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Abstract 8 

Cerebral cortex supports representations of the world in patterns of neural activity, used by the 9 
brain to make decisions and guide behavior. Past work has found diverse or limited changes in 10 
the primary sensory cortex in response to learning, suggesting the key computations might 11 
occur in downstream regions. Alternatively, sensory cortical changes may be central to learning. 12 
To study changes in sensory cortical representations, we trained mice to recognize entirely 13 
novel, non-sensory patterns of cortical activity in the primary visual cortex (V1) created by direct 14 
optogenetic stimulation. As animals learned to use these novel patterns, we found their 15 
detection abilities improved by an order of magnitude or more. The behavioral change was 16 
accompanied by large increases in V1 neural responses to fixed optogenetic input. Neural 17 
response amplification to novel optogenetic inputs had little effect on existing visual sensory 18 
responses. Amplification would seem to be desirable to improve decision-making in a detection 19 
task, and thus these data suggest adult cortical plasticity plays a significant role in improving the 20 
detection of novel sensory inputs during learning.   21 
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Introduction 22 

Sensorimotor decision-making involves patterns of neural activity, which propagate through the 23 
neural circuits of many brain areas, and are changed by those circuits. The sets of neural 24 
computations involved in sensory decision-making have not been fully determined (for reviews, 25 
see Chung and Abbott, 2021; Gold and Shadlen, 2007; Niell and Scanziani, 2021; Wang, 2012), 26 
but some principles have been identified. One basic neural computation is representation, 27 
storing information about the sensory world in patterns of activity. Another is decision, or 28 
readout, in which representations are transformed or categorized by circuits into forms suitable 29 
for action (Egger and Lisberger, 2022; Wu et al., 2020). This readout process for object 30 
identification might, for example, lead to neurons in areas downstream from primary sensory 31 
cortex that encode category identity (Freedman et al., 2003), with neurons’ firing indicating 32 
whether a given sensory stimulus is food or stone; predator or friend. 33 

There is substantial evidence that sensory cortical synapses can be modified by activity 34 
(Frégnac and Shulz, 1999; He et al., 2006; Hengen et al., 2013; Malenka and Bear, 2004; 35 
Sawtell et al., 2003), but it is less clear whether cortical response changes constitute the 36 
computational change that leads to improved behavior with learning. Studies in humans and 37 
animals have reported varied effects of learning on visual cortical responses, including 38 
increased activity after visual training (Bao et al., 2010; Li et al., 2008; Schoups et al., 2001; 39 
Schwartz et al., 2002), selective suppression of activity (Ghose et al., 2002), decreased 40 
variability of visual selectivity response properties after training (Goltstein et al., 2013, 2021; 41 
Poort et al., 2015), and activity changes that disappeared once early learning has ended 42 
(Yotsumoto et al., 2008). Some learning studies have found improvement in primary sensory 43 
representations (Goltstein et al., 2021; Henschke et al., 2020; Jurjut et al., 2017; Marshel et al., 44 
2019), along with changes in anticipatory and other signals (Khan et al., 2018; Poort et al., 45 
2015). Other studies have found little task-relevant change in the primary visual cortex, area V1 46 
(but found changes in higher visual areas like V4; Boynton and Finney, 2003; reviewed by 47 
Dosher and Lu, 2017; Ghose et al., 2002; Yang and Maunsell, 2004). Thus, it has been unclear 48 
whether a major substrate of visual sensory learning is representational improvement in V1, 49 
such as increased gain or selectivity, or whether the principal changes are readout changes, 50 
perhaps in downstream areas. 51 

One reason it has been difficult to delineate the neural computations underlying sensory 52 
decisions and sensory learning is that neurons and brain areas are highly interconnected, and 53 
sensory stimuli change activity in many brain areas (e.g. Schmolesky et al., 1998; Steinmetz et 54 
al., 2019; Zatka-Haas et al., 2021). Thus, changes in responses to sensory stimuli that are 55 
observed in one cortical area may be inherited from input regions, and indeed cognitive factors 56 
like attention or arousal can modulate visual activity before it arrives at the cortex (Liang et al., 57 
2020). One way to isolate cortical representations from downstream readout computations is to 58 
use stimulation-based behavioral paradigms. Using electrical or optogenetic stimulation 59 
methods, entirely novel (non-sensory, or “off-manifold”, Jazayeri and Afraz, 2017; Sadtler et al., 60 
2014) activity patterns can be introduced in a chosen brain region. With training, subjects can 61 
successfully use stimulation of a wide variety of brain areas to make behavioral decisions (Doty, 62 
1969; Histed et al., 2013; Kesner and Wilburn, 1974; O’Connor et al., 2013). Using such novel 63 
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patterns is a way to explore the limits of cortical plasticity, as they are dissimilar from normal 64 
sensory patterns — and because optogenetics can induce novel patterns at the level of one 65 
cortical area, changes seen in that cortical area are unlikely to be entirely inherited from 66 
changes that occur in input regions.  67 

Studying learning is a powerful way to understand the computations behind decision-making, 68 
because the neural computations used to perform a task must change to create improved 69 
performance on that task. Here, to isolate representational changes that occur as animals 70 
improve on a task, we insert a new cortical representation into mouse V1 using optogenetic 71 
stimulation. We train mice to use that signal for behavior, and we study how responses change 72 
during learning. We first find that animals show dramatic improvements in behavior as they 73 
learn this task. Detection thresholds computed via psychophysical curves can change over 74 
several orders of magnitude during weeks or months of learning, implying animals require much 75 
lower stimulation power, and thus smaller neural activation, as they learn. We then examine 76 
how neural responses to the optogenetic stimuli change during learning and find that cortical 77 
neurons produce larger responses to the same optogenetic input as learning progresses. This 78 
amplification effect does not occur for similar optogenetic stimuli when they are delivered 79 
outside the context of the behavioral task. Thus, learning enables a fixed input to produce an 80 
increasingly large response in the V1 network, presumably by some adjustment of local, 81 
recurrent circuitry (Goldman, 2009; Hennequin et al., 2012; Murphy and Miller, 2009). In sum, 82 
we find that learning causes local changes in representations by increasing amplification in V1.   83 
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Results 84 

We trained animals to perform an all-optogenetic detection task and measured cortical 85 
responses with two-photon imaging. To gain optical access to the primary visual cortex, we 86 
implanted a 3mm optical glass window over V1. We expressed a calcium indicator (jGCaMP 7s 87 
or 8s) via a virus that expresses in cortical neurons (AAV9-hSyn; Dana et al., 2019; Kügler et 88 
al., 2003; Zhang et al., 2020), and expressed the opsin ChrimsonR (targeted to cells’ soma; 89 
stChrimsonR, Pégard et al., 2017) in layer 2/3 excitatory cells via a second virus (Cre-90 
dependent, FLIP/DIO, Emx1-Cre mouse line; Cardin et al., 2010; Sohal et al., 2001). In this 91 
way, we could image visual cortex neurons with a two-photon microscope (Figure 1a) while 92 
delivering optogenetic stimulation to activate stChrimsonR-expressing neurons. We stimulated 93 
opsin expressing neurons with light pulses delivered at the cortical surface through the window 94 
(~500 µm diameter spot; Methods; Histed and Maunsell, 2014). 95 

 96 
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Figure 1 - Optogenetic learning: Mice use direct optogenetic stimulation of V1 neurons and improve 97 
their performance in an optogenetic-only perceptual detection task. (a, b) Schematic of the optogenetic 98 
detection task with simultaneous in vivo 2-photon imaging. Animals were trained to release a lever when they 99 
detected an optogenetic stimulus (soma-targeted opsin stChrimsonR in excitatory cells; Emx1-Cre animals; 100 
595 nm light) delivered through the imaging objective. Lever releases that occurred during a reaction time 101 
window (> 50 ms and up to 550 ms post stim) were scored as correct responses. Lever releases before or 102 
after the reaction time window were scored as false alarms and misses respectively. For optogenetic behavior 103 
without imaging, the stimulus was delivered through a fixed cemented fiber optic cannula (see Methods). (c) 104 
Example of long-term optogenetic learning showing an initial fast drop in the threshold of stimulation power (i 105 
and ii, blue circles, sessions 0-9), followed by a longer phase of continued behavioral improvement (points 106 
from ii to iii, sessions 10-90). We adjusted stimulation power as animals improved with learning, using lower 107 
stimulation power to do the task as average hit rate stayed roughly constant (overall hit rate > 70%). (d) 108 
Psychometric curves from points i, ii, and iii (blue circles in 1c), showing a decrease in the threshold power in 109 
the first 10 sessions (0.38 and 0.05 mW, curves i and ii). The power threshold of the final session was three 110 
orders of magnitude below the first session threshold (0.38 and 0.0002 mW, curves i and iii, respectively). (e) 111 
Psychometric curves for the initial phase of optogenetic learning. Leftward shift in the curves indicated 112 
improved performance (gray arrow). Red dotted line indicates a common power across sessions used to 113 
compare reaction times. (f) Distribution of the mean reaction times for the first 10 sessions of optogenetic 114 
learning in one animal shows a clear trend to faster reaction times. (g) Analysis of reaction times across N = 115 
9 animals shows a decrease over sessions 3 to 9, where common powers were available (median reaction 116 
time change = -15.4 ms, IQR = 18.6, p < 0.01, N = 9). (h) The change in reaction time was negative even 117 
when the small false alarm rate changes (x-axis, ±4% false alarm rate change) were controlled for. A linear fit 118 
showed a negative vertical offset, indicating changes in reaction time arise from learning and not merely from 119 
changes in animals’ strategy or perceptual criterion.  120 

We trained animals (N = 17; Methods) to perform an optogenetic detection task. Training 121 
occurred in two phases (Figure S1a,b). First, animals learned to respond to the appearance of a 122 
monocular Gabor visual stimulus (14˚ FWHM), of varying contrast, until they performed the task 123 
with a stable psychometric threshold for three sessions (animals used for imaging: training time 124 
15-29 days, 23.6 ± 6.2 days, mean ± SEM, N = 3 animals). Animals were then trained to report 125 
the optogenetic stimulus (Figure 1; Figure S1). We moved the visual stimulus to the retinotopic 126 
location of the imaging and stimulation site (see Methods and Goldbach et al., 2021 for 127 
retinotopic mapping), and added an optogenetic stimulus (0.5 mW at 595 nm), delivered at the 128 
same time as the visual stimulus. Over the course of several sessions, we removed the visual 129 
stimulus gradually. We reduced visual stimulus contrast manually (cf. Dalgleish et al., 2020), 130 
making it more difficult to perform the task using the visual stimulus, but keeping performance at 131 
approximately the same level as animals began to rely on the optogenetic stimulus (Figure 1a,b; 132 
Figure S1a,b). The first trial where contrast of the visual stimulus was zero, when animals relied 133 
entirely on the optogenetic stimulus (2.3 ± 0.9 days after first optogenetic stimulus, mean ± 134 
SEM, animals used for imaging, N = 3), we labeled session 0. We confirmed that animals 135 
responded only to the trained optogenetic-evoked neural activity by moving the optogenetic spot 136 
during behavior to non-training locations within V1 which resulted in no behavioral responses 137 
(Figure S2a,b). 138 

While the optogenetic stimuli we use produce a different pattern of responses than visual inputs, 139 
which activate specific cells based on their receptive field properties, our optogenetic stimulation 140 
modulates firing rates just as visual inputs do. Cortical neurons in vivo generally fire in an 141 
asynchronous irregular way, due to large amounts of recurrent input that lead to highly 142 
fluctuating membrane potentials (Ahmadian and Miller, 2021; Brunel, 2000; Sanzeni et al., 143 
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2022). Inputs then modulate the firing rate (Destexhe and Paré, 1999; Histed and Maunsell, 144 
2014; Sanzeni et al., 2020) of the neurons — whose individual spike times are determined by 145 
the network-driven membrane potential fluctuations (Mainen and Sejnowski, 1995). The upshot 146 
is that our optogenetic inputs, which we apply to many cortical neurons simultaneously for 100 147 
ms, increase the firing rates of the cells over that period. However, the cells fire according to 148 
near-Poisson statistics, and individual spike times are not synchronized (confirmed with this 149 
opsin via physiological recordings in vivo, O’Rawe et al., 2022). 150 

Optogenetic learning in a detection task 151 

We found that animals dramatically increase their ability to detect the optogenetic stimulus – 152 
that is, their ability to detect the activation of V1 neurons — with practice. We collected 153 
psychometric curves during training sessions to track changes in animals’ perceptual sensitivity 154 
to the optogenetic stimulus (example from 1 animal in Figure 1c). Over the course of long-term 155 
training (~90 sessions), we found animals were able to consistently detect the stimulus well 156 
(Figure 1c, green dots indicate hit rate), and with practice animals’ perceptual thresholds 157 
dropped dramatically over sessions (Figure 1c, black line indicates psychometric thresholds). 158 
That is, the animals got better at detecting the stimulus: they needed less-strong stimulation 159 
over time to achieve the same level of performance. The observed rate of threshold change 160 
could be roughly separated into two phases, a phase that occurred within the initial ~10 161 
sessions of training after acquisition of the optogenetic task (example in Figure 1c,d: i and ii, 162 
sessions between 2 and 8) and a slower phase over many additional sessions (example in 163 
Figure 1c,d: ii and iii, sessions between 8 and 92). Below, we focus on the first six days of this 164 
initial learning phase for our experiments examining neural activity changes. In this initial phase, 165 
the changes in the thresholds of the psychometric curves were large (example animal in Figure 166 
1e, gray arrow shows change in threshold, Δ thresh. pwr. = -0.28 mW, first threshold: 0.35 mW, 167 
95% CI [0.31 - 0.37] mW, second threshold: 0.058 mW, 95% CI [0.052 - 0.063] mW). The 168 
threshold changes were accompanied by decreases in the mean reaction times. We compared 169 
reaction times for fixed stimulation powers across days (Figure 1f,g, median = -15.4 ms, IQR = 170 
18.6, p < 0.01, over a subset of animals, N = 9, which had common stimulation powers from 171 
sessions 3 to 9). The changes in reaction times could not be accounted for by changes in 172 
animals’ false alarm rates (Figure 1h); while reaction times did change with false alarm rates, as 173 
expected if underlying perceptual criterion was fluctuating, reaction time changes remained after 174 
regressing out false alarm rate (see negative offset at x = 0 in Figure 1h). Therefore, we found 175 
that optogenetic learning results in an improvement of perceptual sensitivity, which allows the 176 
detection of lower stimulation powers over days.  177 

Responses of V1 to optogenetic stimulation are amplified by learning 178 

We studied cortical neural responses during learning by measuring activity with 2-photon 179 
imaging while simultaneously stimulating. We measured neural responses in layer 2/3 during 180 
the first 6 optogenetic learning sessions, where learning is rapid (Figure 1c-f and Figure 2a). 181 
During this period animals’ showed a greater than 50% drop in their optogenetic detection 182 
thresholds (Figure 2a, average change between session 0 and 5, -62 ± 10%, mean ± SEM, N = 183 
4; thresholds extracted from psychometric functions collected in each session, as in Figure 1d). 184 
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2-photon imaging revealed strong and even co-expression of GCaMP- and stChrimsonR- 185 
bearing neurons in our dual-virus injection preparation (Figure 2b, green and red stained cells 186 
respectively, see Methods).  187 

 188 
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Figure 2 - Responses of V1 to optogenetic stimulation are amplified by learning. (a) Optogenetic power 189 
thresholds over session across the population of animals imaged during learning (normalized to session 0, N 190 
= 4) shows improved task performance. (b) Example imaging field of view (animal 1, see also Figure S2) 191 
where we performed simultaneous in vivo 2-photon imaging and optogenetic stimulation in layer 2/3 neurons. 192 
Soma-targeted opsin stChrimsonR and GCaMP7s expression are shown. Approximate beam waist of the 193 
optogenetic stimulation path is shown (~200 µm, orange dotted circle; see Methods). (c) Response 194 
amplification in animal 1 before and after optogenetic learning at a stimulation power near psychometric 195 
detection threshold (0.04 mW). Grey dashed box shows the region of interest (ROI) in the frame used for ΔF/F 196 
analysis. (d, e) ΔF/F time courses show GCaMP response before and after learning (session 0 and session 197 
5). (f) Deconvolved spiking shows amplification before and after learning (session 0 and session 5). (g) 198 
Average ROI ΔF/F response across all tested power levels in animal 1 before and after learning. Shift in the 199 
response curve indicates amplification (gray arrow).  (h) Plots of all ΔF/F responses for near-threshold and 200 
above-threshold stimulation powers (animal 1, dotted lines shown in panel g, 0.04 and 0.1 mW respectively) 201 
during session 0 and session 5. (i) Positive response changes (ΔΔF/F, before versus after learning, mean ± 202 
SEM) at near-thresh power for all animals, compared to mock behavioral control (shown in red). (j) Responses 203 
across all tested power levels for animals 2 and 3 (N = 3 total, one animal in panel (a) not imaged), and the 204 
mock behavioral control animal. Leftward shift in the response curve indicates amplification (gray arrow). (k) 205 
Suite2p-extracted cell masks (left panel, animal 2, session 5). Comparison of the change in average cells 206 
versus neuropil responses before and after optogenetic learning.  207 

Imaging of the stimulated region during optogenetic detection behavior revealed clear stimulus-208 
evoked responses that were strongly amplified over the course of training (Figure 2c-k). This 209 
amplification could not be explained by shifts in the imaging plane or by changes in virus 210 
expression over sessions (Figure S3). It also could not be explained by tissue growth under the 211 
window or other optical degradation over time, or because of stimulation, as the effect we 212 
measured was in the opposite direction: an increase in responses to stimulation. However, to 213 
verify that optical changes did not account for the effects, we measured the effects of 214 
stimulation within each preparation at the imaging plane while not imaging cells, and used it to 215 
adjust stimulation power, finding that the amplification effects remained with and without this 216 
adjustment (Figure S4). As another check to rule out effects of imaging properties or expression 217 
contributing to this effect, we stimulated in a control animal (see also Figure 3 for similar control 218 
experiments using even higher powers) using matched mock training sessions, with the same 219 
imaging, stimulation, reward, optical window, and injection parameters as during training. In 220 
these mock behavioral sessions, with timing and stimulation power statistics matched to the 221 
learning sessions, optogenetic stimuli were delivered with no lever responses recorded, and 222 
reward was given on a randomized set of trials (Figure 2i,j, red labeled control; Methods). We 223 
found no amplification in this closely matched control (Figure 2i-j), arguing that the amplification 224 
we saw was indeed an increase in neural responses as a function of learning.  225 

We characterized how overall V1 responses changed over learning by plotting the timecourses 226 
of evoked activity over a large analysis region (or region of interest, ROI, shown for one animal 227 
as dashed box in Figure 2c). We found that after learning, optogenetic-evoked responses were 228 
amplified at all optogenetic power levels, with strong effects both near the psychometric 229 
threshold and also at above-threshold optogenetic stimulation powers, where animals attain 230 
their highest behavioral performance (example for animal 1, Figure 2g,h, threshold power dotted 231 
purple, above threshold dotted blue; Figure 2i,j summary of N = 3 animals). Though the 232 
magnitude of these changes varied somewhat across animals, in all animals we measured we 233 
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found positive between-session amplification (thresholds from all sessions, all animals shown in 234 
Figure S5).     235 

Since the 1-photon optogenetic stimulus activates neurons both above and below the imaging 236 
plane we sought to determine the relative contribution of cells and neuropil responses to the 237 
amplification that we measured. We extracted cell masks using suite2p (Pachitariu et al., 2017) 238 
and found that both cells and neuropil showed substantial amplification with learning (Figure 239 
2k). The neuropil signal likely reflects both signals from local imaged neurons and signals from 240 
out-of-plane cells that increase their responses to the optogenetic stimulation. Therefore, while 241 
the cells we imaged were in layer 2/3, the neuropil changes reflect that cells in deeper layers 242 
may also be stimulated and participate in the amplification effects. 243 

Overall, the changes we observed in neural activity were smaller than the improvements seen in 244 
perception. Animals’ perceptual detection performance improved, and thresholds decreased, by 245 
a factor of approximately 2.7x after 6 sessions (i.e. power threshold was 37 ± 11%, mean ± 246 
SEM of session 0 levels; Figure 2a). However, the changes in ΔF/F over the course of 6 247 
sessions, measured at a fixed stimulation power, were smaller (a 1.7x increase in ΔF/F over the 248 
large ROIs: session 0, 25.6 ± 7.4%, mean ± SEM across animals, session 5, 42.9 ± 10.9%, 249 
Figure 2i; and a 2.1x increase in cell peak ΔF/F, Figure 2k, 20.7% to 43.7%). Several caveats 250 
apply: the readout mechanism presumably sums across large numbers of neurons and thus 251 
may not be limited by the change in cortical responses we measure, and opsin saturation at 252 
high power may lead to greater changes in power than activity. However, the fact that behavior 253 
changes by a larger factor than cortical responses could potentially indicate that there is an 254 
improvement in the readout mechanism, occurring along with the amplification changes we see.  255 

The largest neural response changes happened from one day to the next, not within-256 
session 257 

While we observed significant increases in ΔF/F responses across experimental days, we found 258 
no evidence of increases within-session. In fact, we found a small decrease in responses to 259 
stimulation over the course of each experimental day (average ΔF/F change over 100 trials: -260 
1.2% ΔF/F, 95% CI [-0.9 to 1.6]% ΔF/F, coeff less than zero at p < 10-13, via linear regression 261 
over trials numbered within day, estimated across animals and sessions, N = 3; see Methods for 262 
details). Thus, it appears that optogenetic learning-related changes do not happen within the 263 
behavioral day, i.e. from one trial to the next. Instead, these data support that the major 264 
changes to neural responses occur outside of training, and may be driven by consolidation: 265 
changes in the brain in the hours between the experimental sessions. 266 

No amplification occurs with stimulation outside of the behavioral learning context 267 

To determine if cortical amplification is dependent on learning, or might arise from repeated 268 
optogenetic stimulus alone, we performed a stimulation control, in a mock behavioral context, 269 
and found no amplification (Figure 2i,j, ‘control’). That mock experiment was conducted with 270 
stimulation powers matched to those used during optogenetic learning (up to 0.5 mW). To 271 
determine if we could drive changes using stronger optogenetic stimulation, we increased 272 
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stimulation power levels up to twice that used for behavior. In water-restricted but non-behaving 273 
animals, we provided repeated optogenetic stimulation using a range of powers up to 1 mW 274 
(100 ms stimulation with ~6 s interpulse interval, 1200 and 1500 repetitions, N = 2; Methods). 275 
Even with higher stimulation powers we observed no changes in the optogenetic sensitivity of 276 
cells in the stimulated regions (Figure 3a,b).  277 

This result suggests that amplification in response to these novel “off-manifold” stimuli requires 278 
an associative context, and that the amplification we observe arises from adult neuronal 279 
plasticity due to optogenetic learning. 280 

 281 

Figure 3 - No amplification occurs for optogenetic stimulation delivered to V1 outside the learning 282 
context. (a) ΔF/F responses in an example animal to 0.05 and 1 mW of optogenetic stimulation delivered 283 
outside the behavioral context; animal was awake and alert but any motor responses were not reinforced (see 284 
Methods).  0.5 mW is near the average post-learning threshold power for optogenetic learning animals. 1 mW 285 
is a power level three times higher than the maximum used in training optogenetic learning animals. (b) No 286 
amplification occurs at any power level over seven sessions of optogenetic stimulation (example animal, 287 
session 0, blue, to session 6, orange, mean ± SEM). There was no significant change in response across N 288 
= 2 animals (session 0 vs. 6, via ANOVA/linear regression; t = 1.1, p = 0.27, also neither animal reaches 289 
significance alone, and treating power as a continuous or log-continuous variable did not change the results; 290 
see Methods for regression details). 291 

Statistics of visual responses are unchanged after optogenetic learning at both the 292 
training and control sites 293 

Previous studies suggest that learning in visual perceptual tasks can lead to changes in the 294 
tuning properties of responsive neurons in mouse V1 (Goltstein et al., 2021; Khan et al., 2018). 295 
However, it remains unresolved if these changes arise from plasticity in the local cortical 296 
networks or if changes may be inherited from thalamic input pathways that could in principle 297 
adjust input strength, state, or synchrony (Cano et al., 2006; Hubel and Wiesel, 1962; Kelly et 298 
al., 2014; Sadagopan and Ferster, 2012) to change cortical responses. Since optogenetic 299 
stimulation bypasses feedforward input from the thalamus, we wished to determine if the visual 300 
response properties of neurons would change with optogenetic learning.    301 

To test how optogenetic learning and its associated amplification in V1 affects visual response 302 
properties, we performed 2-photon imaging of V1 as mice were shown a series of visual stimuli 303 
before and after optogenetic learning. We used drifting gratings, either full-field or monocular 304 
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Gabor patches (15˚ FWHM; Figure 4a; Methods). We collected the responses of neurons at 305 
both the optogenetic training location (an FOV to which the visual stimulus was retinotopically 306 
matched), and an adjacent control location in V1 where stimuli were not delivered for 307 
optogenetic learning (Figure 4a).  308 

 309 

Figure 4 - Visual response properties are unchanged after optogenetic learning at both a training and 310 
a control site. (a) Schematic of testing visual response properties by measuring visual responses before and 311 
after learning (N = 3 animals, different animals than shown in Figure 2). Visual responses to 12-direction full-312 
field drifting gratings or small Gabor patches (drifting gratings masked by a 2-d gaussian, FWHM 12˚) were 313 
tested before (pre-) and after (post-) optogenetic learning. (b,c) Example distributions of indices for direction 314 
selectivity (DSI), orientation selectivity (OSI), and global orientation selectivity (gOSI; Methods) for full-field 315 
stimulus, at training and control locations, before and after learning for one animal. (* distributions significantly 316 
different via Kolmogorov-Smirnoff 2-sample test: p-values: training location, DSI: 0.06, OSI: 0.90, gOSI: 0.21; 317 
control location, DSI: 0.27, OSI: 7.8 x 10-4, gOSI: 5.7 x 10-6).  (d,e) Summary of all visual response properties 318 
for full-field or gabor stimuli, pre- and post- optogenetic learning (mean ± SEM). Training locations shown in 319 
black, control locations shown in gray (N = 3 animals). (*: p < 0.05, Mann-Whitney U with Holm-Šídák 320 
correction for multiple comparisons; number of significant changes either full-field or Gabor: training locations 321 
(black), DSI: 1, OSI: 4, gOSI: 4; control locations (gray), DSI: 3, OSI: 3, gOSI: 4). 322 

We found some small but statistically significant changes in the distributions of direction 323 
selectivity, orientation selectivity, and global orientation selectivity (DSI, OSI, and gOSI, 324 
respectively) at both the optogenetic training and control locations before and after learning 325 
(CDFs from one example animal, Figure 4b,c; statistical tests measure differences in medians, 326 
see Figure 4 legend). These changes, however, were inconsistent across animals and 327 
comparable in size between the training and control locations (Figure 4d,e), perhaps due to 328 
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learning-related global changes in the cortical network, or perhaps due to representational drift 329 
over time (Deitch et al., 2021; Marks and Goard, 2021). These results therefore suggest that, 330 
while learning seems to allow the local cortical network to amplify the artificial stimulus, 331 
underlying visual response distributions and the overall structure of existing sensory 332 
representations remain intact.  333 
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Discussion 334 

In this work we examine the capacity of adult mouse primary visual cortex (V1) to undergo 335 
plastic changes in response to novel optogenetic stimuli, over a few days of learning. We found 336 
clear evidence that neural responses to novel stimuli — optogenetic inputs applied directly to 337 
many cells — are amplified in V1, but only if those stimuli are made behaviorally-relevant. The 338 
changes in neurons’ responses over learning sessions mirrored the animals’ perceptual 339 
improvements. Responses to visual stimuli, which were not relevant for learning, did not show 340 
systematic changes, suggesting that the layer 2/3 cortical network was able to selectively 341 
amplify the input pattern created by optogenetic stimulation. Taken together, our results provide 342 
evidence for substantial plastic changes in the primary visual cortex of the adult mouse brain 343 
that are linked to perceptual learning of a completely novel stimulus.  344 

Amplification is a desirable representational change for a perceptual detection task 345 

In an optogenetic detection task, the principal neural computation that must be performed is a 346 
comparison between the activity evoked by optogenetic stimulation and spontaneous, ongoing 347 
activity. Therefore, the amplification of the optogenetic signal we found, an increasingly large 348 
spiking response to fixed input, seems to be the optimal way for the V1 recurrent network to 349 
adjust to improve task performance (assuming no major changes in the noise or variability in the 350 
population, Moreno-Bote et al., 2014). Amplification leads to increased separation, in population 351 
activity space, of spontaneous activity and the stimulation-evoked response. This increase in 352 
separation can also enhance downstream readout or classification, and thus would lead to 353 
improved behavioral performance.  354 

A few other studies have found evidence for learning-related changes in the sensory cortex with 355 
optogenetic-stimulation tasks. Using a discrimination task and stimulating neurons in the 356 
somatosensory cortex (S1), Pancholi et al. (2021) found no evidence for amplification but did 357 
see other changes, including increases in response sparsity. In the visual cortex, Marshel et al. 358 
(2019) trained animals to report activation of specific neural ensembles activated with two-359 
photon holographic stimulation. They found evidence for amplification in two different 360 
subnetworks (defined by intrinsic visual responses), as animals learned to discriminate 361 
optogenetic activation of those two subnetworks. Amplification appears to be the optimal neural 362 
change for those animals to improve task performance: the animals were asked to compare two 363 
different patterns of activity, and so amplifying each would increase separation in population 364 
activity space, improving readout. The different effects seen in Pancholi et al. might be due to 365 
structural differences between V1 and S1 cortical circuits, or may be related to differences in 366 
task-specific computations, as their subjects were asked to discriminate stimulation intensity, 367 
rather than discriminate patterns of activity. In sum, our work adds to the evidence that cortical 368 
areas can, over the course of several days of practice, adjust their input-output transformations 369 
to create representations that allow more sensitive perceptual performance. 370 

Readout changes and representational changes 371 

Our results appear to help resolve a contradiction in recent optogenetic stimulation studies. 372 
Dalgleish et al. (2020) found that animals detected as few as 40-100 randomly-selected 373 
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somatosensory (S1) cortical neurons in an optogenetic stimulation task. Mice can also detect 374 
similarly-sized ensembles of stimulated neurons in the olfactory bulb (Gill et al., 2020). Work by 375 
Marshel et al. (2019), on the other hand, found that most animals (6 of 7 trained) did not 376 
effectively report activation of similarly-sized groups of randomly-selected neurons, only 377 
correctly reporting ensembles already defined by visual co-activation. While a possible 378 
explanation may be differences between S1 and the olfactory bulb vs V1, our data suggest a 379 
different explanation: that detection of randomly-selected ensembles of ~100 neurons requires 380 
initial learning with stronger stimulation. Both Gill et al. and Dalgleish et al. initially trained 381 
animals using one-photon (widefield) optogenetics, the same approach we use here to produce 382 
strong activation at the initial powers used for learning. Both studies note, as we show 383 
quantitatively here, that practice with these one-photon optogenetic stimuli leads to less and 384 
less stimulation being required for the task. Thus, these optogenetic results, along with electrical 385 
stimulation studies (Doron and Brecht, 2015; Doty, 1969; Histed et al., 2009, 2013; Ni and 386 
Maunsell, 2010) imply that animals can use completely novel, randomly-chosen patterns of 387 
neural stimulation — but to do so, learning must first be induced by strong stimulation of 388 
hundreds of neurons or more. 389 

While we found significant changes in cortical representations during learning, it is possible that 390 
the readout mechanism improves as well. Our data might suggest there are changes in readout, 391 
beyond V1 changes in amplification, as we found larger improvements in behavioral 392 
performance than in cortical responses (percent changes in stimulation power needed to do the 393 
task vs. percent changes in neural responses; Figures 1 and 2), though interpretation is difficult 394 
due to potential opsin saturation and potential nonlinear or variability-dependent readout (Kohn 395 
et al., 2016; Moreno-Bote et al., 2014). Dalgleish et al. also provide evidence that readout 396 
changes occur in optogenetic-learning tasks: they found that high detection performance 397 
generalized across different stimulated patterns of cortical neurons. That is, after learning, 398 
animals did well at detecting the activation of not just a single trained subset of up to 100 399 
neurons, but many different sets of up to 100 neurons. On the other hand, Marshel et al., who 400 
also stimulated randomly selected groups of up to approximately 100 neurons, found little 401 
generalization from one randomly-selected pattern to the next (their Figure 4I). Some possible 402 
differences amongst these three studies that could affect the results include differences in 403 
cortical area: visual vs. somatosensory cortex, and difference in behavioral task: single-pattern 404 
detection vs. two-pattern discrimination. Taken together, these studies leave open the possibility 405 
that the decoding mechanism can change during optogenetic learning. 406 

The learning that we observed here seems likely to be a change in sensory properties and not 407 
related to changes in movements. Our animals were pre-trained on a visual detection task 408 
before introducing the optogenetic stimulus (Figure S1a,b). Thus, the task demands, and motor 409 
responses were fixed, and the only learning step needed was for animals to gain the ability to 410 
perceive and report the novel optogenetic activity induced in the cortex. 411 
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The amplification shows signs of consolidation, with the largest changes outside 412 
sessions 413 

Because we measured neural responses during task performance, we were able to determine 414 
whether amplification happened within the training sessions or developed from one day to the 415 
next. We found that within-session, there were small or negative changes in neural responses to 416 
a fixed stimulus (Results section, “The largest neural response changes happened from one day 417 
to the next…”), though there were consistent changes from one learning session to the next 418 
(Figure 2; all data shown in Figure S5). While some decreases in response within-session 419 
could, in principle, be due to bleaching of opsin or indicator, the changes from one session to 420 
the next suggests that the major cortical network changes were happening outside sessions, 421 
perhaps as animals rested or slept. This is reminiscent of the consolidation that happens in 422 
motor learning, where a significant component of the motor improvement also appears to occur 423 
outside of the actual learning or practice repetitions (Brashers-Krug et al., 1996; Krakauer and 424 
Shadmehr, 2006). 425 

Our physiological recordings found learning-related neural changes over the initial few days of 426 
optogenetic learning (5-6 days), consistent with previous reports (Dalgleish et al., 2020, their 427 
Figure 2, Supplementary Figure 3; Marshel et al., 2019, with holographic stimulation; and 428 
Pancholi et al., 2021, in S1). However, we also measured continued improvement in 429 
optogenetic detection performance (without neural imaging) over many weeks to months of 430 
training (Figure 1). It seems possible that additional cortical amplification happens during this 431 
longer phase as well. This is supported by past studies of long-term deafferentation, which have 432 
demonstrated that cortical responses can change over months or years to accommodate input 433 
changes (Gilbert and Li, 2012; Pons et al., 1991). 434 

Pattern amplification in cortex due to recurrent connectivity 435 

We found that cortical responses to a fixed optogenetic stimulus are amplified over several days 436 
as animals’ behavioral performance improves. We also found that optogenetic learning 437 
produced little change in the visual response properties of targeted neurons (Figure 4). In 438 
principle, the observed increase in cortical responses to the optogenetic stimulus could have 439 
arisen from changes outside the local cortical network that would not be due to modification of 440 
recurrent connections. These outside sources might be changes in top-down, higher-order 441 
thalamic (e.g. from the lateral posterior nucleus, LP / pulvinar) or neuromodulatory input that 442 
change the gain of V1 neurons. However, were top-down input changes or neuromodulatory 443 
effects the dominant players, we might expect effects on visual responses as well. Theoretical 444 
work also shows that response amplification to a fixed input can be created in recurrent 445 
networks by adjusting the synaptic connectivity within the network (Goldman, 2009; Murphy and 446 
Miller, 2009; Sadeh and Clopath, 2020). Along with the timecourse of the changes we saw 447 
— over several days of practice and with changes occurring outside the session — these 448 
observations suggest that changes in local recurrent cortical synapses are a likely mechanism 449 
for the learning-related neural changes we observed. 450 
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Given this, what circuit mechanism might gate, or enable, cortical recurrent plasticity, to allow 451 
changes during behavior but not for inputs presented outside a behavioral context? There is 452 
substantial evidence that inhibitory modulation is involved when such cortical network changes 453 
occur (Carcea and Froemke, 2013; Fagiolini and Hensch, 2000; Fagiolini et al., 2004; He et al., 454 
2006; Heimel et al., 2011; Keck et al., 2013; Swanson and Maffei, 2019; Trachtenberg, 2015) 455 
and alternation of perineuronal networks, which surround many inhibitory neurons, participate in 456 
these synaptic changes (Balmer et al., 2009; Banerjee et al., 2017; Gu et al., 2016; Hylin et al., 457 
2013; Le Naour et al., 2001; Reichelt et al., 2019; Sorg et al., 2016). Since the response 458 
changes we observed are dependent on animals performing a rewarded behavioral task, a 459 
compelling possibility is that task context or reward prediction signals trigger inhibitory neurons, 460 
which enables plasticity to begin.  461 

Conclusion 462 

How the cerebral cortex builds sensory representations for use in behavior is key to 463 
understanding brain function. Though the adult visual cortex is less plastic than the developing 464 
cortex (Desai et al., 2002; Hensch, 2005; Katz and Crowley, 2002), our results – cortical 465 
amplification in response to completely novel artificial patterns of optogenetic input – provide 466 
key insights into how brains can adapt to behaviorally-relevant sensory information throughout 467 
our lifetimes.   468 
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Key resources table 483 

Reagent type 
(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

Genetic reagent (M. 
musculus) 

Emx1-Cre  The Jackson 
Laboratory 

RRID:IMSR_JAX
:005628 

17 total 
animals 

Recombinant DNA reagent AAV9-hSyn-FLEX-GCaMP6f Addgene #100833  

Recombinant DNA reagent AAV9-hSyn-jGCaMP7s Addgene #104487  

Recombinant DNA reagent AAV9-hSyn-jGCaMP8s Addgene #162377  

Recombinant DNA reagent AAV1-hsyn-FLEX-
ChrimsonR-tdTomato 

Addgene #62723  

Recombinant DNA reagent AAV9-hSyn-DIO-
stChRimsonR-mRuby2 

Addgene  #105448 

 

 

  484 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2022. ; https://doi.org/10.1101/2022.07.10.499496doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.10.499496
http://creativecommons.org/licenses/by-nc/4.0/


Methods 485 

Animals 486 

All experimental procedures were approved by the NIH Institutional Animal Care and Use 487 
Committee (IACUC) and complied with Public Health Service policy on the humane care and 488 
use of laboratory animals. Emx1-Cre mice, (Cre-recombinase targeted at the Emx1 locus, 489 
Gorski et al., 2002, Jax stock no. 005628, N = 17), were used for all experiments. N = 13 490 
animals were used for optogenetic behavior without imaging (Figure 1c-h, Figure 2a), N = 3 for 491 
optogenetic behavior plus simultaneous 2-photon imaging (Figure 2), N = 3 for mock behavior 492 
with optogenetic stimulation only (N = 1, Figure 2j; N = 2, Figure 3), and N = 3 for visual 493 
stimulation before and after optogenetic behavior (Figure 4). Animals were housed on a reverse 494 
light/dark cycle. 495 

Cranial window implantation and viral injection 496 

Mice were given intraperitoneal dexamethasone (3.2 mg/kg) and anesthetized with isoflurane 497 
(1–3% in 100% O2 at 1 L/min). Using aseptic technique, a titanium headpost was affixed using 498 
C & B Metabond (Parkell) and a 3 mm diameter craniotomy was made, centered over V1 (−3.1 499 
mm ML, +1.5 mm AP from lambda).  500 

Mice were injected with a pre-mixed combination of two adenovirus-mediated (AAV9) vectors 501 
for expression in the cortex, a functional calcium indicator (AAV9-hSyn-jGCaMP7s or -502 
jGCaMP8s, viral titers 3.0 x 1013 and 4.1 x 1013 GC/ml respectively, final dilution 1:10) construct 503 
and a photoactivatable soma-targeted opsin construct (AAV9-hSyn-stChrimsonR-mRuby2, viral 504 
titer 3.2 x 1013 GC/ml, final dilution 1:8). Injections were made 150-250 µm below the surface of 505 
the brain for expression in layer 2/3 neurons. Multiple 300 nL injections were done at 150 506 
nL/min to achieve widespread coverage across the 3 mm window.  507 

A 3 mm optical window was then cemented into the craniotomy, providing chronic access to the 508 
visual cortex. Post-surgery, mice were given subcutaneous 72 hr slow-release buprenorphine 509 
(0.5 mg/kg) and recovered on a heating pad. Virus expression was monitored over the course of 510 
3 weeks. We selected animals with good window clarity and high levels of virus co-expression 511 
(GCaMP and stChrimsonR) for behavior and imaging experiments.    512 

Retinotopic mapping 513 

We determined the location of V1 in the cranial window using a hemodynamic intrinsic imaging 514 
protocol previously described in (Goldbach et al., 2021). Briefly, we delivered small visual stimuli 515 
to head-fixed animals at different retinotopic positions and measured hemodynamic-related 516 
changes in absorption by measuring reflected 530 nm light. Imaging light was delivered with a 517 
530 nm fiber-coupled LED (M350F2, Thorlabs). Images were collected through a green long-518 
pass emission filter onto a Retiga R3 CCD camera (QImaging Inc., captured at 2 Hz with 4 × 4 519 
binning). The hemodynamic response to each stimulus was calculated as the change in 520 
reflectance of the cortical surface between the baseline period and a response window starting 521 
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2–3 s after stimulus onset.  We fit an average visual area map to the cortex based on the 522 
centroids of each stimulus’ V1 hemodynamic response.  523 

These retinotopic maps were used during behavioral training to overlap the visual stimulus 524 
position in the right monocular hemifield with the imaging/optogenetic stimulation location in the 525 
V1. We found that the transition period between visual detection and optogenetic detection was 526 
facilitated by a strong overlap.      527 

For measuring visual response properties, we further refined the visual position by measuring 528 
cellular responses in layer 2/3 with 2-photon imaging. Small, oriented noise visual stimuli (14˚ 529 
FWHM) were presented at 9 locations (spaced by ±15˚ azimuth and ±10˚ elevation) in the right 530 
visual hemifield. The visual stimulus position that evoked the greatest response in the FOV was 531 
chosen for characterizing visual responses. We found that the strongest response was typically 532 
the center location, selected using the widefield hemodynamic map above.   533 

Behavioral task 534 

Mice were head-fixed and trained first to hold a lever and release in response to a visual 535 
stimulus (Gabor patch; 14° FWHM, spatial frequency 0.1 cycle/degree), that increased contrast 536 
relative to a gray screen (Goldbach et al., 2021; Histed et al., 2012), and then to an optogenetic 537 
stimulus that directly activated layer 2/3 neurons in V1. Mice initiated behavioral trials by 538 
pressing and holding a lever for 400-4000 ms (according to a geometric distribution, to reduce 539 
variation in the stimulus appearance time hazard function, see Goldbach et al., 2021, their 540 
Figure 2), and then the stimulus appeared for 100 ms in the animal’s right monocular hemifield. 541 
Animals had up to 550 ms to report the stimulus by releasing the lever. Because some minimum 542 
time is required to process the stimulus, we counted as false alarm trials those releases that 543 
occurred within 50-100 ms of the stimulus onset. Correct detection responses resulted in 544 
delivery of a 1-3 µL liquid reward.  545 

All behavioral animals were first trained on a visual detection task (see task schematic, Figure 546 
S1, and Goldbach et al., 2021). Once animals were performing well on the visual task and 547 
produced stable psychometric curves with low lapses for three consecutive sessions, we 548 
transitioned the animal to using the optogenetic stimulus by pairing each visual stimulus 549 
appearance with a fixed power (0.5 mW) optogenetic stimulation. During these transition 550 
sessions we lowered the contrast of the visual stimulus until animals could perform the task 551 
without the visual stimulus. The session where animals started behaving exclusively on the 552 
optogenetic stimulus was denoted session 0. During session 0 we generated the first 553 
psychometric curve for optogenetic stimulation. Analysis of data from session 0 came only from 554 
the part of trials where the animal was exclusively on the optogenetic stimulus. Subsequent 555 
behavioral sessions were started and conducted with only optogenetic stimuli.  556 

Optogenetic stimulation  557 

For optogenetic behavior experiments without simultaneous 2-photon imaging we delivered light 558 
through a fiber aimed at the cortical surface (Goldbach et al., 2021). A fiber-coupled LED light 559 
source (M625F2, Thorlabs, peak wavelength 625 nm) was coupled via a fiber patch cable to a 560 
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fiber optic cannula (400 µm core diameter, 0.39 NA, Thorlabs CFMLC14L02) cemented above 561 
V1. This method was used for long-term learning and control experiments with increased 562 
optogenetic stimulation outside of behavior (powers up to 1mW with 6.3 ± 1.7s between 563 
simulations, mean ± SD, N = 2).  564 

For optogenetic behavior experiments conducted with simultaneous 2-photon imaging we 565 
activated stChrimsonR expressing neurons by passing 595 nm light (CoolLED pE4000) through 566 
the imaging objective to the surface of the brain. The illumination power was measured through 567 
the objective at the beginning of each session using a light meter (Newport 1918-C with a 918D-568 
SL-OD3R detector) with a maximum of ~0.5 mW.  569 

Analysis of behavioral data 570 

Analyses were conducted in Matlab and Python. Optogenetic learning effects were 571 
characterized by analyzing data collected during animal behavior on the optogenetic stimulation 572 
detection task.  573 

Reaction times were averaged across trials for each laser power group and for each training 574 
session. Linear fits were calculated for these data points across the start and end sessions in 575 
which each laser power group was present during the task. The slope of the linear fit indicated 576 
the change in reaction time per session for each laser power group. A mean change in reaction 577 
time per training session was then calculated across all laser powers for each animal. Changes 578 
in optogenetic detection sensitivity were analyzed by fitting cumulative Weibull functions to data 579 
from individual training sessions to estimate detection performance (hit rate) as a function of 580 
laser power. Quantifying thresholds with d’ (sensitivity) produces similar results to using hit rate 581 
in this task, as false alarm rates are nearly constant over time (false alarm hazard rate is near 582 
constant, see Goldbach et al., 2021). Threshold was the 50% point of the Weibull functions.  583 

2-photon calcium imaging  584 

2-photon calcium imaging was conducted using a custom microscope based on MIMMS 585 
(Modular In vivo Multiphoton Microscopy System, e.g. Kerlin et al., 2019) components (Sutter 586 
Instruments, Novato, CA) with a Chameleon Discovery NX tunable femtosecond laser 587 
(Coherent, Inc.; Santa Clara, CA). Imaging was performed using a 16X water dipping objective 588 
(Nikon; Tokyo, Japan). A small volume of clear ultrasound gel (~1 mL) was used to immerse the 589 
lens. Images of calcium responses (~150-200 µm from the surface of the pia, layer 2/3) were 590 
acquired at 30 Hz using ≤ 50 mW laser power for static imaging, and ≤ 15 mW for behavior at 591 
920 nm. 592 

Analysis of imaging data 593 

Raw 2-photon image stacks were downsized (512 rows to 256 rows) to facilitate handling of 594 
large datasets. For each behavioral session, frames were motion corrected using CaImAn 595 
(Giovannucci et al., 2019). Each imaging data set was baseline corrected to an estimated 596 
minimum pixel intensity, calculated as the minimum value in the average projection image 597 
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across all frames from all trials prior to stimulus presentation (Fmin, a scalar). The minimum pixel 598 
intensity was subtracted from all pixels and all resulting negative values were set to 0.  599 

For quantitative analyses we computed ΔF/F as (F-F0)/F0 at each pixel. F0 was taken over the 600 
10 frames before each stimulus onset, and F0 did not systematically change over days (see also 601 
Figure S3). For statistical analyses F was taken as the frame 120 ms after the stimulus onset 602 
(frame 3 post-stimulation, near the peak response). For visual display of responses in entire 603 
frames, as in Figure 2c, F was taken over 0-270 ms after stimulus onset (frames 0-9 post-604 
stimulation), and we computed ΔF/F as (F-F0)/Fdiv, where Fdiv is F0 smoothed with a gaussian 605 
filter (sigma = 20 pix). Using a smoothed divisor image averages overall intensity in small 606 
regions of the image, yielding a form of local contrast adaptation. Image ROI fluorescent (F) 607 
activity traces were measured by calculating the average pixel intensity within a user-defined 608 
ROI, prior to computing ΔF/F for an ROI. Deconvolved calcium responses to estimate spiking 609 
activity for an ROI were calculated using the OASIS method with an autoregressive constant of 610 
1 (Friedrich et al., 2017).  611 

Segmented cell masks were identified using either Suite2p (for Figure 2; Pachitariu et al., 2017) 612 
or CaImAn (for Figure 4; Giovannucci et al., 2019) and their resulting calcium responses (F) 613 
were extracted. To quantify neuropil activity, we constructed a single mask such that all pixels 614 
belonging to an identified cell mask were excluded, and all remaining pixels were included.  615 

Linear regression model for testing for effects of change within experimental day was OLS 616 
regression, using all trials on which the stimulus was successfully detected. Data was from N = 617 
3 animals, N = 6 sessions for each animal, and 2633 total number of stimulation trials (all 618 
animals and sessions are shown in Supp. Figure 5, leftmost 3 columns). Regression model 619 
equation:  ΔF/F ~ C(animal) * C(session) + stimulation_power_mw + trial_number + constant, 620 
where C(x) signifies a categorical or dummy variable. Full details of the model definition are in 621 
https://patsy.readthedocs.io/en/latest/. We also tested for significant change in ΔF/F within-622 
session by running the same model over each animals' data, and found all three animals 623 
showed a negative change (trial number coefficient: -1.5, -1.1, -0.2% ΔF/F) though only two 624 
were significantly different from zero (p < 1 x 10-12, < 1 x 10-6, = 0.6, respectively). 625 

Linear regression model for testing effects of optogenetic stimulation outside of behavior (results 626 
in Figure 3) was OLS regression from N = 2 animals, session 0 (S0) vs. session 6 (S6) via 627 
ANOVA. Regression model equation: ΔF/F ~ C(power) + C(S0 v. S6), where C(x) indicates a 628 
categorical or dummy variable.    629 

Confirming optogenetic stimulation power between sessions 630 

We measured the power of the stimulation LED light path immediately before each behavioral 631 
session. We also measured relative laser excitation power across days by measuring light 632 
collected by the PMTs during stimulation. The optogenetic blanking circuit operates the LED 633 
illuminator during the flyback phase of scanning image acquisition, and the refractory time of the 634 
blanking circuit leaves an up to ~20 pixel artifact at the edges of the raw image stacks that 635 
scales with stimulation intensity. We used the mean pixel intensity change for this artifact to 636 
scale attenuated sessions and normalize stimulation powers across days (Figure S4), and our 637 
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results were unchanged with and without this scaling, confirming we accurately measured 638 
stimulation power.  639 

Analysis of visual response properties 640 

2-photon calcium imaging was performed directly before and after optogenetic learning to 641 
assess V1 neural responses at both training and control locations (an area with stable 642 
expression at least 200 µm away from training location). Visual stimuli were presented on a 643 
monitor positioned in front of the head-fixed animal at a 45˚ angle on the animal’s right side. The 644 
visual stimulus was either a full-field or Gabor patch (15˚ FWHM) drifting grating stimulus at 645 
100% contrast presented in 12 different directions (30˚ increments). Stimuli were presented for 646 
3 second durations (with 4 seconds between presentations) and were delivered in random order 647 
for a total of 25 repetitions of each stimulus direction. Gabor patch stimuli were displayed on the 648 
monitor at the visual field location corresponding to the retinotopic map at the training and 649 
control locations. 650 

To assess potential changes in visual response selectivity, direction and orientation selectivity 651 
indices were calculated for each identified cell (Kondo and Ohki, 2016; Swindale, 1998). First, 652 
tuning curves for each cell were calculated by averaging ΔF/F responses across the 3 second 653 
stimulus period across all repetitions for each of the 12 drifting grating directions. Direction 654 
selectivity indices (DSI) were measured as (Rpref - Roppo)/(Rpref + Roppo), where Rpref is the peak 655 
average response across the 12 directions and Roppo is the average response at the opposite 656 
direction 180˚ away from the preferred direction. Orientation selectivity indices (OSI) were 657 
measured by first averaging responses from opposite pairs of directions (e.g. 0˚ and 180˚, 45˚ 658 
and 225˚) and calculating (Rpref - Rortho)/(Rpref + Rortho), where Rpref is the peak average response 659 
across the 6 orientations, and Rortho is the average response of the orthogonal orientation 90˚ 660 
away from the preferred orientation. Last, a global OSI (gOSI) metric was calculated as 1 - CV 661 
(tuning curve) for each cell, where CV is the circular variance. 662 

Data availability 663 

The datasets generated during the current study are available from the corresponding author on 664 
reasonable request. Data with plotting code are available at: https://github.com/histedlab/ 665 
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Supplemental Figures 666 

 667 
Figure S1 - Training timeline for the optogenetic detection task, Related to Figures 1 and 2. (a) 668 
Schematic of 2-step protocol for behavioral training first on visual stimulus (step 1) then on optogenetic 669 
stimulation (step 2). The optogenetic stimulation location was aligned to the retinotopic location of the visual 670 
stimulation in V1. (b) Typical behavioral training schedule outlining the length of time for visual detection task 671 
proficiency and the steps to transition animals from the visual to the optogenetic stimulus (other statistics in 672 
Results). Visual detection proficiency was determined by animals achieving a stable psychometric threshold 673 
for three consecutive sessions (†). 2-photon imaging was conducted during the transition and step 2 sessions 674 
(*).   675 
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 676 

Figure S2 - Animals detect and use the optogenetic-induced cortical activity; they do not detect stray 677 
light with their retinas, Related to Figure 1 and 2. (a) Schematic of experiment where we moved the 678 
stimulation light spot a small amount and found dramatic changes in behavior. This implies that animals’ 679 
behavior depends on cortical neural optogenetic activation. Black circle indicates optogenetic training location 680 
in V1 (yellow outline). After collecting a psychometric curve at the training location, we moved the optogenetic 681 
stimulation ~500 µm along the cortex, both in the visual-map-defined azimuth and elevation meridians (red 682 
dotted lines). At each of the shifted locations, blue and magenta circles, behavioral performance dropped and 683 
was recovered when we moved the stimulation back to the training location. (b) Detection hit rates in a trained 684 
animal during a session where the optogenetic stimulation location was sequentially moved for 30 trials each 685 
to and from non-trained locations in V1 (black, training A: 90.0 CI [82.4 - 95.1]%, training B: 73.3 [63.5 - 686 
81.65]%, training C: 83.3 CI [74.5 - 90.1]%, blue, non-training azimuth change, 6.7 CI [2.7 - 13.4]%, magenta, 687 
non-training elevation change, 3.3 CI [0.7 - 9.0]%, hit rate ± Wald CI, N = 1).   688 
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 689 

Figure S3 - Imaging plane over sessions for optogenetic learning animals and mock behavioral 690 
control, Related to Figure 2. Genotypes and viral injections are listed for each animal tested. Imaging planes 691 
were aligned to reference GCaMP expressing cells (examples, white arrows) and vasculature patterns 692 
(examples, blue arrows) between sessions. All Red/Green images shown are 300 frame averages acquired 693 
with the same amplifier gain settings at 1000 nm excitation (~35-45 mW).  While some neurons differ from 694 
day to day, many of the same neurons were imaged across days.  695 
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 696 

Figure S4 - Optogenetic stimulation blanking artifact allows normalization of optogenetic power at the 697 
imaging plane between sessions, Related to Figure 2. (a) Optogenetic stimulation produces an ~20 pixel 698 
edge artifact that is visible during imaging, as the optogenetic light source offset lasts a few microseconds into 699 
each imaging line after horizontal flyback. (b) Intensity of the edge artifact scales with applied optogenetic 700 
stimulation power. (c) Plots of attenuation based on initial measurement of power out of the objective and 701 
normalized scaling for all animals and control. (d,e) Normalized scaling refines the position of psychometric 702 
curves but does not change the order. Normalized scaling does not alter the relationship between threshold 703 
powers (insets). (f,g) Normalized scaling does not alter the relationship between ΔF/F and power over 704 
sessions.   705 
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 706 

Figure S5 - V1 amplification effect, all sessions, all animals, Related to Figure 2. (a) Linear regression 707 
model for testing for amplification effects between behavioral sessions. OLS regression using all trials the 708 
stimulus was successfully detected (p = 1.73 x 10-12, N = 4 animals, 3209 trials, model: ΔF/F ~ C(animal) * 709 
C(session) + stimulation_power_mw + trial_number + constant, where C(x) signifies a categorical or dummy 710 
variable). Treating power as a continuous variable did not change the results. In the three training animals, 711 
lines fit on each session (colors) moved leftward as learning progressed, signifying amplification. (b) 712 
Comparison of amplification at each power across all behavioral sessions. Here, at many powers common 713 
across sessions (colors, lines), the slope of the corresponding line was positive, signifying amplification.   714 
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