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Abstract 

A characteristic feature of human cognition is our ability to ‘multi-task’ – 

performing two or more tasks in parallel – particularly when one task is well-

learned. How the brain supports this capacity remains poorly understood. Most 

past studies have focussed on identifying the areas of the brain – typically the 

dorsolateral prefrontal cortex – that are required to navigate information 

processing bottlenecks. In contrast, we take a systems neuroscience approach to 

test the hypothesis that the capacity to conduct effective parallel processing relies 

on a distributed architecture that interconnects the cerebral cortex with the 

cerebellum. The latter structure contains over half of the neurons in the adult 

human brain, and is well-suited to support the fast, effective, dynamic sequences 

required to perform tasks relatively automatically. By delegating stereotyped 

within-task computations to the cerebellum, the cerebral cortex can be freed up 

to focus on the more challenging aspects of performing the tasks in parallel. To 

test this hypothesis, we analysed task-based fMRI data from 50 participants who 

performed a task in which they either balanced an avatar on a screen (‘Balance’), 

performed serial-7 subtractions (‘Calculation’) or performed both in parallel 

(‘Dual-Task’).  Using a set of approaches that include dimensionality reduction, 

structure-function coupling and time-varying functional connectivity, we 

provide robust evidence in support of our hypothesis. We conclude that 

distributed interactions between the cerebral cortex and cerebellum are crucially 

involved in parallel processing in the human brain. 
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Introduction 

How do distributed whole-brain neural activity patterns give rise to human 

cognitive function? This question lies at the heart of modern psychology and 

neuroscience but, despite decades of neuroimaging experiments, we still do not 

have a clear answer. One reason is that conventional neuroimaging methods 

applied to data from cognitive tasks typically represent the brain as a static 

snapshot of independent parts or at best, ‘functionally connected’ pairs of brain 

regions1. Another important issue is that neuroimaging experiments are usually 

designed to identify regions that are most selectively associated with a specific 

task, but are less well-suited to distinguishing the presence of multiple 

concurrent cognitive constructs within the same task2. For these reasons, many 

leading theories in cognitive neuroscience have relied on relatively static 

descriptions of the ‘key brain regions involved’ in a particular task. 

 

In contrast to this view, there is evidence to suggest that the neural 

implementation of cognitive function in humans is far more dynamic and 

integrative3. In solving real world problems, we rarely isolate a specific cognitive 

capacity, such as focussed attention or resistance to distraction, but instead 

combine multiple cognitive constructs together in order to solve challenges in 

real-time4. Consider an experienced driver navigating heavy highway traffic in 

the pouring rain – the driver must remain focussed on the road, ensure the 

windshield wipers are on, regularly check their blind spots and also keep the 

pedals depressed at the appropriate level. This view of cognitive function in the 

real world is crucially dependent on the parallel processing of multiple distinct 

challenges, however for the reasons outlined above, we still lack a satisfying 

description of how the human brain is capable of supporting parallel processing. 

 

To facilitate complex coordinated behavioural responses underpinned by 

similarly complex spatiotemporal activity patterns, the brain may first learn to 

execute at least one of the computations automatically (i.e., without paying close, 

conscious attention to the completion of the task). To achieve this, the system 

must be capable of responding to specific contexts with a high degree of spatial 

and temporal precision5. Secondly, the responses must be relatively error-free 

and reliable. Finally, the system must be able to be triggered in the presence of a 
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specific stimulus or context without the need for deliberate attention. Without 

making the responses to different computational burdens relatively stereotyped 

in this fashion, performing two (or more) computations in parallel would require 

the prioritisation of one of the computations, likely to the detriment of the other 

task(s). In addition, any two tasks learned by the same network could potentially 

run into structural interference6, particularly if the networks required to 

complete the overlapping tasks use similar cortical regions.   

 

Crucially, the architecture of the cerebellum is ideally suited to fulfil each of the 

features required for automatic processing, both in the sensorimotor and 

cognitive domains7–10. First, the cerebellum is organized in parallel modules with 

different cerebrocortical regions8. In direct contrast to the basal ganglia, the 

internal circuitry of the cerebellar cortex consists of  sparse, distributed 

connectivity patterns that likely support dimensionality expansion11, rather than 

reduction (as is the case for the basal ganglia12,13). In addition, the glutamatergic 

outputs of the cerebellum through the deep cerebellar nuclei innervate ‘core’ 

thalamic nuclei14, which project to the granular layers of the frontal cortex15 in a 

much more precise manner than the ‘matrix’ thalamic nuclei. There is also 

evidence that cerebellar circuits can condition on their own outputs, and hence 

learn to execute specific sequences of effects based on triggering context signals16. 

Anatomically, the cerebellum is bidirectionally interconnected with multiple 

cerebrocortical areas, with major tracts connecting the dentate nucleus to the 

frontal and prefrontal cerebral cortex, along with other associative areas17,18. 

Functionally, the cerebellum plays a critical role in shaping complex functional 

network dynamics19, as evidenced by its role in both resting state20,21 and task-

related neuroimaging studies7,22–24. Based on these architectural features and 

relationships with complex, dynamic neuroimaging patterns, we hypothesized 

that connections between the cerebellar cortex and cerebellum are crucial for the 

facilitation of parallel processing. Using a set of approaches that include 

dimensionality reduction, structure-function coupling and time-varying 

functional connectivity, we provide robust evidence in support of our 

hypothesis. 
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Results 

To test this hypothesis, we reanalysed an existing fMRI dataset25 consisting of 50 

healthy individuals who performed a challenging ‘Dual-task’ in a 3T MRI 

scanner with their feet resting on a force-plate (Fig. 1A), and their vision oriented 

towards a 2-dimensional avatar that tilted forwards and backwards. There were 

three distinct trial types: during Balance blocks (Fig. 1B; blue), participants had to 

stabilize the slow fluctuations of the avatar using forward and backwards 

movements on the force-plate; during Calculation blocks (Fig. 1C; red), subjects 

had to track between 3-4 audible beeps, and then subtract that number, 

multiplied by 7, from a cue number presented prior to the trial; and during Dual-

task blocks (Fig. 1D; purple), subjects performed both trials simultaneously.  

 

Brain state signatures during dual-task performance 

First, we compared the BOLD patterns associated with the performance of the 

three different tasks blocks. Specifically, we created a difference map between 

the average group-level β parameters estimated from 400 cortical and 28 

cerebellar regions of interest for the Balance and Calculation trials (Δ). By 

comparing this difference map to the β map from the Dual-task trials – r(Δ,βDT) – 

we could determine whether performing the two tasks in tandem led to a brain 

map that was more or less like one or the other single tasks – a positive 

correlation with this map (λ1) was suggestive of the Dual-task reflecting the more 

challenging Calculation task; a negative correlation with the less challenging 

Balance task; and a null correlation with the notion of optimally splitting activity 

between the two (or a pattern orthogonal to the two single tasks). Consistent 

with the second option, we found that the low-dimensional signature of Dual-

task performance was more similar to the Calculation β map than the Balance β 

map (r = 0.192 ± 0.05, p = 6.5x10-5; Fig. 1F), suggesting that during the Dual-task 

trials, the cerebral cortex and cerebellum configured their activity to ensure the 

effective completion of the Calculation trials. 
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Fig 1 – Low-dimensional balance between Integration and Segregation during Dual-task 

performance. A) participants lay supine in an MRI scanner, with their legs controlling a force-

plate; B) Balance trials (blue) involved a dynamically moving avatar that the participant had to 

match; C) Calculation trials involved listening to a series of beeps, and then subtracting the 

multiple of 7 times the number of beeps from a cue number (red); D) Dual-task trials required 

performing both tasks, simultaneously (purple); E) The Calculation trials recruited increased 

BOLD in frontoparietal and visual cortices, along with right superior cerebellum, whereas 

Balance trials were associated with increased BOLD in lateral visual cortex, medial motor cortex 

and parietal operculum; F) the Dual-task β map across all 50 subjects was more similar to the 

Calculation β map (i.e., positive correlation with λ1) than the Balance β map (i.e., inverse 

correlation with λ1). *** - p < 0.001. 

 

 

Despite the brain states during Dual-task trials having more in common with the 

Calculation than the Balance trials, close examination of the RMS error of the 

Balance portion of the Dual-task trials suggests that subjects were performing the 

task as well as than when they performed the Balance trial on its own 

(Kolmogorov-Smirnov test: p = 0.358). So how was the brain configured on these 

Dual-task trials in order to mediate this stability? Based on previous empirical23 

and theoretical8,26,27 work, we hypothesized that the distributed architecture 

integrating the cerebral cortex and cerebellum should be important for mediating 

this putative parallel processing performance. One straight-forward prediction is 

that balancing multiple tasks at the same time should recruit more regions of the 

cerebellum, and hence that cerebellar blood flow should be more strongly 

associated with Dual-Task performance than either the Balance or Calculation 
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task alone. We found evidence to confirm this hypothesis – namely, a greater 

proportion of cerebellar regions were associated with a positive mean β value in 

Dual-Task as compared to Balance and/or Calculation trials (67.3% vs. 35.7% and 

39.3%, respectively; χ2 (2, N = 50) = 249.6, p < 1.0x10-4). 

 

Unique patterns of cortico-cerebellar functional connectivity during dual-task 

performance 

Given that the Dual-Task trials were more similar to Calculation trials than 

Balance trials (Figure 1F), how was the brain capable of supporting multiple 

tasks at the same time? We hypothesized that Balance, Calculation and Dual-task 

trials should have unique patterns of cortico-cerebellar functional connectivity 

that could allow the brain to support multiple channels of communication within 

the same system. To test this hypothesis, we calculated the time-varying 

functional connectivity between all cortical and cerebellar parcels using the 

Multiplication of Temporal Derivatives approach (window = 20 TRs28) and then 

contrasted the three trial types with one another. We observed robust differences 

between the three trial types (Fig. 2). For instance, Calculation trials (when 

compared to Balance trials) were associated with wide-spread cortico-cerebellar 

connectivity between lobule V and the majority of cortical networks, as well as 

more targeted connections between VIIIa/IX and primary sensorimotor networks 

(Fig. 2A). In contrast, Balance trials (when compared to Calculation trials) 

showed predominant increases in intermediate cerebellar lobules (e.g., Crus I 

and II) with higher-order cortical networks. In contrast, Dual-task trials were 

associated with heightened frontoparietal connections with intermediate 

cerebellar lobules, particularly Crus I and VIIIa, when compared to both Balance 

(Fig. 2B) and Calculation trials (Fig. 2C). 
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Figure 2 – Cortico-cerebellar task-based functional connectivity. A) patterns of task-based 

cortico-cerebellar functional connectivity during Calculation (red) when compared to Balance 

(blue) trials – upper: mean task-based connectivity strength for cerebral cortex and cerebellum; 

lower: mean task-based connectivity strength collapsed into 7 Yeo networks (columns) and 10 

average lobules (rows); B) similar maps for Dual-task (purple) versus Balance; C) similar maps 

for Dual-task versus Calculation. Note: results were consistent for left and right hemispheres. 

Key: VIS – visual; SM – somatomotor; DAN – dorsal attention network; VAN – ventral attention 

network; LIM – limbic network; CON – control network; DMN – default mode network. 

 

Having confirmed a robust relationship between the cerebral cortex and 

cerebellum during Dual-task performance, we next asked whether cortico-

cerebellar functional connectivity patterns differentiated between correct and 

error Dual-task trials. To test this hypothesis, we fit a General Linear Model to 

each Dual-task trial, independently, for each cortico-cerebellar time-varying 

connectivity score. We then split Dual-task trials into correct (accurate 

calculation and small RMS error [< 50% of population distribution]) and incorrect 

(inaccurate calculation, large RMS error [>50%] or both) trials and compared 

(using a set of independent-samples T-tests) the task-based functional 

connectivity between cortical and cerebellar parcels as a function of effective 

Dual-task performance. We conducted a permutation test (5,000 iterations) to 

determine the likelihood of each edge being distinct between the two groups by 

chance. To summarize these results, we computed the mean significant β-value 

for the functional connectivity between each cerebellar lobule (averaged across 
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hemispheres, and ignoring the connections of the vermis; from the cerebellar 

SUIT atlas29) and each of 7 pre-identified cortical networks (the Yeo 7 parcellation 

from the 400-region Schaefer atlas30; Fig 3). We found a robust increase in task-

based functional connectivity between the ventral attention network (VAN) and 

lobules Crus II, VIIb, VIIIa and VI (Fig. 3), as well as more distributed 

connections between lobule X and multiple cortical sub-networks. In contrast, 

Crus I was relatively functionally disconnected from all cortical networks (except 

VAN) during effective dual-task performance, which is consistent with known 

patterns of cerebellar lesion-related cognitive impairments31.  

 
Fig. 3 – Increased cortico-cerebellar task-based functional connectivity associated with 

successful Dual-Task performance. Left: Key cortical and cerebellar regions with heightened 

task-based functional connectivity during Dual-task trials with correct vs. incorrect answers. 

Right: Mean significant β-value (cortical sub-network [Yeo 7 atlas] vs. cerebellar lobule [SUIT 

atlas]) associated with task-based functional connectivity values for correct vs. incorrect Dual-

Task performance (p < 0.001; random permutation test).  Key: VIS – visual; SM – somatomotor; 

DAN – dorsal attention network; VAN – ventral attention network; LIM – limbic network; CON – 

control network; DMN – default mode network. 

 

Dual-task performance balances network integration and segregation 

One way in which the distributed cortico-cerebellar architecture could facilitate 

effective parallel processing is by striking an effective balance between 

integration and segregation32–34. In previous work, we have used a combination 

of time-varying functional connectivity and a topological measure that quantifies 

network-level integration – the Participation Coefficient (PC)35 – to demonstrate 

that the systems-level network structure of functional connectivity changes 

during task performance, with cognitively challenging tasks requiring higher 

integration than relatively simple tasks35. From this, we predicted that the 
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Balance task should be relatively segregated (i.e., low PC), the Calculation task 

should be relatively integrated (i.e., high PC) and the Dual-task trials should 

strike a balance between the two extremes (i.e., intermediate PC). Using our 

standard time-varying analysis (see Methods), we observed robust evidence for 

our predictions (Fig. 4; F2,147 = 3.41; p = 0.036). In addition, although the Dual-task 

topological pattern was positively correlated with the average of Balance and 

Calculation (r = 0.464; p < 0.001), it was not a direct super-position of the two 

maps, suggesting topological reconfiguration during the different task states. 

Together, these results confirm that parallel processing in the brain is supported 

by a topological balance between integration and segregation. 

 

 
Figure 4 – Parallel processing balances integration and segregation. Balance trials were 

associated with relative Segregation (low PC; blue), Calculation trials with relative Integration 

(high PC; red) and Dual-task trials with a balance between Integration and Segregation 

(intermediate PC; purple) – F2,147 = 3.41; p = 0.036. Thick lines represent the median value for each 

group. 

 

Cortico-cerebellar activity flow mapping 

The input and output streams of cerebral cortex and cerebellum interact via 

distinct white matter pathways. Importantly, while the structural connections 

between these two structures are reciprocal, they are imbalanced17,18 – different 

pathways exist from the cortex to the cerebellum (and vice versa). Specifically, 

thick-tufted layer V pyramidal neurons in the deep layers of the cerebral cortex 
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send projections to the mossy fibre pathway of the cerebellum (via the pontine 

nuclei), thus forming the Cortico-Ponto-Cerebellar (CPC) tract (Fig. 5A). In 

contrast, the cerebral cortex receives feedback from the cerebellum via the deep 

cerebellar nuclei, which project via the ‘Core’ nuclei of the thalamus – i.e., the 

Cerebello-Thalamo-Cortical (CTC) tract (Fig. 5B). Plastic changes between the 

mossy fibre pathway and the Purkinje cells of the cerebellar cortex are proposed 

to act as a major site for the refinement of automatized behaviour10,26,27,36 and 

hence, the capacity to perform multiple tasks simultaneously. From our 

observations that the timeseries of the cerebral cortex and cerebellum were 

highly coordinated during Dual-task behaviour, we hypothesized that the 

specific patterns of BOLD activity in both the cortex and cerebellum should be 

related to the intersection between prior BOLD activity in the cerebellum (via the 

CTC) and cerebral cortex (via the CPC). 

 

 
Fig. 5 – Cortico-cerebellar Structure-Function Mapping across Trial types. Two different major 

tracts connecting the cerebral cortex and cerebellum: the Cortico-Ponto-Cerebellar (CPC; orange; 

A) tract sends projections from the cortex via the pontine nuclei into the mossy fibres of the 

cerebellum, and the Cerebello-Thalamo-Cortical (CTC; green; B) tract derives from the deep 

cerebellar nuclei, which project back via the core thalamic nuclei to the cerebral cortex; C) 

normalized (in log10 of white matter connectivity) map of projections from the cerebral cortex to 

cerebellum via CPC (orange); D) normalized (in log10 of white matter connectivity) map of 

projections from cerebellum to the cerebellar cortex via CTC (green); E) activity flow mapping37 

between cerebellar BOLD patterns predicted from CPC tract in Balance (Bal; blue), Calculation 

(Calc; orange) and Dual-Task (DT; purple) trials (circles) – see Methods for details; F) the same 
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for cortical BOLD patterns predicted from the CTC tract (squares). All activity flow map 

correlations were greater than permuted null levels. 

 

To test this hypothesis, we adapted the activity flow mapping approach37 to 

incorporate the structural connectivity between the cortex and cerebellum. 

Specifically, we extracted structural connectivity weights for both the 

contralateral CPC (Fig. 5C; orange) and CTC (Fig. 5D; green) tracts17 from a 

cohort of 28 healthy individuals from the Human Connectome Project17 (i.e., not 

the same individuals that performed the parallel processing task). While both 

tracts are over-expressed in the frontal cortices, there were relatively more CPC 

projections from the parietal lobes and more CTC projections that innervate the 

frontal cortex, which is consistent with known anatomical projection 

patterns8,26,38,39. A parsimonious interpretation of these data is that the frontal 

cortex benefits from the information provided to the cerebellum by posterior 

cortices that process potential opportunities for action (also known as 

affordances40). 

 

If cortico-cerebellar communication is required for effective Dual-task 

performance, then blood flow within either cortex or cerebellum during Dual-

task trials should be predictive of subsequent blood flow (assuming sufficient 

delay) within the cortical (or cerebellar) regions to which they are connected by 

white matter projections. To create an estimate of what these predicted BOLD 

responses should be, we created two template maps – one for predicted 

cerebellar activity (estimated cerebellar activity: ACTX = WCBM . CPC) and one for 

predicted cortical activity (estimated cortical activity: ACBM = WCTX . CTC) – by 

multiplying the cortico-cerebellar structural connectivity matrices with the pre-

processed BOLD pattern observed during the three different trial types. We then 

correlated these prediction vectors with the actual BOLD patterns in the 

respective regions. If the observed patterns of activity were similar, we can 

conclude that BOLD activity patterns were intimately related to the reciprocal 

structural connections between the cerebral cortex and cerebellum. 

 

Across all three trial types, both cortico-cerebellar (via CPC; Fig. 5E, circles) and 

cerebello-cortical (via CTC; Fig. 5F, squares) activity flow patterns were 

significantly greater for matched vs. un-matched data (all p < 0.05), suggesting 
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that functional activity was coordinated by connections both from the cerebral 

cortex to the cerebellum (i.e., CPC) and vice versa (i.e., CTC) across all tasks. 

Interestingly, despite the consistent positive relationships, cerebello-cortical 

connections (i.e., CTC) were more robustly able to predict subsequent cortical 

patterns than cortico-cerebellar connections (i.e., CPC), suggesting that the 

feedback from the cerebellum to the cerebral cortex was more crucial for task 

performance. Finally, we found that the match between ACTX/ACBM and the raw 

data was greater in correct versus incorrect Dual-task trials for both cerebral 

cortex (T = 2.397, p = 0.017) and cerebellum (T = 2.049, p = 0.041), further 

confirming the importance of cortico-cerebellar interaction for parallel 

processing. 

 

Discussion 

In this study, we used systems-level neuroimaging analysis to demonstrate that 

robust interactions between the cerebral cortex and cerebellum are associated 

with effective Dual-task performance. We hypothesized that, through distributed 

white matter pathways that interconnect these major cortical systems, the brain 

can differentiate different task contexts so as to effectively maintain the 

performance of two computational tasks in parallel. To test this hypothesis, we 

analysed BOLD data from the cerebral cortex and cerebellum, and in doing so 

demonstrated that Dual-Task performance recruited heightened cerebellar 

activity (Figure 1) and functional connectivity between the cerebral cortex and 

cerebellum (Figures 2 and 3) that was linked to the balance between integration 

and segregation (Figure 4) and related to the structural connections between the 

cerebellum and cerebral cortex (Figure 5). Together, these results highlight the 

importance of systems-level interactions in the manifestation of complex 

cognitive capacities. 

 

Our results clearly demonstrate that models that incorporate the cerebellum and 

its massive, high-dimensional architecture provide a more parsimonious account 

for how the brain can balance the challenges inherent with parallel processing8,26. 

The connectivity between the cortex and cerebellum is optimally set-up to fulfil 

this capacity. Specifically, the major output of the cerebral cortex – layer V PT-

type pyramidal neurons – provides the primary afferent input to the cerebellar 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2022. ; https://doi.org/10.1101/2022.07.10.499497doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.10.499497
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14

cortex (i.e., granule cells), by way of the pontine nuclei8,26,41. Following a massive 

dimensionality expansion that has been argued to facilitate pattern separation11, 

the outputs of the cerebellum (the deep cerebellar nuclei) send large 

glutamatergic projections to the ventral tier of the thalamus39, wherein they 

innervate the cerebral cortex. The thalamic targets of the cerebellum then go on 

to drive activity in the cerebral cortex, typically in a high-frequency, precise 

fashion42 that we have argued to form the basis of relatively automatic modes of 

behaviour26,27. Here, we extend these functional neuroanatomical principles to 

incorporate the completion of challenging, dual tasks. We anticipate that similar 

patterns will be observed in future experiments that interrogate different types of 

dual tasks, particularly those in which one (or both) of the tasks is capable of 

relative automaticity. Whether such automaticity benefits extend to purely 

perceptual tasks, such as the attentional blink43, is an interesting open question 

for future work. 

 

The topological signature of functional networks estimated from BOLD data 

have previously been linked to effective performance on cognitive tasks. For 

instance, an integrated brain has been linked to the completion of a range of 

complex tasks, such as those that probe working memory35,44,45, logical 

reasoning46 and attentional tracking47,48. In contrast, a relatively segregated 

functional network has been linked to relative sensorimotor automaticity32,33, as 

well as to attentional vigilance49. Our results are consistent with the spectrum 

implied by these previous results – the Balance task, which presumably tapped 

into relatively well-learned behaviours, was associated with a segregated 

functional network; and the Calculation task, which likely required more 

focussed, flexible attention, was associated with a relatively integrated network. 

Interestingly, although the Dual-task trials were arguably more challenging than 

the Calculation trials on their own, the topology of the network actually 

demonstrated a balance between integration and segregation, suggesting that 

performing tasks in parallel requires an ability to avoid topological extremes, 

perhaps so as to maximise information processing capabilities50. In addition, 

there are theoretical reasons to believe that the finite nature of biological 

networks may imbue specific limits on the number of possible tasks that can be 

run in parallel, although we expect that the high-dimensional architecture of the 
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cerebellum11 will likely boost this capacity, particularly as a function of 

experience26,27. Precisely which systems in the brain help to control this balance 

remains an open question, however there is intriguing results to suggest that the 

neuromodulatory system may play a crucial role in this process26,51,52. 

 

Systems-level neuroimaging analysis provides an integrated perspective of 

cognitive capacities33, however BOLD dynamics are necessarily indirect – i.e., 

they don’t measure neural activity directly, but rather filtered through the low-

dimensional lens of perfusion53,54. While BOLD signal remains a robust 

measurement for neural signalling55,56, it only reveals a part of how the brain 

functions. This is particularly true for the cerebellar cortex, whose complex, 

convoluted anatomy8,57 and idiosyncratic firing properties16,58,59 render simple, 

linear readouts of neural activity from BOLD problematic. Specifically, there is 

evidence to suggest that BOLD measurements in the cerebellar cortex 

predominantly track activity in the mossy fibre pathway (via the CPC)60,61, 

whereas outputs from the Purkinje cells (via the CTC) are more difficult to 

characterize with BOLD signalling62,63. While this does suggest caution with 

respect to the interpretation of our results, it makes the presence of robust 

cerebello-cortical activity flow mapping via the CTC (Figure 5F) all the more 

fascinating of a result, as it suggests that the fate of the Purkinje cells is relatively 

sealed by the specific pattern of mossy fibre inputs that they received, although 

we anticipate that this mapping is likely augmented by the process of learning – 

i.e., it should be less profound when facing highly novel task contexts. 

Irrespective, we hope that by consolidating analysis from multiple neuroimaging 

techniques that we have provided a robust illustration of changes to cortico-

cerebellar circuits during a parallel processing task. 

 

The capacity to perform tasks in parallel clearly scales positively with experience. 

In the future, it will be fascinating to examine the interactions between the 

cerebral cortex and cerebellum as individuals learn to perform individual tasks 

to relative automaticity. There is robust empirical previous work linking 

cerebellar output with highly-overtrained behaviours in rodents64. Similar 

arguments have been made when analysing automaticity in the performance of 

challenging cognitive tasks23. Interestingly, there is also evidence suggesting that, 

over the course of learning a simple sensorimotor task, the brain shifts from a 
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relatively integrated to a segregated architecture32,33. This suggests a novel 

prediction: the extent to which a particular task has been well-learned will lead 

to relative segregation of the topological network signature of the brain, which in 

turn will make the task easier to automatise, and hence to combine successfully 

with other, more challenging dual tasks. 

 

 

Conclusions 

Here, we have demonstrated that dynamic interactions between the cerebral 

cortex and cerebellum are critically related to the performance of a challenging 

dual-task. Future research is required to determine whether similar principals 

are related to parallel processing of other simultaneous cognitive and perceptual 

challenges, as well as across distinct spatiotemporal scales.  
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Methods 

Experimental setup 

The functional data from this study arose from a re-analysis of a previously 

published dataset25 – here, we will include the minimal information required to 

interpret the results, and point the interested reader to the original study for full 

details. Participants lay supine in the MRI scanner with their feet against a 

custom-made force platform attached to the MRI bed (Fig 1A; sample frequency 

of 100 Hz), with the position of the force platform was adjusted to subject height. 

A four-button device was placed underneath the right hand for the calculation 

task. The tasks were projected onto a white screen placed at the head of the 

scanner. Participants could see the screen via a mirror attached to the head coil. 

 

During the Balance task, an avatar in the shape of a woman was displayed on the 

screen. The avatar swayed forward and backward. Participants were instructed 

to try to keep the avatar in the upright position by increasing or decreasing the 

level of plantar flexion force measured by the load cell. As in normal standing, 

increasing the plantar flexion force led to a backward sway (and v.v.). At the start 

of every balance condition, participants were given two seconds to bring the 

avatar in the upright position. After these two seconds, a disturbance signal was 

added, causing the avatar to sway forward and backward. To keep the avatar 

upright, participants had to counteract these disturbances. The disturbance 

signal was made by combining fifteen sinusoidal signals with random phases 

and with frequency characteristics based on an average frequency spectrum of 

centre of pressure movement during upright standing (0.025–1 Hz), measured in 

ten young and ten old adults. The maximum amplitude of the disturbance was 

±30°. The error for each Balance trial was created by calculating the sum of the 

Root Mean Squared error between the optimal balanced avatar (i.e., 900) and the 

position of the actual avatar. Trials were subsequently median split to identify 

‘good’ and ‘bad’ balance trials. 

 

The Calculation task consisted of serial subtractions with increments of seven – 

at the beginning of each trial, a number between 50 and 100 was projected on the 

screen for two seconds, after which a plus sign was displayed on the screen and a 

beep was generated every 3 to 4 seconds through an MRI compatible headphone 
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(MR confon Optime 1, Magdeburg, Germany), with a total of four beeps per trial. 

Participants were instructed to subtract the number ‘7’ with every beep. At the 

end of each trial, four answer possibilities were displayed on the screen: one 

indicating the correct answer, two erroneous answers, and the option that none 

of the other answers is correct. Participants indicated which answer they thought 

was correct by pressing the corresponding button of the four-button device. 

 

During the Dual-task condition, subjects performed the Balance and Calculation 

tasks simultaneously. The distribution of RMS errors in the Balance trials and 

Dual-task trials were compared using a Kolmogorov-Smirnov test. 

 

An fMRI block-design was used to alternate between the three conditions: 

Balance, Calculation, and Dual-task. Every participant performed twelve blocks, 

each block including one trial of each condition (thus three trials), with the order 

of the conditions randomized, both across blocks and between subjects. At the 

end of every block a 15-second rest period was given in which the participants 

fixated their gaze on a plus sign. 

 

 

MRI acquisition and pre-processing 

Brain imaging was performed on a 3-T SIEMENS Magnetom Skyra System 

(Siemens, Erlangen, Germany) with a 20-channel head/neck coil. For functional 

scans, a T2*-weighted multiband gradient echo-planar imaging (EPI) sequence 

was used (TR = 700 msec, TE = 30 msec, flip angle = 55°, 48 axial slices, slice 

thickness = 3 mm, no gap, in-plane resolution 3x3 mm)65. After the functional 

scanning session, a high-resolution magnetization prepared rapid acquisition 

gradient echo (MPRAGE) T1-weighted sequence (TR = 2,100 msec, TE = 4.6 msec, 

TI = 900 msec, flip angle = 8°, 192 contiguous slices, voxel resolution 1 mm³, FOV 

= 256x256x192 mm, iPAT factor of 2) was obtained in sagittal orientation. These 

anatomical scans were used to co-register the functional runs using SPM 12. The 

anatomical scan was segmented using the SPM tissue probability maps. All 

functional scans were co-registered to the anatomical scan and normalized to the 

Montreal Neurological Institute (MNI) template brain via the forward 

deformations revealed by the segmentation.  
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Brain parcellation 

Following pre-processing, the mean time series was extracted from 400 pre-

defined cortical parcels using the Schaefer atlas30 and 28 pre-defined cerebellar 

parcels from the SUIT atlas29 (cerebellar nuclei were not included). The mean 

BOLD signal intensity from each region was extracted and then used for 

subsequent analyses. 

 

 

General Linear Model and Principal Component Analysis 

A general linear model was fit to pre-processed, parcellated BOLD data with 

separate terms modelling each trial type (i.e., Balance, Calculation and Dual-

task). The proportion of cerebellar regions associated with positive cerebellar β-

values was compared across Balance, Calculation and Dual-task trials using a χ2 

test with degrees of freedom = (rows – 1) x (columns – 1) = (3-1) x (2-1) = 2. 

 

The average β-value for the Balance and Calculation trials were demeaned and 

analysed with a Principal Component Analysis. The coefficient of the leading 

principal component was correlated with the mean β map from the Balance and 

Calculation trials to demonstrate its utility as a linear decoder between Balance 

and Calculation. The dot-product between the Dual-task β map for each subject 

and the leading principal component was calculated, and then subjected to a 1-

sample t-test to determine whether the loading was more similar to Calculation 

(positive loadings) or Balance (negative loadings). 

 

 

Time-varying functional connectivity  

We used the multiplication of temporal derivatives (MTD) approach28 to 

calculate time-resolved dynamic functional connectivity between the selected 

ROIs; code is freely available at https://github.com/macshine/coupling/) with a 

window size of 20 TRs. For each node, n, with time points, t, a vector of t-1 

temporal derivatives was calculated and normalized (temporal derivatives 

divided by the standard deviation of temporal derivatives, σ). Then, we created a 
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matrix of functional coupling between the ith and jth nodes for each time point, by 

multiplying the temporal derivatives of each pair of nodes across each time 

point.  

 

������ � �

�
∑ ����� � ����


�����
� ����




���
�      [1] 

 

where dt is the first temporal derivative of the ith and jth time-series, and σ 

standard deviation of the temporal derivative, w is the window length of the 

simple moving average28. The MTD values for the cortico-cerebellar system (i.e., 

400 x 28 = 11,200 edges) were entered into a similar General Linear Model to the 

cortico-cerebellar BOLD values, with a permutation test (5,000 iterations) used to 

test for statistical significance. 

 

 

Modularity Maximization 

The Louvain modularity algorithm from the Brain Connectivity Toolbox (BCT66; 

http://www.brain-connectivity-toolbox.net) was used on the neural network 

edge weights to estimate community structure. The Louvain algorithm 

iteratively maximizes the modularity statistic, Q, for different community 

assignments until the maximum possible score of Q has been obtained (see 

Equation 2). The modularity of a given network is therefore a quantification of 

the extent to which the network may be subdivided into communities with 

stronger within-module than between-module connections. 

 

  � � �

��
∑ ����

� 	 
��
��������� 	 �

����	
∑ ����

� 	 
��
���������         [2] 

 

where v is the total weight of the network (sum of all negative and positive 

connections), wij is the weighted and signed connection between regions i and j, 

eij is the strength of a connection divided by the total weight of the network, and 

δMiMj is set to 1 when regions are in the same community and 0 otherwise. ‘+’ and 

‘–‘ super-scripts denote all positive and negative connections, respectively.  

 

For each epoch, we assessed the community assignment for each region 500 

times and a consensus partition was identified using a fine-tuning algorithm 
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(BCT). We calculated all graph theoretical measures on un-thresholded, 

weighted and signed connectivity matrices66. The stability of the γ parameter was 

estimated by iteratively calculating the modularity across a range of γ values 

(0.5-2.5; mean Pearson’s r = 0.859 +-0.01) on the time-averaged connectivity 

matrix for each subject – across iterations and subjects, a γ value of 1.0 was found 

to be the least variable, and hence was used for the resultant topological 

analyses. 

 

Participation Coefficient 

The participation coefficient, PC, quantifies the extent to which a region connects 

across all modules (i.e., between-module strength) and has previously been used 

to successfully characterize hubs within brain networks7,35. The PC for each 

region was calculated within each temporal window using Equation 3, where kisT 

is the strength of the positive connections of region i to regions in module s at 

time T, and kiT is the sum of strengths of all positive connections of region i at 

time T. Negative connections were discarded prior to calculation. The 

participation coefficient of a region is therefore close to 1 if its connections are 

uniformly distributed among all the modules and 0 if all of its links are within its 

own module. 

    PC � 1 	 ∑ ���
�

���
�

�
��

���               [3] 

 

The participation coefficient for each parcel was compared across Balance, 

Calculation and Dual-task trials using paired t-tests (FDR q = 0.05). 

 

 

Diffusion MRI Analysis 

The minimally processed HCP diffusion datasets (which included correction for 

motion, susceptibility distortions, gradient non-linearity and eddy currents) were 

subject to additional image processing, which multi-shell multi-tissue 

constrained spherical deconvolution to generate the fibre orientation distribution 

(FOD) in each voxel67–69. These steps were implemented in accordance with 

previous work70 and were performed using the MRtrix software package 

(http://www.mrtrix.org71,72). 
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The T1-weighted images were used to generate a so-called ‘five-tissue-type’ 

(5TT) image73 using FSL74; the 5TT image classifies the voxel into one of 5 tissue 

types: cortical grey matter, sub-cortical grey matter, white matter, cerebrospinal 

fluid, and ‘5th type’ (e.g., pathology). The FOD data and the 5TT image were used 

to generate 120 million streamlines using the anatomically constrained 

tractography (ACT) framework73, using dynamic and the 2nd-order Integration 

over Fibre Orientation Distributions (iFOD2)71 probabilistic fibre-tracking 

algorithm, using default MRtrix parameters, with the exception of FOD cutoff 

0.06, maximum length 250 mm, step size 1 mm, and backtrack specified. This set 

of streamlines is referred to as the whole-brain-tractogram thereafter. 

 

The cerebello-thalamo-cortical (CTC) and cortico-ponto-cerebellar (CPC) tracts 

were extracted from the whole-brain-tractogram by using contralateral cerebral 

and cerebellar cortices, cerebellar peduncles, contralateral red nuclei, and thalami 

as regions of interest (see 17,18 for more details). To define the strength of the 

cerebellar connectivity with each of brain parcel, the log10 of the number of 

streamlines was used to weight the CTC and CPC tracts75,76. 

 

 

 

Cortico-cerebellar activity flow mapping 

To determine whether cortico-cerebellar interactions could transform cortical or 

cerebellar task-evoked activity into respective cerebello-cortical task activity, we 

modified the activity flow mapping procedure37 to incorporate estimates of 

cortico-cerebellar (CPC) and cerebello-cortical (CTC) structural connectivity. 

Specifically, for each trial type, block and subject, we calculated:  

 

      A��  �  ����
�  · ���           [4] 

                                                      A���  �  ���
�  · ���           [5] 

 

where �� is the evoked response estimate for every cortical (WCTX) or cerebellar 

(WCBM) parcel, CPC and CTC are the structural connectivity matrices described 

above, and A�� and A��� are the predicted activity pattern for each subgroup.  
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For each trial type, block and subject, the predicted cortical and cerebellar 

activity patterns were then empirically compared to the observed activity 

patterns using Pearson correlations. A series of t-tests were used to compare the 

Pearson’s correlation loadings, with the non-matching predictions (e.g., using the 

cortical BOLD for Balance trials to predict cerebellar BOLD for Calculation trials) 

used a simple null model that contained all the same spectral features but 

spatiotemporal sequences that did not match the data. Finally, we created 

separate null distributions following a random permutation77 of both CPC and 

CTC, separately (each with 5,000 iterations). 
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Supplementary Figures 

 
Figure S1 – Correlation between Balance and Calculation maps and leading principal 

component. A) Loadings of the principal eigenvector (λ1) in both cerebral cortex (left) and 

cerebellum (right); F) scatter between mean Balance β map and λ1 (r = -0.532; pSPIN = 0.002); G) 

scatter plot between the mean Calculation β map and λ1 (r = 0.514; pSPIN < 0.0001). 
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