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Abstract 35 

Estimating the temporal evolution of biomarker abnormalities in disease informs 36 

understanding of early disease processes and facilitates subject staging, which may 37 

augment the development of early therapeutic interventions and provide personalised 38 

treatment tools. Event-based modelling of disease progression (EBM) is a data-driven 39 

technique for inferring a sequence of biomarker abnormalities, or events, from cross-40 

sectional or short-term longitudinal datasets and has been applied to a variety of different 41 

diseases, including Alzheimer’s disease. Conventional EBM (C-EBM) assumes the 42 

sequence of biomarker abnormalities occurs in series, with one biomarker event per disease 43 

progression stage. However, events may occur simultaneously, for example due to the 44 

presence of shared causal factors, a property which cannot be inferred from C-EBM. Here 45 

we introduce simultaneous EBM (S-EBM), a generalisation of C-EBM to enable estimation of 46 

simultaneous events. S-EBM can estimate a wider range of sequence types than C-EBM 47 

while being fully backward compatible with the original model. Using simulated data, we 48 

firstly demonstrate the inability of C-EBM to infer simultaneous events. We next assess the 49 

accuracy of S-EBM against ground truth data and subsequently demonstrate a real-world 50 

example application to sequence disease progression in Alzheimer’s disease. Simulations 51 

show that C-EBM can not discern serial events with high biomarker variance from 52 

simultaneous events, preventing its use for inferring simultaneous events. S-EBM has high 53 

estimation accuracy against ground truth for a range of sequence types (fully simultaneous, 54 

partially simultaneous, serial), number of biomarkers and biomarker variances. When 55 

applied to Alzheimer’s disease biomarker data from ADNI, S-EBM estimated a sequence 56 

where events within sets of biomarker domains occur simultaneously. Accumulation of total 57 

and phosphorylated tau in cerebrospinal fluid; performance on RAVLT, ADAS-Cog and 58 

MMSE cognitive test scores; and volumetric decline in temporal regional brain volumes, 59 

were better described as groups of simultaneous events rather than a single set of serial 60 

events (likelihood ratio >> 1,000). Furthermore, C-EBM may be confidently incorrect 61 

regarding the serial ordering. S-EBM may be applied to prospective and retrospective 62 

biomarker data to refine understanding of disease progression and generate new 63 

hypotheses regarding disease aetiology and spread. 64 

 65 
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1. Introduction 71 

 Estimating the temporal progression of biomarker abnormalities throughout the 72 

course of a disease identifies biomarkers of early disease, which generates hypotheses 73 

regarding disease aetiology and spread; and facilitates subject staging, which may aid the 74 

development of therapeutic interventions and personalised treatment. 75 

 Disease progression has been previously estimated using hypothesis-driven 76 

approaches following literature review or post-mortem examination. For example, the Jack 77 

curves (Jack Jr. et al 2010) describe the evolution of biomarkers abnormalities in 78 

Alzheimer’s disease (AD), and Braak stages were derived from post-mortem examination of 79 

AD patients (Braak, H & Braak, E 1991). Although these approaches are informative, they 80 

are qualitative in nature. Data-driven approaches are needed for objective assessment of 81 

disease spread. In the ideal scenario the temporal trajectory of different biomarkers is 82 

derived from longitudinal data acquired throughout the disease course. However, in practice 83 

cross-sectional or short-term longitudinal data are the predominant type of biomarker data 84 

available. There is therefore a need for approaches that estimate disease progression from 85 

such data.  86 

 Event-based modelling of disease progression (EBM) is a data-driven approach that 87 

estimates the evolution of biomarker abnormalities from cross-sectional or short-term 88 

longitudinal data (Fonteijn et al 2012). EBM has been applied to estimate progression of 89 

biomarker abnormality in a variety of diseases, including AD (Young et al 2014), 90 

Huntington’s disease (Wijeratne et al 2018), multiple sclerosis (Eshaghi et al 2018) and 91 

amyotrophic lateral sclerosis (Gabel et al 2020).  92 

 Underlying the conventional EBM (C-EBM) approach (Fonteijn et al 2012), as well as 93 

its recent variants, is the assumption that biomarker abnormalities are ordered serially, i.e. 94 

no two biomarkers may become abnormal concurrently. However, biomarker abnormalities 95 

may occur simultaneously when they are driven by common causative factors, or be better 96 

approximated as simultaneous than as serial when the difference between their temporal 97 

trajectories is unresolvably small. Such simultaneous events cannot be inferred from C-EBM 98 

as they are excluded from the model by construction. The positional uncertainty that C-EBM 99 

estimates may suggest the presence of simultaneous events, but can also simply reflect 100 

high variance in biomarker measurements. By not accounting for simultaneous events, C-101 

EBM may incorrectly estimate the sequence and patient staging, limiting its ability to impact 102 

disease understanding and therapeutic development. 103 

 To overcome this limitation, we introduce simultaneous EBM (S-EBM), a 104 

generalisation of C-EBM that can estimate a sequence containing simultaneous events. By 105 

allowing simultaneous events, a wider range of disease progression models can be 106 
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estimated from any given biomarker data input. In this study, we demonstrate C-EBM’s 107 

inability to infer simultaneous events, describe the theory of S-EBM and sequence 108 

estimation, evaluate the performance of S-EBM against ground truth synthetic data, and 109 

provide an example application to sequence evolution of biomarker abnormalities in AD. We 110 

show that S-EBM can reliably estimate sequences containing simultaneous events and that 111 

such a sequence can better explain the evolution of AD biomarker abnormality. 112 

 113 

2. Theory 114 

2.1. Generalising the event-based model 115 

2.1.1. Overview of the conventional event-based model 116 

C-EBM represents the progression of biomarker abnormalities in disease by a 117 

sequence, which is an ordered list that encodes the temporal order in which each biomarker 118 

undergoes a transition from a normal state to an abnormal state. These transitions, termed 119 

events, demarcate the disease progression stages, from which subjects are assumed to be 120 

uniformly sampled. 121 

A key assumption of C-EBM is monotonicity of biomarker evolution i.e. that 122 

biomarkers transition to an abnormal state but do not subsequently revert. Thus, in the first 123 

stage all biomarkers are in a normal state and at each subsequent stage a biomarker 124 

transitions to an abnormal state, until the final stage where all biomarkers are abnormal. A 125 

further key assumption of C-EBM is that all subjects are sampled from the same disease 126 

trajectory. In other words, the set of biomarker measurements for a given subject provides a 127 

snapshot of the disease at a particular stage. Furthermore, the subjects are assumed to be 128 

sampled from a single disease progression sequence. 129 

C-EBM seeks the sequence with highest posterior probability given the observed 130 

biomarker measurements. By assuming an equal prior probability for all possible sequences, 131 

this becomes equivalent to the sequence likelihood i.e. the probability of the data given the 132 

sequence. As the sequence prescribes the set of events for each disease stage, then given 133 

the probability density functions associated with each biomarkers’ possible event state (see 134 

section 2.4. Event distributions), then the likelihood of the sequence can be evaluated and 135 

subsequently maximised across sequence samples. A summary of sequence estimation is 136 

shown in Fig. 1. 137 

 138 

 139 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 18, 2023. ; https://doi.org/10.1101/2022.07.10.499471doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.10.499471
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

 140 
Figure 1. Overview of sequence estimation in C-EBM. C-EBM finds the sequence, S, with 141 

maximum posterior probability given the biomarker measurements, X. Given an equal prior 142 

probability of each sequence, this is equivalent to the maximum likelihood sequence.  143 

 144 

The sequence likelihood is equal to the joint probability of observing the set of 145 

subjects’ data. Given the input data matrix X, an N-by-J matrix containing N biomarker 146 

measurements for J subjects, and assuming that each subject is sampled independently, 147 

then the likelihood of the sequence, S, is the product of subject probabilities: 148 

p(X|S) =*p+X!,S-
"

!#$

(1) 149 

where X! is a column of X corresponding to the N biomarker measurements for subject j.  150 

As described below, the formulation of p+X!,S-	makes reference to the set of event 151 

states’ distributions at each disease stage. As these events are defined by S, the formulation 152 

of p+X!,S-	depends on the specific form of S. Next, we describe how the sequence is 153 

specified and likelihood formulation derived for C-EBM, which assumes the events occur in 154 

series, before describing the generalisation of the sequence and likelihood formulation for 155 

simultaneous events. 156 

 157 

2.1.2. Conventional event-based model: sequence specification and likelihood function 158 

C-EBM specifies the sequence as a permutation of the biomarker indices 1,… , N. 159 

Each element of	S, s(i), holds the biomarker event occurring at the i‘th disease progression 160 

stage. For example, for a sequence of four biomarkers a possible sequence is S = (2,3,4,1), 161 
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 6 

which describes a disease progression where the first biomarker abnormality occurs in 162 

biomarker 2, followed by biomarker 3, then biomarker 4 and finally biomarker 1.  163 

With each biomarkers’ event states written as ¬E for normal and E for abnormal, then 164 

at a particular stage, k, of the sequence the events have occurred for E%('), … , E%()) but have 165 

not yet occurred for E%()*$), … , E%(+). Given independence of biomarker measurements for 166 

the combination of events at each sequence position, the subjects’ probability given the 167 

sequence and stage, k, is written as: 168 

 169 

p"X!$S, k( =*p"x"($),!	|	E"($)(
'

$()

* p"x"($),!	|	¬E"($)(
*

$('+)

(2) 170 

 171 

Because each subjects’ position in the sequence is considered unknown a priori, it is 172 

marginalised out over each possible position: 173 

p"Xj$S( =3p(k)p"X!$S, k(
*

'(,

(3) 174 

 175 

The prior probability of each position, p(k), is assumed to be constant and defined as 176 
$

+*$
, where N + 1 (or equivalently |S|+ 1) is the number of stages. By substituting Eq. 2 into 177 

3, then the total likelihood defined in Eq. 1 is written as: 178 

	179 

p(X|S) = 	*73p(k) 8*p"x"($),!	|	E"($)(
'

$()

* p"x"($),!	|	¬E"($)(
*

$('+)

9
*

'(,

:
-

!()

(4) 180 

 181 

Because the sequence can contain only one biomarker event at each position, it 182 

cannot represent simultaneous events. 183 

 184 

2.1.3. Simultaneous event-based model: sequence specification and likelihood function 185 

 To generalise C-EBM for simultaneous events, the sequence specification is updated 186 

from an ordered list of biomarker indices to an ordered list of sets. Each set, 𝑠(𝑖), contains 187 

one or more biomarker indices corresponding to the events at position i in the sequence. For 188 

example, for four biomarkers a sequence containing only serial events is written S =189 

({2}, {1}, {3}, {4}) and a sequence containing simultaneous events is written S =190 

({2}, {1, 3}, {4}). Given the length of the sequence can vary, the number of positions in the 191 

sequence is now defined as |S| + 1 instead of N + 1. Therefore, the prior probability of each 192 
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position in the sequence is p(k; 	S) = $
|.|*$

  and the likelihood of each subjects’ data given 193 

their position is unknown a priori is written as: 194 

 195 

p"Xj$S( =3p(k; 	S)p"X!$S, k(
|/|

'(,

(5) 196 

 197 

As before, the likelihood of each subjects’ data given their position k,  p"X!$S, k( is 198 

the joint probability over the subjects’ biomarker values given each biomarkers event state at 199 

that sequence position. For a position k in the sequence, the events have occurred for 200 

biomarkers ⋃ s(i)$/'/) , whereas the events have not occurred for biomarkers ⋃ s(i))0'/|.!| . 201 

Hence, the likelihood of each subjects’ data given their position is written as: 202 

 203 

p"X!$S, k( = * p"x0,!	|	E0(
0∈

⋃ "($)!"#"$

* p"x0,!	|	¬E0(
0∈

⋃ "($)$%#"|'|

(6)
 204 

 205 

By substituting Eq. 6 into 5, then the total likelihood defined by Eq. 1 is written as: 206 

 207 

p(X|S) = 	*

⎝

⎛3p(k; S)

⎣
⎢
⎢
⎡

* p"x0,!|E0(
0∈

⋃ "($)!"#"$

* p"x0,!|¬E0(
0∈

⋃ "($)$%#"|'| ⎦
⎥
⎥
⎤|/|

'(,
⎠

⎞
-

!()

(7) 208 

 209 

 210 

This likelihood formulation is a fully generalised form of the C-EBM but can represent 211 

a wider range of sequence types. In the case of serial events, the likelihood defined in Eq. 7 212 

becomes equal to the C-EBM likelihood defined in Eq. 4. 213 

 214 

2.2. Sequence estimation 215 

2.2.1. Conventional event-based model 216 

 In C-EBM (Fonteijn et al 2012), the sequence is estimated as the characteristic 217 

ordering of biomarker events, which is the average position of each event following Markov 218 

Chain Monte Carlo (MCMC) sampling of p(S|X). In subsequent work (Young et al 2014), a 219 

stochastic greedy ascent was used to estimate the maximum likelihood sequence. As we 220 

aimed to compare the sequence obtained from (Young et al 2014) between C-EBM and S-221 

EBM, this is the approach we adopt here.  222 
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The greedy ascent proceeds by iteratively perturbing the sequence and retaining 223 

those with higher likelihood for some given number of iterations. At each iteration, a 224 

perturbation of the sequence is generated by swapping the positions of two biomarker 225 

events. For example, the if the current sequence is (2, 3, 4, 1), then a perturbed sequence 226 

can be generated by swapping biomarkers 4 and 2, giving the sequence (4, 3, 2, 1). To 227 

prevent dependence of the greedy ascent on the initial random sequence, a number of 228 

initialisations are performed and the sequence with maximum likelihood over all ascents is 229 

the estimated sequence.  230 

 231 

2.2.2. Simultaneous event-based model 232 

 To enable traversal of the full space of sequences that contain any combination of 233 

simultaneous events, we update the sequence perturbation method: a biomarker is chosen 234 

at random and is replaced at any other valid position in the sequence. For example, if the 235 

sequence is ({2}, {1, 3}, {4}), then a perturbed sequence can be generated by randomly 236 

choosing biomarker 3 and replacing the biomarker at position 4 in the sequence, giving the 237 

sequence ({2}, {1}, {4}, {3}). Other possible perturbations are shown in Supplementary Table 238 

1. This perturbation method is compatible with the MCMC sampling method described in 239 

(Fonteijn 2012, Young et al 2014), as it retains the property of symmetric transition 240 

probability p(S1*$|S1) = p(S1|S1*$), which simplifies the formulation of the acceptance 241 

probability. 242 

 243 

2.3. Event state probability density functions 244 

Calculating the sequence likelihood requires the probability density functions of each 245 

biomarker under the condition that the event has or has not occurred, 246 

p+x2#$,!,E2#$-, … , p+x2#+,!,E2#+-  and p+x2#$,!,¬E2#$-, … , p+x2#+,!,¬E2#+-, respectively.  247 

Hypothetically, if each subjects’ position in the sequence is known, then the event 248 

state for each biomarker measurement is also known. For example, for a given biomarker i 249 

and its event state E', the probability density function p+x',!,E'- can be fitted to the 250 

measurements {x',!	|	k(j) ≥ p, s(p) = i} (i.e. the measurements for the subjects at a position 251 

greater or equal to the position of the event for biomarker i), where k(j) is the position in the 252 

sequence of subject j.  253 

However, as the subjects’ sequence position is unknown a priori, then the 254 

assumption is made that the measurements are drawn from a mixture distribution p(x',!) =255 

w'p+x',!,E'- + (1 − w')p+x',!,¬E'-, whose components are then recovered by fitting a mixture 256 

model to all measurements {x',!|j = 1,…N}.  257 

 258 
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3. Materials and Methods 259 

3.1. Simulation experiments 260 

3.1.1. Simultaneous event-based forward model 261 

A forward model is used in this study to generate biomarker data for simulation 262 

experiments. The model generates data from a given ground truth sequence that can 263 

contain simultaneous events. The required inputs to the forward model are (i) the sequence 264 

(as described in 2.1.3. Simultaneous event-based model: sequence specification and 265 

likelihood function), (ii) the event distributions for each biomarker and (iii) the number of 266 

datapoints (i.e., subjects) to sample.  267 

Firstly, a position k, of the subject within the disease progression sequence is 268 

sampled from the uniform prior distribution Unif{0, |S|}. The biomarker data for this subject, 269 

indexed by j, is then generated by sampling from the event distributions corresponding to the 270 

position in the sequence: ~x2,!|E2	if	m ∈ ⋃ s(i)$/'/)  , or ~x2,!|¬E2	if	m ∈ ⋃ s(i))/'/|.| . The 271 

process is then repeated for the specified number of subjects, returning a matrix X of size N-272 

by-J containing the data samples for J subjects and N biomarkers. 273 

 274 

3.1.2 Experiment 1: biomarker variance, simultaneous events and C-EBM uncertainty 275 

To demonstrate that the uncertainty in event positions derived from C-EBM cannot 276 

be used to infer the presence of simultaneous events, we quantified the effect of both 277 

biomarker variance and simultaneous events on degree of sequence uncertainty. We 278 

hypothesised that both biomarker variance and simultaneous events can separately result in 279 

a high degree of uncertainty in event positions.  280 

Data was simulated for two biomarkers sampled from either a serial event sequence 281 

({1}, {2}), or simultaneous event sequence ({1,2}), whose probability density functions were 282 

gaussian with a mean of zero for the normal event states (Eqs. 8 and 9) and one for 283 

abnormal event states (Eqs. 10 and 11). Standard deviation was varied from 0.05 to 2.00 284 

and was equal for each biomarker and event state.  285 

 286 

p+x$,!,¬E$- =
1

σ√2π
expQ

+x$,! − 0-
4

4π4 R (8) 287 

p+x4,!,¬E4- =
1

σ√2π
expQ

+x4,! − 0-
4

4π4 R (9) 288 

p+x$,!,E$- =
1

σ√2π
exp Q

+x$,! − 1-
4

4π4 R (10) 289 
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p+x4,!,E4- =
1

σ√2π
expQ

+x4,! − 1-
4

4π4 R (11) 290 

 291 

For each sequence and standard deviation combination, one hundred datasets were 292 

simulated, each with ten ‘control’ subjects at position zero, where no events have yet 293 

occurred, ten ‘end-stage patients’ at the final sequence position |S|, where all events have 294 

occurred, and twenty ‘intermediate-stage patients’, which are sampled uniformly from the 295 

sequence positions i.e., k	~	Unif{0, |S|}. To remove the added variability in positional 296 

uncertainty due to the estimation of event distributions, these distributions were determined 297 

from their simulation definitions. 298 

For each simulated dataset, the uncertainty was quantified in a positional variance 299 

matrix, P, whose i, j′th entry gives the probability that biomarker i is at position j. This 300 

probability is defined as the frequency over MCMC samples where biomarker i is at position 301 

j (Fonteijn et al 2012) i.e. P',! = (∑ 1.∈."# )/N2626, where N2626 is the number of MCMC 302 

samples and S'! is the set of sequences where biomarker i is at position	j. In the case of a 303 

serial sequence containing only two biomarkers, this simplifies to P',! = P(X|S'@!), where S'@! 304 

refers to the sequence with biomarker i at position j. A binary decision was then made as to 305 

whether each positional variance matrix has a significant level of uncertainty or not. A 306 

significant level of uncertainty was defined as the highest probability in the matrix being less 307 

than 0.95, which corresponds to the absence of certainty (with 0.95 probability of higher) in 308 

biomarker positions. The proportion of matrices containing significant levels of uncertainty 309 

for the serial or simultaneous sequences was then plotted as a function of biomarker 310 

standard deviation.  311 

 312 

3.1.3. Experiment 2: Evaluation of simultaneous EBM performance 313 

We evaluated simultaneous EBM performance against a known ground truth 314 

sequence by quantifying the percentage of correctly estimated sequences over a set of one 315 

hundred simulations of biomarker data. The set of one hundred simulations was repeated for 316 

each combination of sequence type (serial, partially simultaneous and fully simultaneous), 317 

number of biomarkers (2, 4 and 10), number of subjects (40, 80 and 160) and biomarker 318 

variance (s.d’s of 0.1, 0.2 and 0.3).  319 

For each number of subjects, the subject types were split in a 1:2:1 ratio between 320 

control, intermediate and end-stage. As in Experiment 1 (section 3.1.2.), the means of the 321 

event states used to generate the simulated data were zero and one for normal and 322 

abnormal event states, respectively, and the standard deviations were equal for the 323 

biomarker event states for each s.d. value.  324 
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To sufficiently sample the set of possible sequences during sequence estimation, the 325 

number of initialisations and iterations of the greedy ascent was adjusted for each number of 326 

biomarkers: 1 and 2 respectively for two biomarkers, 10 and 100 respectively for 4 327 

biomarkers, and 50 and 1000 respectively for 10 biomarkers. For all sequence estimations, 328 

the event distributions were fitted using the data from the control and end-stage subjects. 329 

 330 

3.1.4. Experiment 3: Comparison to conventional EBM for serial events 331 

To evaluate the ability of S-EBM to correctly identify a sequence containing serial 332 

events in the case where C-EBM reports high uncertainty, we quantify the percentage of 333 

correctly estimated sequences as a function of biomarker variance for the range of 334 

biomarker variance that resulted in a high proportion of positional uncertainty, as determined 335 

from section 3.1.2. The simulation conditions are as described in 3.1.2. except with the 336 

sequence estimation being performed by either C-EBM or S-EBM on the serial sequence. 337 

 338 

3.2. Application to Alzheimer’s disease progression 339 

 We applied S-EBM to sequence the evolution of biomarker abnormalities in AD while 340 

accounting for simultaneous events and compared it to the serial sequence estimated by C-341 

EBM. Our pipeline for data selection follows that of (Young et al 2014) but utilises existing 342 

sources of pre-compiled AD data. 343 

 344 

3.2.1. AD biomarker source 345 

Biomarkers of cerebrospinal fluid (CSF) (total tau, phosphorylated tau, amyloid-β1-42), 346 

cognitive test scores (RAVLT, ADAS-Cog, MMSE) and regional brain volumes 347 

(hippocampus, entorhinal cortex, mid-temporal gyrus, fusiform and ventricles) were obtained 348 

from the TADPOLE dataset, which is available for download from the Alzheimer’s disease 349 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) (Mueller et al 2005). TADPOLE 350 

is a pre-compiled source of ADNI biomarker data that includes data from phases 1, GO and 351 

2 of ADNI. TADPOLE datasets D1 and D2, which contain biomarker data from every 352 

individual that has participated in in at least two separate visits, were used in this study. The 353 

image processing steps used by ADNI to generate the biomarkers later compiled in the 354 

TADPOLE dataset are described in 3.2.2. ADNI processing. 355 

 356 

3.2.2. ADNI processing 357 

CSF measurements of total tau, phosphorylated tau and amyloid-β were obtained via 358 

lumbar puncture (Shaw et al 2009). Cognitive test scores were obtained via specialist clinical 359 

assessment (Crane et al 2012). Structural magnetic resonance (MR) images were acquired 360 
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and underwent pre-processing with standard ADNI pipelines (Jack Jr. et al 2008), which 361 

involved correction for gradient non-linearity, B1 non-uniformity correction and peak 362 

sharpening. Regional volumes were extracted using Freesurfer cross-sectional and 363 

longitudinal pipelines (Reuter et al 2012).   364 

 365 

3.2.3. Biomarker processing 366 

 Following (Young et al 2014), we included subjects with available biomarker data 367 

acquired at baseline up to 5th February 2013 from those subjects scanned at 1.5T. Brain 368 

volumes were averaged over hemispheres and normalised by intracranial volume to control 369 

for individual differences in head size. CSF total tau and phosphorylated tau were log-370 

transformed to improve event distribution estimation. Cognitively normal subjects who were 371 

positive for CSF amyloid-β (<992 pg/ml) or phosphorylated tau (>25 pg/ml) were removed to 372 

improve the estimation of event distributions, which are presumed to be predominantly 373 

normal in this group. 374 

 375 

3.2.4. Event distributions 376 

For each biomarker, probability density functions corresponding to the event having 377 

occurred or having not occurred, were fitted to the cognitively normal and AD patients’ 378 

biomarker data using a constrained gaussian mixture model implemented in MATLAB, as 379 

described in (Young et al 2014). The standard deviations of each event component (E and 380 

¬E) are constrained to be less than or equal to that of the cognitively normal or AD group, 381 

respectively, and the means are constrained to be no less extreme than the cognitively 382 

normal or AD groups. These constraints ensure a robust fit in the case where the 383 

distributions of healthy and patient population overlap significantly. 384 

 385 

3.2.5. Sequencing allowing simultaneous events 386 

 The maximum likelihood S-EBM sequence was estimated from 1,000,000 MCMC 387 

samples. MCMC was initialised using the sequence estimated from a greedy ascent 388 

performed with 200 initialisations each with 2,000 iterations.  389 

 390 

3.2.6. Sequencing of serial events 391 

 The maximum likelihood C-EBM sequence was estimated using greedy ascent with 392 

200 random initialisations, each with 2,000 iterations. 1,000,000 MCMC samples were taken 393 

to estimate the uncertainty in each biomarkers position. 394 

 395 

 396 
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4. Results and Discussion 397 

4.1. Simulation experiments 398 

4.1.1. Experiment 1: biomarker variance, simultaneous events and C-EBM uncertainty 399 

A serial sequence with high biomarker variance can produce data which is 400 

interpreted by C-EBM as having high positional uncertainty (Fig. 2, green line). This 401 

uncertainty arises from the relative smoothness of the likelihood function across the 402 

sequence space due to overlapping event probability distributions. However, the same 403 

degree of uncertainty is also apparent in data produced from sequences containing 404 

simultaneous events (Fig. 2, blue line). This many-to-one mapping between sequence 405 

features (biomarker variance, simultaneous events) and positional uncertainty suggests that 406 

the presence of positional uncertainty in a particular dataset does not imply that the 407 

sequence contains simultaneous events. This prevents the use of C-EBM’s positional 408 

uncertainty for detecting sequences containing simultaneous events.  409 

 410 

 411 
Figure 2. The relation between biomarker standard deviation (x-axis) and uncertainty in the 412 

serial sequence estimated by C-EBM (y-axis) for simultaneous events (blue line) and serial 413 

events (green line). Both high biomarker variance in serial sequences, and sequences 414 

containing simultaneous events, result in a high percentage of uncertain sequences. 415 

 416 

4.1.2. Experiment 2: Evaluation of simultaneous EBM performance 417 

S-EBM accurately estimated sequences containing serial events, simultaneous 418 

events or both, under a range of experimental conditions (Fig. 3). Sequence estimation 419 

accuracy was high for sequences of 10 biomarkers and high biomarker variance when a 420 

sufficiently high number of datapoints was sampled. When fewer than 10 datapoints were 421 
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sampled per sequence position, accuracy tended to decrease for biomarker standard 422 

deviations exceeding 0.1 for both serial and partially simultaneous sequences. Accuracy 423 

was high for sequences containing simultaneous events under all conditions. 424 

These results suggest that for moderately sized cohorts of individuals, S-EBM will 425 

produce accurate estimates of sequences containing serial events, simultaneous events or 426 

both. Given the increasing availability of large prospective and retrospective repositories of 427 

cross-sectional or short-term longitudinal biomarker data, this technique has the potential to 428 

inform on disease spread patterns for a range of disease. Of particular interest is using 429 

retrospective data to provide a refined understanding of disease progression previously 430 

estimated using C-EBM.  431 

 432 

 433 
Figure 3. Accuracy of S-EBM sequence estimation for different sequence types (columns), 434 

numbers of biomarkers (rows), noise standard deviations (x-axis) and number of subjects 435 
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(coloured lines). Accuracy was high for almost all simulations but tended to decrease with 436 

fewer subjects, higher noise standard deviation and more biomarkers. 437 

 438 

4.1.3. Experiment 3: Comparison to conventional EBM for serial events 439 

C-EBM had higher sequence estimation accuracy than S-EBM for noisy serial 440 

sequences which had high C-EBM positional uncertainty (Fig. 4). This suggests that when 441 

C-EBM is uncertain on the positional orderings, its maximum likelihood sequence is 442 

nevertheless more likely to be correct than the maximum likelihood sequence estimated by 443 

S-EBM. This may be expected given that the size of the sequence space of simultaneous 444 

events is greater than that for serial sequences, which leaves more scope for false positives. 445 

Despite this, without a priori knowledge of the sequence type, S-EBM offers the opportunity 446 

to correctly identify a far wider range of types of sequences beyond those restricted by serial 447 

order. 448 

 449 

 450 
Figure 4. A comparison between C-EBM and S-EBM of serial sequence estimation 451 

accuracy in the case where C-EBM reports high positional uncertainty. In this case C-EBM’s 452 

performance is superior to S-EBM due to the smaller sequence search space.  453 

 454 

 455 

 456 

 457 

 458 

 459 

 460 
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4.2. Application to Alzheimer’s disease progression 461 

4.2.1. S-EBM: estimated sequence allowing simultaneous events 462 

 The sequence of AD biomarker progression estimated by S-EBM is shown in Fig. 5. 463 

S-EBM identified a sequence containing simultaneous events which had a substantially 464 

higher log-likelihood compared to the serial sequence estimated by C-EBM.  465 

Simultaneous events were estimated for biomarkers within common biomarker 466 

marker domains - CSF, cognitive test scores and brain volumes. Increased CSF total tau 467 

and phosphorylated tau were the first events in the sequence, occurring simultaneously, and 468 

were followed by high CSF amyloid-β. At disease stage three, low-scoring performance on 469 

cognitive test scores RAVLT, ADAS-Cog and MMSE were estimated as simultaneous 470 

events. Following cognitive events, the next disease stage consisted of simultaneous 471 

volumetric decline in temporal lobe brain regions. The final event in the sequence was 472 

increased ventricular volume.  473 

 474 

 475 
Figure 5. The sequence of abnormality in biomarkers of CSF, cognitive test scores and 476 

brain volumes in AD estimated using S-EBM (left) and C-EBM (right). S-EBM estimates a 477 

sequence with substantially higher log-likelihood than C-EBM, by grouping certain 478 

biomarkers within domains into the same disease stage. In contrast, S-EBM assumes each 479 

biomarker abnormality occurs in series. 480 

 481 

 482 

 483 
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4.2.2. C-EBM: estimated serial sequence 484 

 The serial sequence estimated by C-EBM (Fig. 6) identified a lower log-likelihood 485 

sequence that, by design, assumed all events occur in series. However, it was consistent 486 

with the S-EBM sequence in finding a positional separation between groups of biomarker 487 

events belonging to different biomarker domains.  488 

The C-EBM positional variance diagram (Fig. 6) however shows a heterogeneous 489 

distribution of positional uncertainty for the groups of simultaneous events, highlighting that 490 

positional uncertainty cannot be used to infer simultaneous events. Interstingly, interpreting 491 

the blocks of positional uncertainty as simultaneous events derives a sequence ({T-Tau}, {P-492 

Tau}, {Abeta}, {RAVLT, ADAS-Cog}, {MMSE}, {Entorhinal, Hippocampus}, {Brain, Fusiform, 493 

Mid-Temporal}, {Ventricles}) with lower log-likelihood (log(L)=3108) than that estimated by S-494 

EBM (log(L)=3153) but which nevertheless more closely matches the data than the serial 495 

sequence estimated by C-EBM (log(L) = 3043).  496 

Furthermore, the C-EBM positional uncertainty can be low for groups of 497 

simultaneous events, such as T-Tau and P-Tau, demonstrating that C-EBM can be 498 

confidently incorrect regarding serial event ordering. 499 

 500 

 501 
 502 

Figure 6. Positional variance diagram showing the positional uncertainty in the serial 503 

sequence estimated by C-EBM. Boxes depict the biomarkers grouped into the same stage 504 

by S-EBM. The heterogeneity within boxes indicates that C-EBM uncertainty does not infer 505 

the same information about simultaneous events as S-EBM. Furthermore, C-EBM can be 506 

confidently incorrect regarding serial orderings. 507 

 508 

 509 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 18, 2023. ; https://doi.org/10.1101/2022.07.10.499471doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.10.499471
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

5. Conclusion 510 

This study introduces the simultaneous event-based model. S-EBM is a 511 

generalisation of the conventional event-based model for estimating disease progression 512 

patterns that contain simultaneous events. With moderate sample sizes, S-EBM produces 513 

highly accurate sequence estimates for a range of different sequence types, including serial 514 

sequences, thereby broadening the scope of event-based modelling. By removing the 515 

requirement that the number of disease progression stages correlates linearly with the 516 

number of input biomarkers, the approach suggests a simpler explanation of AD 517 

progression, with biomarker abnormality occurring simultaneously within biomarker domains. 518 

S-EBM may provide new insights into disease evolution and more accurate subject staging, 519 

facilitating the development of therapeutic interventions targeting early disease. 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 
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