New Results
CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning
View ORCID ProfileAlex Chklovski, View ORCID ProfileDonovan H. Parks, View ORCID ProfileBen J. Woodcroft, View ORCID ProfileGene W. Tyson
doi: https://doi.org/10.1101/2022.07.11.499243
Alex Chklovski
1Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
Donovan H. Parks
2Donovan Parks, Bioinformatic Consultant, Castlegar, British Columbia, Canada
Ben J. Woodcroft
1Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
Gene W. Tyson
1Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
Posted July 11, 2022.
CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning
Alex Chklovski, Donovan H. Parks, Ben J. Woodcroft, Gene W. Tyson
bioRxiv 2022.07.11.499243; doi: https://doi.org/10.1101/2022.07.11.499243
Subject Area
Subject Areas
- Biochemistry (13661)
- Bioengineering (10392)
- Bioinformatics (33066)
- Biophysics (17048)
- Cancer Biology (14114)
- Cell Biology (20019)
- Clinical Trials (138)
- Developmental Biology (10829)
- Ecology (15961)
- Epidemiology (2067)
- Evolutionary Biology (20289)
- Genetics (13372)
- Genomics (18597)
- Immunology (13700)
- Microbiology (32056)
- Molecular Biology (13352)
- Neuroscience (69851)
- Paleontology (522)
- Pathology (2176)
- Pharmacology and Toxicology (3729)
- Physiology (5841)
- Plant Biology (11985)
- Synthetic Biology (3358)
- Systems Biology (8145)
- Zoology (1840)