ± 0.1 277 0.4 7.6 [62]
p15PAF 111 2.8 ± 0.1 298 0.15 7.0 [63]
hNL3cyt 119 3.2 ± 0.2 293 0.3 8.5 [64]
RNaseA 124 3.4 ± 0.1 298 0.15 7.5 [65]
A1 137 2.76 ± 0.02 298 0.15 7.0 [37]
-10R 137 2.67 ± 0.01 298 0.15 7.0 [37]
-6R 137 2.57 ± 0.01 298 0.15 7.0 [37]
+2R 137 2.62 ± 0.02 298 0.15 7.0 [37]
+7R 137 2.71 ± 0.01 298 0.15 7.0 [37]
-3R+3K 137 2.63 ± 0.02 298 0.15 7.0 [37]
-6R+6K 137 2.79 ± 0.01 298 0.15 7.0 [37]
-10R+10K 137 2.85 ± 0.01 298 0.15 7.0 [37]
+12D 137 2.80 ± 0.01 298 0.15 7.0 [37]
+4D 137 2.72 ± 0.03 298 0.15 7.0 [37]
+8D 137 2.69 ± 0.01 298 0.15 7.0 [37]
-9F+3Y 137 2.68 ± 0.01 298 0.15 7.0 [37]
+12E 137 2.85 ± 0.01 298 0.15 7.0 [37]
+7K+12D 137 2.92 ± 0.01 298 0.15 7.0 [37]
+7K+12D blocky 137 2.56 ± 0.01 298 0.15 7.0 [37]
-4D 137 2.64 ± 0.01 298 0.15 7.0 [37]
-8F+4Y 137 2.71 ± 0.01 298 0.15 7.0 [37]
-10F+7R+12D 137 2.86 ± 0.01 298 0.15 7.0 [37]
+7F-7Y 137 2.72 ± 0.01 298 0.15 7.0 [37]
-12F+12Y 137 2.60 ± 0.02 298 0.15 7.0 [37]
-12F+12Y-10R 137 2.61 ± 0.02 298 0.15 7.0 [37]
-9F+6Y 137 2.65 ± 0.01 298 0.15 7.0 [37]
αSyn 140 3.55 ± 0.1 293 0.2 7.4 [66]
FhuA 144 3.34 ± 0.1 298 0.15 7.5 [65]
K27 167 3.70 ± 0.2 288 0.15 7.4 [67]
K10 168 4.00 ± 0.1 288 0.15 7.4 [67]
K25 185 4.10 ± 0.2 288 0.15 7.4 [67]
K32 198 4.20 ± 0.3 288 0.15 7.4 [67]
CAHSD 227 4.8 ± 0.2 293 0.07 7.0 [68]
K23 254 4.9 ± 0.2 288 0.15 7.4 [67]
Tau35 255 4.7 ± 0.1 298 0.15 7.4 [69]
CoRNID 271 4.7 ± 0.2 293 0.2 7.5 [70]
K44 283 5.2 ± 0.2 288 0.15 7.4 [67]
PNt 334 5.1 ± 0.1 298 0.15 7.5 [65, 71]
PNt Swap1 334 4.9 ± 0.1 298 0.15 7.5 [71]
PNt Swap4 334 5.3 ± 0.1 298 0.15 7.5 [71]
PNt Swap5 334 4.9 ± 0.1 298 0.15 7.5 [71]
PNt Swap6 334 5.3 ± 0.1 298 0.15 7.5 [71]
GHRICD 351 6.0 ± 0.5 298 0.35 7.3 [72, 73]
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Table S2: Solution conditions and experimental radii of gyration of proteins simulated in this study but not included in
the training set for the Bayesian parameter-learning procedure.

Protein N Rg (nm) T (K) cs (M) pH Ref.
DSS1 71 2.5 ± 0.1 288 0.17 7.4 [73]
p27Cv14 107 2.936 ± 0.13 293 0.095 7.2 [42]
p27Cv15 107 2.915 ± 0.10 293 0.095 7.2 [42]
p27Cv31 107 2.81 ± 0.18 293 0.095 7.2 [42]
p27Cv44 107 2.492 ± 0.13 293 0.095 7.2 [42]
p27Cv56 107 2.328 ± 0.10 293 0.095 7.2 [42]
p27Cv78 107 2.211 ± 0.03 293 0.095 7.2 [42]
PTMA 111 3.7 ± 0.2 288 0.16 7.4 [73]
NHE6cmdd 116 3.2 ± 0.2 288 0.17 7.4 [73]
A1 LCD∗ 131 2.645 ± 0.02 293 0.05 7.5 [41]
A1 LCD∗ 131 2.65 ± 0.02 293 0.15 7.5 [41]
A1 LCD∗ 131 2.62 ± 0.02 293 0.3 7.5 [41]
A1 LCD∗ 131 2.528 ± 0.02 293 0.5 7.5 [41]
ANAC046 167 3.6 ± 0.3 298 0.14 7.0 [73]
Tau 2N3R 410 6.3 ± 0.3 298 0.15 7.4 [69]
Tau 2N4R 441 6.7 ± 0.3 298 0.15 7.4 [69]

Table S3: Experimental conditions for the intramolecular PRE data included in the training set.

Protein N Nlabels ωI/2π (MHz) T (K) cs (M) pH Ref.
FUS 163 3 850 298 0.15 5.5 [2]
FUS12E 164 3 850 298 0.15 5.5 [2]
OPN 220 10 800 298 0.15 6.5 [74]
αSyn 140 5 700 283 0.2 7.4 [75]
A2 155 2 850 298 0.005 5.5 [3]
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Table S4: Conditions used for the direct-coexistence simulations performed in this study and references to the experi-
mental data. Shaded rows highlight systems which are not included in the correlation plot of Fig. S7B because of lack of
experimental csat values.

Protein N cs (mM) pH Ref. T (K)
4 nm 2 nm Fig. 1C

6His-TEV-Lge11−80-StrepII WT 114 500 7.5 [43] - 293 -
6His-TEV-Lge11−80-StrepII -11R+11K 114 500 7.5 [43] - 293 -
6His-TEV-Lge11−80-StrepII -14Y+14A 114 500 7.5 [43] - 293 -
A1 LCD WT 137 150 7.0 [4, 37] 310 & 323 277 & 293 310
A1 LCD +7F-7Y 137 150 7.0 [37] 310 & 323 277 & 293 -
A1 LCD -12F+12Y 137 150 7.0 [37] 310 & 323 277 & 293 -
A1 LCD -23S+23T 137 150 7.0 [37] 310 & 323 277 & 293 -
A1 LCD -14N+14Q 137 150 7.0 [37] 310 & 323 277 & 293 -
A1 LCD -10G+10S 137 150 7.0 [37] 310 & 323 277 & 293 -
A1 LCD -20G+20S 137 150 7.0 [37] 310 & 323 277 & 293 -
A1 LCD -30G+30S 137 150 7.0 [37] 323 293 -
A1 LCD +23G-23S 137 150 7.0 [37] 323 293 -
A1 LCD +23G-23S+7F-7Y 137 150 7.0 [37] 323 293 -
A1 LCD +23G-23S-12F+12Y 137 150 7.0 [37] 323 293 -
A1 LCD -9F+3Y 137 150 7.0 [37] 310 277 -
A1 LCD -8F+4Y 137 150 7.0 [37] 310 277 -
A1 LCD -3R+3K 137 150 7.0 [37] 310 277 -
A1 LCD -6R 137 150 7.0 [37] 310 277 -
A1 LCD -4D 137 150 7.0 [37] 310 277 -
A1 LCD +4D 137 150 7.0 [37] 310 277 -
A1 LCD +8D 137 150 7.0 [37] 310 277 -
A1 LCD +2R 137 150 7.0 [37] 310 277 -
A1 LCD∗ WT 131 150 7.0 [76] 323 293 -
A1 LCD∗ WT 131 200 7.0 [76] 323 293 -
A1 LCD∗ WT 131 300 7.0 [76] 323 293 -
A1 LCD∗ WT 131 500 7.0 [76] 323 293 -
LAF-1 RGG Domain 176 150 7.5 [77] 323 293 293
LAF-1 RGG Domain Shuffled 176 150 7.5 [77] 323 293 323
LAF-1 RGG Domain ∆21-30 166 150 7.5 [77] 323 293 -
A2 LCD 155 10 5.5 [78] - 297 -
FUS LCD 163 150 7.4 [79] - 297 -
Ddx4 LCD 236 130 6.5 [80] - 297 -
Human Full-Length Tau (2N4R) 441 70 7.4 - - - 277
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long- versus short-range interactions defines the ability of force fields to reproduce the dynamics of intrinsically

disordered proteins. Journal of Chemical Theory and Computation, 13(9):3964–3974, August 2017. URL: https:

//doi.org/10.1021%2Facs.jctc.7b00143, doi:10.1021/acs.jctc.7b00143.

[39] Ibraheem Alshareedah, Taranpreet Kaur, Jason Ngo, Hannah Seppala, Liz-Audrey Djomnang Kounatse, Wei Wang,

Mahdi Muhammad Moosa, and Priya R. Banerjee. Interplay between short-range attraction and long-range repulsion

controls reentrant liquid condensation of ribonucleoprotein–RNA complexes. Journal of the American Chemical

Society, 141(37):14593–14602, August 2019. doi:10.1021/jacs.9b03689.

[40] Milan Kumar Hazra and Yaakov Levy. Biophysics of phase separation of disordered proteins is governed by balance

between short- and long-range interactions. The Journal of Physical Chemistry B, 125(9):2202–2211, February

2021. doi:10.1021/acs.jpcb.0c09975.

[41] Erik W Martin, F Emil Thomasen, Nicole M Milkovic, Matthew J Cuneo, Christy R Grace, Amanda Nourse, Kresten

Lindorff-Larsen, and Tanja Mittag. Interplay of folded domains and the disordered low-complexity domain in

mediating hnRNPA1 phase separation. Nucleic Acids Research, 49(5):2931–2945, February 2021. doi:10.1093/

nar/gkab063.

27

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.09.499434doi: bioRxiv preprint 

https://doi.org/10.1038/s43588-021-00155-3
https://doi.org/10.1038/s43588-021-00155-3
https://doi.org/10.1073/pnas.2111696118
https://doi.org/10.1529/biophysj.107.108241
https://doi.org/https://doi.org/10.1016/j.bpj.2021.11.003
https://doi.org/https://doi.org/10.1016/j.bpj.2021.11.003
https://doi.org/10.1039/C8CP05095C
https://doi.org/10.1039/c9cp05445f
https://doi.org/10.1038/s41557-021-00840-w
https://doi.org/10.1021%2Facs.jctc.7b00143
https://doi.org/10.1021%2Facs.jctc.7b00143
https://doi.org/10.1021/acs.jctc.7b00143
https://doi.org/10.1021/jacs.9b03689
https://doi.org/10.1021/acs.jpcb.0c09975
https://doi.org/10.1093/nar/gkab063
https://doi.org/10.1093/nar/gkab063
https://doi.org/10.1101/2022.07.09.499434
http://creativecommons.org/licenses/by-nc-nd/4.0/


[42] Rahul K. Das, Yongqi Huang, Aaron H. Phillips, Richard W. Kriwacki, and Rohit V. Pappu. Cryptic sequence

features within the disordered protein p27Kip1 regulate cell cycle signaling. Proceedings of the National Academy

of Sciences, 113(20):5616–5621, May 2016. doi:10.1073/pnas.1516277113.

[43] Anton A. Polyansky, Laura D. Gallego, Roman G. Efremov, Alwin Köhler, and Bojan Zagrovic. Protein compactness
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[58] Fan Jin and Frauke Gräter. How multisite phosphorylation impacts the conformations of intrinsically disordered pro-

teins. PLOS Computational Biology, 17(5):e1008939, May 2021. doi:10.1371/journal.pcbi.1008939.

[59] Eric B. Gibbs, Feiyue Lu, Bede Portz, Michael J. Fisher, Brenda P. Medellin, Tatiana N. Laremore, Yan Jessie

Zhang, David S. Gilmour, and Scott A. Showalter. Phosphorylation induces sequence-specific conformational

switches in the RNA polymerase II c-terminal domain. Nature Communications, 8(1), May 2017. doi:

10.1038/ncomms15233.
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Moreno Lelli, Tammo Diercks, Pau Bernadó, and Francisco J. Blanco. p15paf is an intrinsically disordered protein

with nonrandom structural preferences at sites of interaction with other proteins. Biophysical Journal, 106(4):865–

874, February 2014. doi:10.1016/j.bpj.2013.12.046.

[64] Aviv Paz, Tzviya Zeev-Ben-Mordehai, Martin Lundqvist, Eilon Sherman, Efstratios Mylonas, Lev Weiner, Gilad

Haran, Dmitri I. Svergun, Frans A.A. Mulder, Joel L. Sussman, and Israel Silman. Biophysical characterization of

the unstructured cytoplasmic domain of the human neuronal adhesion protein neuroligin 3. Biophysical Journal,

95(4):1928–1944, August 2008. doi:10.1529/biophysj.107.126995.

29

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 13, 2022. ; https://doi.org/10.1101/2022.07.09.499434doi: bioRxiv preprint 

https://doi.org/10.1038/s41467-021-21258-5
https://doi.org/10.1038/s41467-021-21258-5
https://doi.org/https://doi.org/10.1002/pro.435
https://doi.org/https://doi.org/10.1002/pro.435
https://doi.org/10.1021/jacs.6b10272
https://doi.org/10.1021/jacs.6b10272
https://doi.org/10.1371/journal.pcbi.1008939
https://doi.org/10.1038/ncomms15233
https://doi.org/10.1038/ncomms15233
https://doi.org/10.1021/jacs.0c02088
https://doi.org/10.1073/pnas.1907251116
https://doi.org/10.1073/pnas.1907251116
https://doi.org/10.1016/j.bpj.2017.08.030
https://doi.org/10.1016/j.bpj.2013.12.046
https://doi.org/10.1529/biophysj.107.126995
https://doi.org/10.1101/2022.07.09.499434
http://creativecommons.org/licenses/by-nc-nd/4.0/


[65] Joshua A. Riback, Micayla A. Bowman, Adam M. Zmyslowski, Catherine R. Knoverek, John M. Jumper, James R.

Hinshaw, Emily B. Kaye, Karl F. Freed, Patricia L. Clark, and Tobin R. Sosnick. Innovative scattering analysis

shows that hydrophobic disordered proteins are expanded in water. Science, 358(6360):238–241, October 2017.

doi:10.1126/science.aan5774.

[66] Mustapha Carab Ahmed, Line K. Skaanning, Alexander Jussupow, Estella A. Newcombe, Birthe B. Kragelund,

Carlo Camilloni, Annette E. Langkilde, and Kresten Lindorff-Larsen. Refinement of α-synuclein ensembles against

SAXS data: Comparison of force fields and methods. Frontiers in Molecular Biosciences, 8, April 2021. doi:

10.3389/fmolb.2021.654333.
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