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Collective behavior spans several orders of magnitudes of biological organization, ranging from cell
colonies, to flocks of birds, to herds of wildebeests. In this work, we investigate collective motion of
glioblastoma cells in an ex-vivo experimental model of malignant brain tumors. Using time-resolved
tracking of individual glioma cells, we observed collective motion characterized by weak polarization
in the (directional) velocities of single cells, with fluctuations correlated over many cell lengths. The
correlation length of these fluctuations scales approximately linearly with the total population size,
and these scale-free correlations suggest that the system is poised near a critical point. To further
investigate the source of this scale-free behavior, we used a data-driven maximum entropy model
to estimate the effective length scale (nc) and strength (J) of local interactions between tumor
cells. The model captures statistical features of the experimental data, including the shape of the
velocity distributions and the existence of long range correlations, and suggests that nc and J vary
substantially across different populations. However, the scale and strength of the interactions do not
vary randomly, but instead occur on the boundary separating ordered and disordered motion, where
the model exhibits classical signs of criticality, including divergences in generalized susceptibility
and heat capacity. Our results suggest that brain tumor assemblies are poised near a critical point
characterized by scale-free correlations in the absence of strong polarization.

INTRODUCTION

Brain tumors are the most aggressive brain cancer, and
remain the cancer with worst prognosis and shortest life
expectancy. The standard of care treatment consists of
resective surgery, radiotherapy and chemotherapy. Long
term survival, nevertheless, has remained stagnant over
the last thirty years in spite of major research efforts
and multiple clinical trials [1–3]. Even when the tu-
mor is resected, it always recurs, usually within a 1-2
cm margin of the original resection cavity. The tumor
only rarely metastasizes to distant organs, but invades
the surrounding normal brain, destroying normal brain
areas, and disrupting brain function [4–6]. Brain cancer
is the sole cancer that kills by direct invasion of surround-
ing normal brain tissue, rather than through metastasis
of distal organs. Understanding the mechanisms of brain
cancer growth and invasion are thus paramount to any
future successful treatment of this disease.

Collective motion in brain tumors has been studied at
the single cell and tissue level. However, our understand-
ing of the mesoscale organization of brain tumor collec-
tive motion has not been studied in sufficient detail. In
particular, collective motility requires close behavioural
coordination between individual cells [7–10]. Such coor-
dination relies on either direct cell to cell contact, close
or indirect contact, or long-range information exchange
between cells [11, 12]. The potential existence of such
long-range communication might allow tumor cells to re-
spond quickly to a number of insults, and thus provide
robustness to tumor growth and progression. However,
it is not clear whether such long-range correlations exist
in brain tumors, and if so, how these large-scale patterns
might arise from local interactions between nearby cells.

Collective motion arises in a large range of biologi-
cal systems, from flocks of birds [13–18] to schools of
fish [19, 20], from single cells [21–23] and insects [24–
28] to populations of mammals [29–31], and has been in-
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tensely studied for decades in both natural systems [32–
36] and robotics [37, 38]. Ordered motion could re-
sult from centralized, top-down mechanisms—for exam-
ple, the presence of one or more “leader” cells that dic-
tate the behavior of the others [39, 40]—or from emer-
gent self-organization driven by local interactions be-
tween cells [33–35]. While these opposing modes of orga-
nization may lead to similar levels of order, the behavioral
consequences of these two strategies are dramatically dif-
ferent. Self-organized systems are often characterized by
a coherent response to external perturbations—for exam-
ple, the presence of a predator in animal flocks—because
local interactions facilitate an exquisite sensitivity to the
changing environment, effectively propagating informa-
tion from one region of the flock to another in a manner
unseen in top-down organizational schemes [41–43]. Dis-
criminating between these two modes of organization is
challenging, and indeed they may often occur in combi-
nation. Our goal is to investigate the mode of ordered
motion in brain tumors, and to do so, we draw on con-
cepts from statistical physics, where emergent ordering
is associated with well-defined features of simple mathe-
matical models.

Scale free correlations are ubiquitous features of self-
organized systems and have been observed in a number
of biological systems [44, 45], including many exhibiting
collective motion [13, 16, 17]. Correlations are consid-
ered scale-free when they lack a characteristic decay scale
other than the size of the system. These correlations may
enhance the system’s global response to perturbations by
effectively linking the behavior of organisms across the
entire population, even when direct physical interactions
are limited to finite collections of local neighbors [13, 44].
Scale-free correlations can occur with or without strong
ordering–that is, in the presence or absence of largely
uniform behavior at the population scale. For example,
in starlings, scale-free correlations in directional velocity
occur in highly polarized flocks, where the distribution
of velocity angles is extremely narrow [13, 15]. Similar
scale-free correlations arise in physical systems with a
continuous symmetry–in this case, the rotational invari-
ance of the velocity angle–where low-energy fluctuations
give rise to Goldstone modes such as long-wavelength
spin waves [46]. By contrast, long-range correlations
can arise in the absence of order–for example, swarm-
ing midges exhibit scale-free correlations despite show
only weak levels of directional polarization. In physics,
similar phenomena can occur when system parameters
are tuned to a so-called critical point, where fluctuations
become correlated across length scales and the system
becomes exquisitely sensitive to small perturbations [46].
Recent work has argued for the existence of criticality
in a wide range of biological systems [44, 47], including
synchronization in neural ensembles [48, 49], brain ac-
tivity [50, 51], long-range speed correlations in starling
flocks [16], the dynamics of biochemical networks [52, 53]

and protein folding [54], and the scale-free correlations
in swarming midges [26, 55]. These two mechanisms of
long-range correlations–those that occur with or with-
out collective order–potentially serve different biological
functions. For example, in flocks of birds, collective be-
havior may have evolved to promote lossless information
flow throughout the group as they move through space,
while swarms of midges might use collective behavior to
stabilize their behavior against environmental perturba-
tions, such as a predator.

In this work, we quantitatively characterize collective
motion in an ex-vivo experimental model of malignant
brain tumors using time-resolved tracking of individual
glioma cells. We found that populations of glioma cells
exhibit collective motion characterized by weak polariza-
tion in the (directional) velocities of single cells, with fluc-
tuations characterized by correlation lengths that scale
approximately linearly with the total population size. To
investigate the source of this scale-free behavior, we used
a data-driven maximum entropy model to estimate the
effective length scale (nc) and strength (J) of local inter-
actions between tumor cells. The model, which reduces
to the classical XY model with nonlocal coupling, cap-
tures statistical features of the experimental data, includ-
ing the shape of the directional velocity distributions and
the existence of long range correlations. The length scale
nc and strength J of local interactions vary substantially
across different populations, but they co-vary to fall on
the boundary separating ordered and disordered motion,
where the model exhibits classical signs of criticality, in-
cluding divergences in generalized susceptibility and heat
capacity. Our results suggest that brain tumor assemblies
are poised near a critical point characterized by scale-free
correlations in the absence of strong polarization.

RESULTS

We analyzed glioma cells dynamics in a previously de-
veloped ex-vivo, explant model derived from the ortho-
topic implantation of genetically engineered NPA-GFP+
cells, in which we can track the location and velocity of
fluorescently labeled individual glioma cells for up to 2
or 3 days (Materials and Methods). Briefly, this exper-
imental model enables de novo the induction of glioma
tumors trough the injection of different plasmids encod-
ing 1) driver genes found in human gliomas and 2) genes
encoding for luminescent and fluorescent markers in post-
natal day 1 (P01) wild-type C57BL/6 mice. When an-
imals become symptomatic, tumors are removed, and
neurosphere cell cultures were established as described
earlier [56–58]. Cells from these neurosphere cultures
can then be implanted into adult C57BL/6 mice to re-
liably generate tumors (see Materials and Methods for
details on the establishment of NPA tumors). NPA cells
were then implanted into the brains of adult C57BL/6
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FIG. 1. Cell velocities in glioblastoma populations exhibit
weak directional order. A. Representative image of a 5um hema-
toxilin and eosin stained sections from an NPA mouse glioma tumor.
The left image has been taken at lower power; and the black box is
shown at higher power on the right. Oblong yellow outlines indicate
elongated spindle-like cells within an oncostream –outlined by yellow
stippled lines–while round yellow outlines indicate round cells located
outside the oncostream. B. Snapshot of unit velocity vectors (blue)
and average velocity vector (red) at different time points. Black ar-
row is a reference vector indicating full alignment (polarization = 1);
length of red vector relative to black vector indicates polarization. C.
Distribution of velocity directions over time (dark blue, early times;
yellow, late times). D. Polarization over time for glioblastoma popu-
lations (black) and for 25 simulated datasets (size-matched to actual
data) but with velocity directions drawn from a uniform distribution
(light red; mean over all data sets in dark red). Polarization is defined
by S = |hsi| ⌘ |(1/N)

P
i si|, where |x| is the length of vector x and

angle brackets indicate an average over all cells. E. Polarization of local
directional fluctuations (Sfluct) at different time points over the entire
810 µm x 810 µm field of view. Each cell is represented by a circle, with
color determined by the Sfluct in a local neighborhood of cells within
70 microns of the focal cell. Polarization Sfluct is a measure of local
ordering of velocity orientations in the moving reference frame where
overall velocity is 0 (i.e. the population mean velocity has been sub-
tracted out). It is defined by Sfluct ⌘ |(1/nc)

P
i2nc

(si � hsi)|, where
i 2 nc means that cell i is one of the nc neighbors located within 70
microns of the focal cell.

mice [7, 56, 57]. Animals were euthanized at day 19
post-tumor implantation to generate explant brain tumor
slices for time-lapse imaging on a laser scanning confo-
cal microscope equipped with a tissue culture incubation
chamber. We study a collection of 12 different glioblas-
toma populations drawn from 8 different explants–four
from the inner tumor and four from the outer tumor re-

gion bordering the normal surrounding brain. We sub-
divided each explant into regions based on a previously
developed classification scheme for glioblastoma cells [7].
While this scheme was originally developed to classify
subpopulations of cells based on histological and statis-
tical properties of the cell orientations, in the present
context the subdivision scheme can be viewed as a box-
like approximation for estimating finite-size scaling in the
experimental system.

FIG. 2. Velocity fluctuations are correlated over a length scale
that depends on system size. Top panels: correlations between di-
rectional velocity for cells separated by a given distance (r; in microns)
for populations with different (average) spatial sizes (L). Correlation
functions are defined by C(r) = h�si · �sjir, where �si ⌘ si � hsi is
the velocity of cell i in the moving reference frame where the popula-
tion average velocity (hsi) has been subtracted out. Angle brackets hir
indicate an average taken over all cells separated by distance r. Black
markers: time-averaged correlations in a given population; red dashed
line: estimated correlation length ⇠, which corresponds to the crossover
point C(⇠) = 0. Bottom panel: correlation length (⇠) for subpopula-
tions of different sizes (black circles; error bars represent uncertainty in
estimate of crossover point). Solid line is best-fit line (for visualization).
See also Figure S3 for correlation functions of all populations.

Weakly ordered directional motion in glioblastoma
populations

To quantify the population-level motion in the tumor,
we estimated the position and velocity of each cell using
semi-automated image analysis (Materials and Methods).
At each time point, the population is described by a set
of normalized (unit) velocity vectors {si(t)} and a corre-
sponding set of position vectors {xi(t)}, one for each cell
i = 1, 2 . . . N . To quantify the degree of global ordering
in the population, we calculated the polarization S(t),
which is defined as the magnitude of the population’s
mean velocity; S = 1 when all cells move in the same
direction, while S = 0 if the velocities are uniformly dis-
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tributed in all directions. We found that glioblastoma
populations are weakly polarized–often exhibiting levels
of polarization comparable to, or only slight exceeding,
those in size-matched populations with velocities ran-
domly drawn from a uniform distribution (compare black
and red curves, Figure 1 and Figure S1). This weak po-
larization corresponds to broad but typically unimodal
distributions of directional velocity (Figure 1, Figure S2).
In contrast to starling flocks, which are highly polar-
ized [13, 15], glioblastoma populations show minimal lev-
els of polarization. Such weak polarization could be ev-
idence that cells move largely independently, with lit-
tle functional coupling between cells; on the other hand,
weak polarization, alone, is insufficient to rule out col-
lective behavior. Indeed, populations weakly ordered on
the global scale have been shown to exhibit features of
long-range collective behavior in a number of biological
contexts, including swarming behavior of midges [17] and
synchronous firing activity in neural populations [59, 60].
In these cases, fluctuations can be correlated over long
spatial distances, even when ordering (i.e. polarization)
is weak.

Glioblastoma populations exhibit scale-free
correlations in velocity fluctuations

To determine if glioma populations exhibit correlated
spatial fluctuations, we calculated correlations between
directional velocity for cells separated by a given dis-
tance (r; in microns) for populations with different (time-
averaged) spatial sizes (L). Correlation functions are de-
fined by C(r) = h�si · �sjir, where �si ⌘ si � hsi is
the velocity of cell i in the moving reference frame where
the population average velocity (hsi) has been subtracted
out. Angle brackets hir indicate an average taken over
all cells separated by distance r.

We found that all populations exhibit weak local cor-
relations over tens of microns (Figure 2, Figure S3). To
characterize the decay of these correlations over space, we
computed r0, (i.e. the point at which C(r) first crosses
0) for populations of different sizes. We found that r0
depends approximately linearly on the spatial size (L) of
each population. This linear relation is expected to hold
when the correlation length is much larger than the size
of the system (i.e. when the correlated fluctuations are
scale-free [61], and r0 can be interpreted as a correlation
length scale; in contrast, when the correlation length is
less than the system size, r0 grows as logL).

In systems with a continuous symmetry, scale-free cor-
relations can arise in the presence of global ordering (due
to low energy Goldstone modes) or in the absence of
global ordering (due to fine-tuning of the system to a crit-
ical point). In contrast to starling flocks, which exhibit
strongly polarized velocities (S > 0.95), glioma popula-
tions exhibit weak polarization (typically S ⇡ 0.3 or less)

comparable to that observed in swarming midges. The
observed scale free correlations–in the absence of strong
polarization–provides strong evidence that glioma popu-
lations are poised near a critical point.

1 2
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FIG. 3. Maximum entropy model captures statistical features
of glioblastoma populations. A. Moving cells (ovals, with arrows
representing velocity) interact pairwise with the closest nc neighbors
in their local community. Shaded region indicates range of interaction
for a single focal cell (dark green) for an illustrative value of nc = 7.
A coupling parameter J indicates the strength of interaction between
pairs of cells, with larger J favoring stronger directional alignment. B.
Likelihood (normalized) for the interaction range (nc) for three differ-
ent populations; light curves show individual time points, dark curves
are averages over time. C. Histograms of velocity direction (angle) for
experiment (blue) and the maximum entropy model (red) for the same
three populations as in panel B. D. Correlation functions calculated
from experimental data (black) and for the maximum entropy model
(red) for the same three populations as in panel B. See also Figure S4
and Figure S5 for full results on all populations.

A data-driven maximum entropy model captures
statistical features of glioma migration.

To develop a minimal effective model of glioma col-
lective motion, we used the experimental velocity data
to parameterize a simple maximum entropy model (Fig-
ure 3A). Maximum entropy methods have been widely
applied to model biological phenomena [44, 62], includ-
ing the collective firing activity of neurons [59, 60], the
flocking behavior of birds [15, 16], and correlations in an-
tibody diversity [15], drug interactions [63], or sequence
motifs in biological polymers [64]. Maximum entropy
approaches are closely connected to classical “inverse-
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problems" in statistical physics, which involve estimat-
ing (often unobservable) microscopic parameters from a
set of macroscopic observables [65–69]. The maximum
entropy approach allows one to incorporate a specific set
of experimental observables into a model but, in a strict
statistical sense, does not introduce additional structure.
At its core, a maximum entropy model is consistent with
a defined set of measurements but is otherwise as “unbi-
ased” as possible. In the case of tumor cell populations,
we would like to determine whether a minimal model that
incorporates pairwise interactions of a fixed length scale
is sufficient to reproduce the large-scale order observed
in experiments. Following [15], we developed a maxi-
mum entropy model consistent with the local correlation
structure measured in experiments—a quantity we refer
to as Cint. Cint is a single number that describes the av-
erage correlation of a cell’s velocity with that of its nc

closest neighbors; if cells tend to be directionally aligned
with their neighbors, Cint approaches 1, while Cint is 0 if
directional velocities are random.

The maximum entropy model consistent with Cint is
formally identical to a non-locally coupled version of the
XY model, which was originally developed in statistical
physics to describe systems such as superconductors char-
acterized by a continuous (planar) symmetry [46]. The
model contains two free parameters: the length scale over
which cells interact (nc), and the strength of those inter-
actions (J). Our goal is to determine whether such a
minimal model, containing only two scalar parameters,
can reproduce measured features of the cell ensembles.

We estimated parameters (J , nc) for each population
at each time point using a spin-wave approximation to
calculate the partition function Z (see Materials and
Methods). We note that while the spin wave approxi-
mation is strictly valid only in highly polarized systems,
we found that the model with these parameter estimates
qualitatively captures many features of our data. Dif-
ferent populations are characterized by widely variable
(time-averaged) values of nc, with length scales ranging
from tens of cells, in some cases, to hundreds of cells
in others–nearly the size of the entire population (Fig-
ure 3B). To compare the model with experimental data,
we used Monte Carlo simulations to estimate the dis-
tribution of velocity angles (Figure 3C) and correlation
functions (Figure 3D) for the model with experimentally
determined values of J and nc. Despite the simplicity of
the model, it captures qualitative features of both the an-
gular distribution and the correlation functions for nearly
all populations without additional tuning of free param-
eters (Figure 3; see also Figure S4 and Figure S5).

Because the model suggests that cells are coupled over
large length scales, with nc sometimes approaching the
size of the population, we also consider a mean-field (all-
to-all coupled) version of the model. In this case, the
model is characterized by a single parameter (J), and es-
timating J from experimental data reduces to a classic

inverse problem in statistical physics. The advantage of
this simpler model is that parameter estimation no longer
relies on the spin-wave approximation, and instead, the
maximum likelihood estimate of J can be calculated an-
alytically in terms of the experimental observable Cint
(Material and Methods). Somewhat surprisingly, the
mean field model captures the angular distribution of
velocities nearly as well as the full model Figure S6).
As a numerical control, we confirmed that such agree-
ment does not occur in randomly generated data sets of
size-matched populations, confirming that the qualitative
agreement between the model and experimental data is
unlikely to arise from finite size statistical effects S7.

A B

Disorder

Order

X

Y

X Y

FIG. 4. Experimental estimates of cell-cell coupling parame-
ters are poised near critical point of non-locally coupled XY
model. A. Phase diagram shows regions of disorder (gray) and order
(white) for different values of the coupling strength (J) and interac-
tion range (nc). Phase boundary was estimated from Monte Carlo
simulations of the maximum entropy model (Materials and Methods).
Markers (squares, triangles, circles) show estimates of J and nc from
different glioblastoma populations. Dashed black line shows an example
trajectory through parameter space–in this case, from a point X in the
disordered region to a point Y in the ordered region–that crosses the
critical surface by increasing J at a fixed value of nc. B. Polarization
(top), generalized susceptibility � (middle), and generalized heat ca-
pacity (bottom) calculated from Monte Carlo simulations of the model
as parameters are varied along the dashed trajectory connecting points
X and Y in panel A. Gray circles represent Monte Carlo simulations
across a range of coupling strengths (J) at fixed nc = ZZ (correspond-
ing to the estimated nc for one representative data set); solid lines are
averages over a total of ZZZ simulations. Dashed red line indicates es-
timated value of coupling J for one particular data set (green triangle
in panel A) that lies near the critical surface. Susceptibility (�) and
heat capacity are defined as the variance of polarization and energy,
respectively, across independent realizations.

Effective model of glioma dynamics is poised at a
critical point.

Glioma cells exhibit scale-free correlations in the ab-
sence of polarization, which provides evidence that the
system is poised near a critical point. We therefore won-
dered whether the effective maximum entropy model is
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also poised near a critical point: that is, whether the ex-
perimentally derived parameters (J , nc) correspond to a
critical point of a model. The absence of criticality in
such a model may point to alternative explanations for
the experimental observations.

To characterize the phase diagram for the maximum
entropy model (i.e. an XY model with nonlocal coupling
determined by J and nc), we used Monte Carlo simula-
tions to generate representative velocity distributions for
different values of nc and J . For each parameter pair, we
calculated the polarization order parameter (the mean
polarization across trials), the generalized susceptibility
�, which corresponds (up to a proportionality constant)
to the variance of the polarization, and the heat capacity,
which measures fluctuations in the effective energy. We
then estimated the critical surface in the (J, nc) plane
to be the curve in parameter space that corresponds to
a peak in �. We also verified that the system exhibits
sharply increasing polarization and a peak in the gener-
alized heat capacity at the critical surface. For all sim-
ulations, cell positions (and therefore cell density) were
taken from a representative experimental data set.

The phase diagram (Figure 4A) is divided by the crit-
ical surface into an ordered region (upper right) and dis-
ordered region (lower left, gray). To investigate whether
the experimental populations are poised near the critical
surface, we plotted the estimated parameter values (J
and nc) for each population (triangles, squares, and cir-
cles) on the phase diagram. Indeed, we find that all popu-
lations are characterized by parameter pairs that lie close
to the critical surface. Modulating the parameters–for
example, by simulating a system with a fixed (experimen-
tally determined) value of nc but J values that differ from
subcritical to supercritical (as indicated by the dashed
line connecting points X and Y, Figure 4A)–indicates
that the parameters estimated from experiments indeed
occur near a critical point, where polarization begins to
rapidly increase and � and the heat capacity peak (Fig-
ure 4B).

We stress, however, that criticality in this model
(alone) is supportive, yet insufficient on its own to in-
fer criticality in the glioma populations, both because of
technical limitations in distinguishing critical and sub-
critical systems (see SI) and, more importantly, be-
cause this effective model may not correspond to the
true physical mechanisms underlying the motion. While
the maximum entropy model accurately captures qual-
itative behavior of the glioma populations–and in do-
ing so, provides a parsimonious effective model for the
data–the strongest evidence for criticality is the (model-
independent) observation of scale-free correlations in the
absence of ordering.

DISCUSSION

We’ve shown that collective motion in brain cancer
populations is characterized by scale-free correlations in
the absence of strong polarization, providing evidence
that glioma cells may be poised near a critical point. The
statistical features of this motion are largely captured by
a simple, effective model which is, itself, also poised at a
critical point.

Our work complements a growing number of studies
that indicate biological systems may operate at or near
criticality [16, 44, 45, 48–54, 70–72]. On the other hand,
the behavior of glioma cells is substantially different than
that of starling flocks, where scale-free correlations and
strong polarization may be related to low-energy Gold-
stone modes that are ubiquitous in systems with simi-
lar rotational symmetry [15, 33]. Interestingly, starling
flocks do show signs of criticality in the distribution of
speed (as opposed to velocity direction) [16]. In the case
of glioma cells, it is not clear if signatures of criticality
are evident in the collective behavior of other properties,
though it is an exciting avenue for future work.

It is important to keep in mind several limitations of
our study, both technical and conceptual. First, the ex-
periments are performed in an ex-vivo model, which al-
lowed us to measure cell velocities and track movement
for up to 72 hrs. As always, however, one should use
caution when extrapolating from laboratory results to in
vivo dynamics, though recent data have demonstrated
similar dynamics using multiphoton intravital imaging
of glioma [7]. In addition, our use of a maximum en-
tropy approach comes with important caveats. While
the model captures many statistical properties of the un-
derlying experimental data, it should be viewed as an
effective model, not necessarily a true physical represen-
tation of the underlying system. For example, the model
suggests that pairwise interactions between cells are long-
range–often extending across tens of cells or more–but
there is no guarantee that the true biological interactions,
whose mechanisms are, at this stage, largely unknown,
extend over this scale, though for example cytokine se-
cretion or recently discovered Ca++ mediated long-range
intercellular connectivity in glioma might serve as poten-
tial biological substrates [73]. Instead, long-range inter-
actions in the model could represent effective interactions
that appear artificially long-range because (for example)
the local cell dynamics have not reached equilibrium on
the timescales of our measurements [74, 75], meaning that
the effective interactions represent many fast physical in-
teractions between different pairs of cells. Perhaps more
importantly, the criticality observed in the data-driven
model does not, alone, mean that the glioma popula-
tions are also at criticality. Similar effective models have
been widely used over the last decade, but it is gener-
ally understood that features of these models–including
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criticality and the absence of higher-order interactions–
do not necessarily reflect similar features in the under-
lying system [47, 76–81]. In this case, while the effec-
tive model accurately captures qualitative behavior of the
glioma populations, the strongest evidence for criticality
is the (model-independent) observation of scale-free cor-
relations in the absence of ordering.

There are also a number of technical limitations that
bear mention. We focused on a model with topologi-
cal (rather than metric) connections between cells. For
these populations, where the densities of cells are simi-
lar across populations, we expect that both approaches
would yield similar results, though imposing a different
coupling structure could improve the agreement between
model and experiment [13, 17]. In addition, we have used
free boundary conditions, in part because confining the
boundary cells (using fixed boundary conditions) would,
in some cases, significantly reduce the number of cells for
analysis. Previous work in starling flocks showed that
these boundary conditions can indeed make a difference
in the inferred values of J and nc, though their prod-
uct remains largely constant [15]. Correcting for these
boundary conditions might provide a more accurate fit
to, for example, simulated systems with known control
parameters. In this case, however, our goal was not to
precisely estimate experimental parameters, and because
the model captures experimental results reasonably well,
we have not further investigated these issues.

Our results raise a number of open questions for future
work. From a physics perspective, more detailed physical
models may shed additional light on quantitative features
of glioma migration that are not captured by the simple
model used here. For example, we recently showed that
a model of collective motion that incorporates cell shape
can produce a rich collection of phenomena that includes
nematic ordering and qualitatively distinct types of dis-
ordered motion [10] similar to that seen in glioma popu-
lations [7].

Perhaps most interesting, our results imply the ex-
istence of (effective) long range communication within
glioma tumors, but the physical basis for this communi-
cation is not known. Previous work indicates that natural
insect swarms exhibit long-range correlations [26], but in-
terestingly, these correlations only appear in response to
different environmental perturbations in laboratory pop-
ulations [28, 82]. Similarly, it may be possible to investi-
gate these mechanisms in glioma populations using con-
trolled laboratory conditions that strip away complexities
of the ex-vivo tumor environment. From a bioloigical per-
spective, several mechanisms exist that could play a role
in transmitting signals across large portions of glioma.
For example, cytokines or neurotransmitters could be re-
leased by glioma cells, diffuse throughout the tumor tis-
sue, and thus alter the behavior of distantly located cells.
Equally, networks of microtubes connecting glioma cells
have recently been described and shown to provide sig-

nals to other cells via Ca++ transients. So far, only
shorter distance communication has been shown, but if
microtubes are truly functional across larger distances,
they could be an anatomo-physiological substrate of long
range communication. Further, criticality could help un-
derstand and explore the recalcitrant robustness of these
tumors, when exposed to therapeutic modalities such as
X-rays, and chemotherapy. Criticality could play a role
in glioma cells responding to resective surgery; for exam-
ple, no matter how much tumor is resected, cells located
within 1-2cm from the resection cavity eventually recon-
stitute the tumor. Thus, it might be possible that low
density cells might need to grow to a certain size before
long range communication could be use to support cell
replication and especially cell invasion. Finally, a role for
the recently discovered brain innervation of tumors could
be to directly connect distant parts of the tumor, i.e.,
tumor cells could signal to innervating neurons which,
through neural networks would then signal back to dis-
tant tumor regions. These are plausible mechanisms that
could support long range communication in glioma, and
are compatible with the time lengths described in our
experiments.
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MATERIALS AND METHODS

Time-lapse confocal imaging in explant brain glioma
slice culture model

To analyze glioma cells dynamics, we used a brain tu-
mor explant model for imaging ex-vivo. Glioma tu-
mor cells were obtained from a genetically engineered
mouse glioma model generated in our lab as previously
described (Sleeping Beauty Transposase System) [56–
58]. This model enables de novo generation of glioma
tumors trough the injection of different plasmids en-
coding the genes of interest in postnatal day 1 (P01)
wild-type C57BL/6 mice. The plasmid sequences used
to generate these tumors were: 1) The transposase &
luciferase enzyme expression (pT2C-LucPGK-SB100X),
2) the NRAS gene expression (pT2CAG -NRAS-G12V),
3) the short harpin for downregulation of p53 protein
(pT2-shp53-GFP4) and 4) the short harping for ATRX
(pT2-shATRx-GFP4). This glioma tumor cells named
NPA exhibit the overexpression of the NRAS protein,
the knockdown of p53 and the downregulation of ATRX.
shp53 and shATRx plasmids also contain the gene for
the expression of the enhanced green fluorescent protein
(EGFP). These signaling pathways are altered in hu-
man gliomas. Cells were generated from genetically engi-
neered glioma tumors and cultured in DMEM/F12 media
supplemented with 2% B-27, 1% N-2, 1% of Penicillin-
Streptomycin, 0.2% of NormocinTM and growth factors
hFGF and hEGF at 20 ng/ml and maintained in a 37
C incubator supplied with 95% air and 5% CO2. Tu-
mor were induced by intracranial implantation of 3 x 104
NPA cells (NRAGV12, shp53, shATRx) glioma tumor
cells in C57BL6 mice. Mice were held in a pathogen
free, humidity and temperature controlled vivarium on a
12:12 hour light:dark cycles with free access to food and
water following. Prior to implantation, mice were anes-
thetized using an intra-peritoneal (i.p.) injection of the
anesthetics Ketamine (120 mg/Kg) and Dexmedetomi-
dine (0.5 mg/Kg). Following anesthesia, Carprofen (5.0
mg/Kg) was administered subcutaneously. The skull of
the mouse was then immobilized in a stereotactic device.
A hole was made using a 0.45 mm drill bit at coordi-
nates corresponding to the striatum (0.5mm anterior and
2mm lateral right from the bregma). Cells were injected
with a Hamilton syringe at a dorsoventral position of
3.5 mm into the striatum. After injection, the incision
was sutured and immediately following surgery, the an-
imals were recovered from anesthesia using Atipamezole
via i.p. injection (1.0 mg/Kg) to reverse the Dexmedeto-
midine. A single subcutaneous injection of Buprenor-
phine (0.01 mg/Kg subcutaneous) was administered as
post-operative pain relief. Sutures were removed 10 days
after surgery [7, 56].

Tumors were allowed to grow for 19-21 days. At 19-21
days post-implantation animals were euthanized to gen-

erate the brain tumor slices explants for imaging. To
generate brain tumor explants, brains were embedded in
4% low melting temperature agarose and kept on ice un-
til solidification. Embedded brains were then immersed
in ice-cold and oxygenated DMEM media without phe-
nol red and then sectioned in a Leica VT100S vibratome
(Leica, Buffalo Grove, IL). 300 mm thick brain tumor sec-
tions were transferred to laminin coated cell culture insert
(Millipore Sigma, USA) placed into a 27mm diameter
dish (Thermo Scientific) with D-MEM F-12 media sup-
plemented with 25% FBS and Penicillin-Streptomycin.
All steps were performed under sterile conditions in a
BSL2 laminar flow hood. Tumor slices were then main-
tained in a cell culture incubator at 37 C with a 5% CO2
atmosphere. After 6-18 hours’ media was replaced with
DMEM-F12 media supplemented with B27 2%, N2 1%,
Normocin 0.2 %, Penicillin-Streptomycin 10.000 U/ML
and growth factors EGF and FGF 20 ng/ml. After, tu-
mor explants were transferred to the incubator cham-
ber of a single photon laser scanning confocal microscope
model LSM 880 (Carl Zeiss, Jena, Germany). For tumor
imaging the incubation chamber of the microscope was
maintained at 37oC and 5% CO2. Images were acquired
in a time-lapse frame of ten minutes for 100-300 cycles.
The movies were originally described in reference [7].

Image Analysis

To track the evolution of the cells, we use the software
Fiji with the plugin TrackMate. We use as parameters
for the cell size (called ’blob’) 20µm and a threshold of 1
together with the DoG method (Difference of Gaussian
detectors). Each experiment gives several paths denoted
by xi(t) where i is an index for the cell and t represents
the time. The paths are however erratic thus we apply
a filter to smooth the trajectories over time (see figure
S10). As a filter, we use a Gaussian kernel with standard
deviation �2 = 2 and a stencil of 9 points:

x̄i(t) =
4X

k=�4

�kxi(t� k�t), �k = C · e�k2/4 (1)

where x̄i is the smooth trajectory, �t = 10 mn is the
time step between successive image and C is such thatP4

k=�4 �k = 1. From the smooth trajectories x̄i(t), we
then estimate the velocities of the cells v̄i(t) using a finite
difference:

v̄i(t) =
x̄i(t+�t)� x̄i(t��t)

2�t
. (2)

For each velocity vector v̄i(t), we estimate a correspond-
ing velocity angle ✓i(t) 2 [0, 2⇡) (see figure S10). For
subsequent analysis, all velocity vectors are normalized
and referred to as si
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Classification flock-stream-swarm

We subdivide glioma populations into connected subpop-
ulations which we refer to as flocks, streams, or swarms
(see figure S11-left). This empirical classification scheme
was developed in previous work [7] to segment popula-
tions into subgroups with similar histological and statis-
tical properties, as described briefly below. In the present
context, these classifications are not particularly impor-
tant, and instead one may view this as a systematic way
of subdividing populations for finite-size scaling, which
is necessary because the number of experimental popu-
lations is limited (see [83] for further discussion of these
issues in limited data sets).

To classify in which category an experiment is (i.e.
flock, stream or swarm), we analyze the collection of ve-
locity angles {✓n}n=1..N (where N is the sample size).
We determine three densities for each pattern (see figure
S11-right):

⇢flock = "Gaussian distribution" (3)
⇢stream = "symmetrized Gaussian distribution" (4)
⇢swarm = "Constant". (5)

We then evaluate the likelihood of the velocity angles
{✓n}n=1..N given each distribution, for instance:

Lflock =
NY

n=1

⇢flock(✓n) (6)

Finally, we compare the three likelihoods (i.e. Lflock,
Lstream and Lswarm) and select the pattern with the high-
est likelihood.

Calculating correlation functions

The correlation function is given by C(r) = h�si · �sjir,
where �si ⌘ si � hsi is the velocity of cell i in the mov-
ing reference frame where the population average velocity
(hsi) has been subtracted out. Angle brackets hir indi-
cate an average taken over all cells separated by distance
r. In practice, we calculated correlation functions by first
calculating pairwise distances and dot products (�si ·�sj)
for all pairs of cells in a image at a given time. We re-
peated this process for all images in a time series and
combined the data from all time points into a single pair
of lists (distances and corresponding dot products, or-
dered according to distance). The correlation functions
are then calculated by smoothing using a moving aver-
age filter with a centered window of ±100 microns. Error
bars are ± 1 standard error of the mean within each win-
dow. Correlation functions (and the system-size scaling
of correlations length) are qualitatively similar (though
more or less noisy) for a range of window sizes from ±25
up to ±200 microns.

Estimating System Size (L)

To estimate the size L of each population, we calculated
the maximum pairwise separation (L(t) ⌘ dmax) between
any two cells at each time point. The distance L(t) will
fluctuate over time as the cells move. We define the size of
the system as the mean value of this separation distance
over the entire time series (L ⌘ hL(t)it). We found qual-
itatively similar results (i.e. scaling of correlation length
with system size) if we alternatively defined the system
size at each time point as L(t) = dcon, where dcon = A1/2

and A is the area of the convex hull of all cell positions.

Nonlocally coupled XY model as a data constrained
maximum entropy model

To model collective motion in tumor cells, we used a
maximum entropy framework. Maximum entropy mod-
els are required to match certain features of the data (in
this case, the observed correlation Cint, see below) but
contain minimal additional statistical structure. Simi-
lar models have been previously used to describe firing
patterns in neurons, immune system dynamics, interac-
tions between antibiotics, and collective motion in star-
lings. Following [15], we constrain the model to match
the scalar correlation over local neighborhoods of size nc,
which is given by

Cint =
1

N

NX

i=1

1

nc

X

j2ni
c

s̄i · s̄j (7)

where N is the total number of cells, nc is the integer
size of the local neighborhood, and s̄i is the unit velocity
vector describing the motion of cell i. The maximum en-
tropy model consistent with this constraint is then given
by [15]

P ({s̄i}) =
1

Z(J, nc)
exp

0

@ J

2N

NX

i=1

X

j2ni
c

s̄i · s̄j

1

A (8)

where P ({s̄i}) is the distribution over all configurations
and Z(J, nc) is the partition function (i.e. the normal-
ization constant). To fully specify the model, we must
choose values of the parameters J and nc such that the
model reproduces the observed value of Cint, a process
that is equivalent to maximizing the likelihood that the
model generates the configuration observed in a given
snapshot of the flock.

To estimate model parameters, we first calculate the
experimental correlation Cexp

int (where the superscript
“exp" indicates this is the value observed in the experi-
ment) for a single snapshot of the population. This ex-
perimental value must match the value of Cint produced
by the model, which provides an explicit data-dependent
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constraint between the parameters J and nc,

1

J
=

nc

2N
(1� Cexp

int ) . (9)

We then determine the remaining free parameter, nc, by
numerically maximizing the log likelihood of the data
given the model, which can be written as a function of
the both Cexp

int (a measured quantity) and Z(J, nc) (the
partition function for the model).

Directly calculating the partition function Z(J, nc) is
computationally expensive, even for this simple model.
One option to simplify the calculation is to use a spin
wave approximation, which provides an analytical ex-
pression for Z(J, nc) in terms of eigenvalues of a matrix
A that describes the neighborhood structure of the pop-
ulation (i.e. which cells are in the local neighborhood, of
size nc, of each cell). In the spin wave approximation,
the partition function reduces to [15]

logZ(J, nc) = �
X

k>1

log

✓
J�k

N

◆
+

Jnc

2
, (10)

where �k are the eigenvalues of the matrix A =
�ij

P
k nik � nij , where nij is 1 if cell i is in the local

neighborhood of cell j and vice versa, 1/2 if cell i is in
the local neighborhood of cell j but j is not in the local
neighborhood of cell i (or vice versa), and 0 otherwise.
It is important to note that the spin wave approximation
is strictly valid only in highly polarized populations, as
it relies on neglecting higher-order terms in an expansion
velocity components perpendicular to the direction of po-
larization. In this work, we used the spin wave approxi-
mation to provide first-pass estimates of the parameters
J and nc. While cell motion is not typically highly polar-
ized in our dataset–and the spin wave approximation is
therefore not strictly valid–we found that the parameters
estimated from this approach do lead to strong agreement
with the data.

Estimating parameters from simulated data

To probe the reliability of parameters estimated with this
spin wave approximation, we used Monte Carlo simula-
tions to produce artificial data sets–snapshots of velocity
configurations for populations of cells whose positions are
identical to those in the experimental data–drawn from
the model with specified values of J and nc. We then es-
timated the parameters directly from the simulated data
using either 1) the spin wave approximation or 2) a di-
rect least squares fitting to observed distribution P ({✓i}),
where {✓i} is the configuration of velocity angles in the
population.

Mean field XY model

The maximum entropy model has two free parameters, J
and nc, that are inferred from experimental data. In the
limit nc ! N � 1 ⇡ N (all-to-all coupling), this model
reduces to a mean-field version of the 2D XY model with
only a single free parameter, J . Estimating this param-
eter from data reduces to a classic inverse problem in
statistical physics, with the log likelihood L(J) of the
observed configurations taking the form

L(J) =
1

2
JNCexp

int � logZ(J) (11)

where Cexp
int is now the average pairwise correlation taken

over the entire population. Maximizing the likelihood
is equivalent to requiring that the correlations measured
experimentally (Cexp

int ) match those from the mean field
model, which reduces to a classical inverse problem. In
this case, we can write down an explicit expression for J
in terms of the experimental measurable

J =
2

(1� Cexp
int )

. (12)

Estimating critical parameters in systems with
long-range coupling

Equation 12 highlights an important caveat of our ap-
proach when the range of coupling nc is comparable to
the total size of the system (N). The mean field XY
model undergoes a phase transition at a critical value of
Jc = 2. Equation 12 therefore indicates that observed
data characterized by Cexp

int ⇡ 0 would appear to be at
a critical point of the mean field model. In practice, of
course, Cexp

int ⇡ 0 would also be expected for completely
disordered populations–that is, for populations where the
velocity direction is drawn from a uniform distribution.
As a result, maximum likelihood estimates that indicate
J ⇡ Jc are not, alone, sufficient evidence of criticality,
as they cannot distinguish systems in the disordered re-
gion (J < Jc) from those at criticality. To quantitatively
characterize these limitations for data sets comparable in
size to our experimental data, we used Monte Carlo sim-
ulations to generate artificial data sets representing cell
populations globally coupled with different values of J .
We then calculated the maximum likelihood estimates of
J from those in silico data sets (just as we did with ex-
perimental data). As expected, we found that estimates
of J hover around the critical value Jc = 2 for simulated
systems at or below the critical point (Figure S7). On
the other hand, estimates of J are accurate for systems
slightly above the critical point.
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Monte Carlo Simulations and Phase Diagram

To characterize the phase diagram for the nonlocal XY
model, we used Monte Carlo simulations to generate rep-
resentative velocity distributions for different values of
nc and J . For each parameter pair, we calculated the
mean polarization across trials and the generalized sus-
ceptibility �, which corresponds (up to a proportionality
constant) to the variance of the polarization across trials.
We then estimated the critical surface to be the curve in
parameter space that corresponds to a peak in �. We
also verified that the system exhibits sharply increasing
polarization and a peak in the generalized heat capacity
at the critical surface. For all simulations, cell positions
(and therefore cell density) were taken from a represen-
tative experimental data set.

Comparing velocity angle distributions between the
model and data.

To compare experimental results with results from the
effective model, we calculated histograms of velocity an-
gle. The model is symmetric under rotation and cannot
provide information about the specific velocity direction–
that is, we can globally rotate all velocities by an arbi-
trary angle. To compare histograms between the model
and the data–or, for example, to combine data from mul-
tiple independent simulations (model) or multiple time
points (experiment)–we first calculated the two frequency
histograms to be compared. Then, we rotated all veloc-
ities in one population by an angle ✓, and we tuned ✓
to achieve maximal alignment between the distributions
(i.e. minimal difference in a least squares sense). Because
the histograms themselves are noisy, this process could,
in principle, lead to apparent similarities between dis-
tributions with fundamentally different shapes. There-
fore, as a control, we simulated size-matched populations
where velocity angles were drawn from a uniform dis-
tribution, and we then used this alignment process to
compare these (nominally) uniform histograms with the
histograms from the maximum entropy model. We con-
firmed that this alignment process does not yield sub-
stantial agreement between these different distributions
(Figure S7).
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