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Orthogonal sequence library design is an essential task in bio-1

engineering. Typical design approaches scale quadratically in2

the size of the candidate sequence space. As such, exhaus-3

tive searches of sequence space to maximize library size are4

computationally intractable with existing methods. Here, we5

present SeqWalk, a time and memory efficient method for de-6

signing maximally-sized orthogonal sequence libraries using the7

sequence symmetry minimization heuristic. SeqWalk encodes8

sequence design constraints in a de Bruijn graph represen-9

tation of sequence space, enabling the application of efficient10

graph traversal techniques to the problem of orthogonal DNA11

sequence design. We demonstrate the scalability of SeqWalk by12

designing a provably maximal set of > 106 orthogonal 25nt se-13

quences in less than 20 seconds on a single standard CPU core.14

We additionally derive fundamental bounds on orthogonal se-15

quence library size under a variety of design constraints.16

Correspondence: py@hms.harvard.edu17

Introduction18

Orthogonal DNA sequence libraries are sets of DNA se-19

quences designed to have minimal crosstalk, which we20

broadly define as interaction with “off-target” sequences21

(Supplementary Note 1). In DNA-based biotechnologies, or-22

thogonal sequences are widely used as cellular or molecular23

identifiers. For example, orthogonal sequences are used to24

barcode protein targets in DNA-based bioimaging (1), to la-25

bel RNA molecules in individual cells for single-cell studies26

(2), and to program the assembly of components in a synthe-27

sis process (3), among many other applications (4–7).28

The number of addressable features in these methods is de-29

pendent on the size of the orthogonal DNA sequence library30

that is used. For example, the multiplexity of DNA-based31

multiplexed epitope imaging is constrained by the number32

of orthogonal barcode sequences (1). Despite this, orthog-33

onal DNA sequence library design methods are typically ad34

hoc, and do not yield optimal or maximally-sized sets of se-35

quences. This can ultimately limit the scalability of the in-36

tended experimental application.37

Existing methods for orthogonal DNA sequence library de-38

sign typically use the following approach: First, a set of S39

candidate sequences is selected. Then, each pair of sequences40

in the candidate pool is compared to estimate crosstalk, re-41

sulting in an S×S crosstalk matrix which is used to select42

a subset of sequences with the desired degree of orthogonal-43

ity (4, 6, 8). This approach requires a number of pairwise44

comparisons that scales quadratically in the number of can-45

didate sequences, and becomes practically infeasible when 46

the candidate sequence space is large. For example, screen- 47

ing the entire space of possible 25mers would require∼ 1030
48

crosstalk comparisons, which even at 1 nanosecond per com- 49

parison would take over 105 times the age of the known uni- 50

verse. As a result, existing methods for large orthogonal se- 51

quence library design search only a small portion of sequence 52

space (4, 6), precluding the design of maximally-sized li- 53

braries. Furthermore, large library design tasks have required 54

high performance computing resources (6). 55

Sequence-based heuristics, such as sequence symmetry min- 56

imization (SSM), can be used to predict the orthogonality 57

of a set of sequences. A set of sequences is considered to 58

satisfy SSM for length k if no subsequence of length k ap- 59

pears more than one time in the set. SSM and closely related 60

heuristics have been widely used for the design of orthogonal 61

sequence libraries, with extensive experimental validation in 62

several application contexts (3, 6, 9, 10). 63

In this work we develop a scalable computational tool which 64

enables the design of maximal orthogonal sequence libraries 65

that minimize fundamental limits on experimental methods. 66

We use a de Bruijn graph representation of SSM constraints, 67

which allows the application of efficient and theoretically 68

tractable algorithms. Using our graph-theoretic approach, we 69

design orthogonal 25nt sequence libraries of unprecedented 70

size (> 106 sequences) in less than one minute on a single 71

standard CPU core, with provable guarantees of maximality 72

and predicted orthogonality using SSM. The tools and the- 73

ory presented in this work can be used to guide the design of 74

DNA-barcoded molecular systems and to maximize the scal- 75

ability of DNA engineering-based biotechnologies. 76

Results 77

k-mer graphs for orthogonal sequence design. We have 78

developed SeqWalk, a computational tool for designing max- 79

imal orthogonal sequence libraries through the application of 80

efficient graph-based algorithms. 81

The key observation underlying SeqWalk is that orthogo- 82

nality constraints in sequence design problems can be natu- 83

rally encoded in de Bruijn graph representations of sequence 84

space. De Bruijn graphs, also known as k-mer graphs, are 85

sequence representations that have been well studied in dis- 86

crete mathematics (11–13). A k-mer is a length k sequence. 87

A k-mer graph has all possible k-mers as nodes, and edges 88

between k-mers that overlap by k−1 symbols. In particular, 89

if a k-mer k1 can be transformed into a k-mer k2 by remov- 90
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Fig. 1. Workflow of graph-based sequence design algorithm. (1) Select length of desired sequences L, length of prevented substrings (SSM constraint) k, and allowed
alphabet a. (2) Represent sequence space using a k-mer graph. (3) Select a random Hamiltonian path in k-mer graph. (4) Partition the selected Hamiltonian path into
fragments with L−k+ 1 nodes. (5) Map fragments to corresponding sequences.

ing its first symbol and appending a symbol, then there is a91

directed edge from k1 to k2.92

On a k-mer graph, a length L sequence can be represented as93

a path over L−k+ 1 nodes. The traversed nodes will corre-94

spond to each k-mer that appears in the sequence. A set of se-95

quences that can be represented as non-intersecting paths on a96

k-mer graph share no common k-mers, and thus satisfy SSM97

for the corresponding k. This points toward a method for98

generating sequences that implicitly satisfy SSM for length99

k: one can simply select several non-intersecting paths on100

a k-mer graph. One way to produce non-intersecting paths101

on a graph is to take a single self-avoiding walk, and then102

partition this walk into multiple non-intersecting paths. The103

longest possible self-avoiding walks on a graph are Hamil-104

tonian paths, which visit every node of the graph exactly105

one time. A partitioned Hamiltonian path will result in se-106

quences that fully occupy k-mer space, and thus yield maxi-107

mally sized orthogonal sequence libraries.108

In SeqWalk, we apply a recently discovered mathemati-109

cal technique for traversing de Bruijn graphs, which yields110

Hamiltonian paths in O(1) time and memory per node (13),111

to efficiently and scalably design orthogonal sequence li-112

braries. The main SeqWalk algorithm is remarkably simple:113

our implementation requires less than 100 lines of code, in-114

cluding output formatting (Supplemental File 1).115

Performance benchmarks. To understand the practical rel- 116

evance of the high efficiency of SeqWalk, we perform bench- 117

mark analysis against a traditional pairwise comparison ap- 118

proach for designing SSM satisfying sequence libraries, 119

which is theoretically equivalent to the network elimina- 120

tion algorithms used in existing orthogonal sequence design 121

methods (Supplemental File 2) (4, 6). We find that SeqWalk 122

produces a larger number of sequences in less time than con- 123

vergence of the pairwise comparison method for every tested 124

design problem, with performance gains empirically increas- 125

ing for design tasks of increasing complexity (Fig. 2). In 126

the case of SSM k = 8 for 20nt sequences, SeqWalk pro- 127

duces more than 10 times as many orthogonal sequences as 128

the pairwise algorithm, in approximately 1% of the computa- 129

tion time (Supplemental File 2). 130

The largest published library of orthogonal sequences con- 131

sists of approximately 2.4 ∗ 105 25nt sequences satisfying 132

SSM for k = 12. The library was designed with a pairwise 133

sequence comparison algorithm, and used high performance 134

computing tools (6). Using SeqWalk, we are able to gener- 135

ate over 1.2∗106 orthogonal 25nt DNA sequences satisfying 136

SSM for k = 12, in less than 17 seconds on a single CPU 137

core (Supplemental File 1). While previous methods subsam- 138

ple sequence space for candidate sequences (4, 6), SeqWalk 139

exhaustively traverses sequence space, with a candidate se- 140
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Fig. 2. Performance of graph-based sequence design method (orange) in com-
parison to method involving pairwise crosstalk evaluations (blue), for several design
problems. Each plot shows trajectories of the number of sequences designed in wall
clock time for each method, averaged over 10 trials (see Supplement for details).
Plots on the same row have the same k value (length of prevented substrings), and
plots on the same column have the same L value (sequence length). All plots are
for the case of a 4 letter alphabet.

quence pool 9 orders of magnitude larger than previous work.141

Sequence design under additional constraints. In many142

applications, there are additional constraints to orthogonal143

sequence libraries beyond limitations on off-target binding.144

One common constraint is the prevention of crosstalk with re-145

verse complements of sequences in the library. For sequence146

design under this constraint, SeqWalk integrates two efficient147

algorithms: a filtering-based method for 3-letter libraries, and148

an adaptation of the Hierholzer algorithm (14) for 4-letter li-149

braries (Supplementary note 4).150

SeqWalk design can also consider other common constraints151

such as requiring GC content within a window, absence of152

specific sequence patterns, and the absence of significant sec-153

ondary structure. We provide efficient algorithms for filter-154

ing SeqWalk libraries for these characteristics (Supplemen-155

tary notes 2, 3, 4, 5). We find that 3-letter SeqWalk li-156

braries are particularly amenable to such filtering, as they157

have sequences with lower variance in GC content (Fig. S4),158

low prevalence of secondary structure (Fig. S5) and little159

crosstalk with reverse complements (Supplementary note 4).160

Theoretical results. Typical approaches to orthogonal se-161

quence design provide no theoretical guarantees of optimal-162

ity. The theoretical tractability of SeqWalk allows us to de-163

sign sequence libraries that are provably maximally sized or164

provably maximally orthogonal.165

To our knowledge, SeqWalk is the first orthogonal sequence166

design algorithm that is provably guaranteed to yield max-167

imally sized SSM satisfying sequence libraries. SSM-168

satisfying sequence libraries designed by the partitioning of a169

Hamiltonian path (such as in SeqWalk) are maximally sized.170

This can be trivially proven by contradiction, by noting that171

every possible k-mer in the sequence space appears in the172

library. If there existed a larger library of SSM-satisfying se- 173

quences, it would use a larger number of k-mers, and thus 174

would repeat k-mers, and not satisfy SSM. A more formal 175

statement and proof can be found in Supplementary note 6. 176

Building on fundamental results about de Bruijn graphs (11),
we can obtain a closed form expression for the number of se-
quences in SeqWalk libraries under different design parame-
ters. For alphabet size m, sequence length L, and SSM con-
straint k, the number of possible orthogonal sequences N is
the number of nodes in the k-mer graph divided by the num-
ber of nodes required to represent a sequence of length L.
More precisely,

N =
⌊

mk

L−k+ 1

⌋
By solving the inverse problem given a desired library size of 177

Nd, sequence length L, and alphabet size m, we can choose 178

the smallest k such that N ≥ Nd. Designing a library using 179

the resulting k value yields a maximally orthogonal library 180

with the desired number of sequences. 181

Additionally, we can estimate the size of SeqWalk libraries
after downstream filtering. For example, we can place lower
bounds on the number of sequences present after a filtering
for a specific sequence pattern of length p < k. The number
of k-mers containing a specific pattern of length p is

Kp = (k−p+ 1)∗mk−p

where m is the size of the alphabet. Since no k-mer appears
in more than one sequence in the library, we must remove at
most Kp sequences from our library to remove all sequences
containing a pattern of length p. As such, the size of the
filtered library, Np, is

Np ≥N −Kp

Such lower bounds are simple to determine for practically 182

relevant pattern constraints, such as the prevention of ho- 183

mopolymeric regions (Fig S6). Additionally, we derive a 184

lower bound on the size of SeqWalk libraries upon filtering 185

for orthogonality with reverse complements (Supplemenary 186

note 4). For the case of 3-letter libraries with odd k, we show 187

that the size of a SeqWalk library that satisfies orthogonality 188

with reverse complements, Nrc, can be bounded by 189

Nrc ≥N −2k−1

The size of SeqWalk libraries under GC content constraints 190

is not as easily determined analytically. However, empirical 191

results show that SeqWalk libraries have consistent distribu- 192

tions of GC content, resembling the binomial distribution ex- 193

pected of uniformly random sequences (Supplementary note 194

2). As such, these distributions can be used to estimate the 195

size of SeqWalk libraries under GC content constraints. 196

Implementation as a software tool. We have implemented 197

the SeqWalk algorithm and additional filtering tools in a pip 198

distributed Python package (seqwalk , source code avail- 199

able at github.com/storyetfall/seqwalk, docu- 200

mented at seqwalk.readthedocs.io). Additionally, 201
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Fig. 3. Depiction of seqwalk software package. (a) Example design code which
produces a library of at least 200 25nt sequences with maximal orthogonality ac-
cording to the SSM heuristic. (b) Output of example design code. (c) Crosstalk
analysis of designed library, using Hamming distance. Each row/column represents
a sequence, and each entry is colored by Hamming distance.

we have developed an interactive, code-free, web-based Se-202

qWalk interface in a publicly accessible Google Colaboratory203

notebook (link on seqwalk.readthedocs.io). We en-204

vision the use of seqwalk as a part of a sequence design205

pipeline, with downstream filtering (experimental validation,206

genomic homology filtering, etc.) as necessary for specific207

application contexts. Due to the simplicity of the underlying208

algorithms, we expect that others can implement our design209

method in other languages and development environments,210

and modify it as necessary.211

Discussion212

We have presented SeqWalk, a method for efficiently pro-213

ducing maximally-sized orthogonal sequence libraries which214

are amenable to theoretical analyses. SeqWalk enables the215

design of orthogonal sequence libraries of unprecented size,216

with theoretical guarantees on maximality.217

While SeqWalk is applicable to any orthogonal sequence de-218

sign problem, the use of the SSM heuristic makes it more nat-219

urally applicable to certain kinds of design problems. In par-220

ticular, SeqWalk is well suited for problems where nuanced221

biophysical properties (i.e. exact ∆G, strand displacement222

kinetics) need not be tightly controlled. We expect that Se-223

qWalk will be valuable for the rapidly growing class of high-224

throughput biological methods that use synthetic DNA se-225

quences as barcodes for different biomolecular features (i.e.226

samples, cells, protein targets, plasmids, etc.). Using Se-227

qWalk to maximize the size of orthogonal sequence libraries228

can, in principle, increase the number of features that can be229

barcoded in such methods.230

Additionally, the theoretical guarantees of SeqWalk libraries231

can be used to guide design choices in experimental method232

development. Using the results derived in this paper, one can233

understand the tradeoffs between design parameters and or-234

thogonal sequence library size.235

In the early 1990s, graph representations of biological se-236

quences revolutionized the field of genomics, dramatically237

improving the quality and efficiency of de novo genome as-238

sembly (15). Since then, graph representations of sequences239

have become widespread as descriptive tools in bioinformat-240

ics, used to reconstruct naturally occurring biological se-241

quences. In modern molecular biology and bioengineering, 242

where the design of synthetic biological systems is funda- 243

mentally intertwined with the characterization of natural bio- 244

logical systems, there is growing interest in sequence repre- 245

sentations amenable to design tasks (16, 17). However, out- 246

side of highly specialized applications (18, 19), graph repre- 247

sentations of sequences are far less commonly used in design 248

contexts. With SeqWalk, we demonstrate that graph-based 249

sequence representations enable massive efficiency improve- 250

ments in orthogonal sequence design. We are optimistic that 251

graph representations of sequence space can similarly enable 252

efficient solutions to other biological sequence design prob- 253

lems. 254
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Supplementary Note 1: Defining crosstalk 312

The words “orthogonality" and “crosstalk" are used frequently in molecular bioengineering, without very precise definitions. 313

Here, we will try to be more precise about what we mean. 314

We consider two sequences (A, B) to have crosstalk if they can stably hybridize with each other’s reverse complements. In 315

other words, if a complex between A and B*, or A* and B is likely to form, we consider A and B to have crosstalk. 316

If we think of A and B as probes, with A* and B* being their respective targets, we consider crosstalk to be the binding of a 317

probe to an incorrect target. We do not by default consider binding between A and B to be crosstalk. 318

For many, but not all, applications, this is a sufficient characterization of crosstalk. In the case of multiplexed imaging, only a 319

single probe (referred to as imager in the multiplexed imaging literature) is present in a sample at a given time (1). As such, 320

we need not consider binding between probes. Analogously, in DNA similarity search, a single "query" probe is used to bind 321

"target" strands, so binding between probe strands is not necessary. 322

In some applications, a stronger definition of crosstalk, including binding between probe strands, is necessary. For example, in 323

single stranded tile self assembly, a pool of single strands, including "probes" and "targets" will be in well mixed solution. As 324

such, binding between all strands must be considered crosstalk. 325

We consider this to be orthogonality including reverse complements, where A and B have crosstalk if any pair of A, A*, B, B* 326

have significant binding (other than the desired A with A*, and B with B*). Sequence design under this stronger orthogonality 327

constraint is discussed in the supplementary note on orthogonality with reverse complements, and the main text section on 328

sequence design under additional constraints. 329
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Supplementary Note 2: GC content distributions in SeqWalk libraries330

While we do not have a rigorous proof of this, we find empirically that the distributions of GC content in SeqWalk libraries is331

similar to that of totally random sequences. We expect, in a 4 letter alphabet, to have GC content that is binomially distributed332

with p=0.5 and n=L (where L is the sequence length). In a 3 letter alphabet (ACT or AGT) we expect to have GC content333

binomially distributed with p= 1
3 and n= L.334

The variance of a binomial is σ2(n,p) = p∗ (1−p)∗n, with p ∈ [0,1] . Since p∗ (1−p) is globally maximized for p= 0.5, the335

variance of GC content is highest for the case of a 4 letter alphabet. This is in line with empirical results, shown below and in336

Supplemental File W.337

Fig S4. GC content distributions in various SeqWalk libraries. The 3 letter libraries are designed using {A, C, T}, while the 4 letter
libraries use {A, C, T, G}. The code used to generate libraries can be found in Supplemental File X, the libraries can be found in
Supplemental Files Y-Z, and the code used to make this plot can be found in Supplemental File W.

Since the GC content of 3 letter alphabet libraries is lower, a tighter window of GC content constraints can be used to obtain338

the same number of sequences (assuming that the extreme GC content sequences are those to be filtered out).339

For filtering libraries for GC content, a naive algorithm, such as the one below, is efficient (constant time and memory in the340

size of the library).341

function gc_filter(SeqWalk_library, gc_min, gc_max)342

343

filtered_library = []344

345

for seq in SeqWalk_library346

gc_content = gc(seq)347

if gc_min < gc_content < gc_max348

push!(filtered_library, seq)349

end350

end351

352

end353
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Supplementary Note 3: Secondary structure in SeqWalk libraries 354

Empirically, we find that secondary structure is very uncommon in SeqWalk libraries constructed with {A, C, T} libraries. We 355

use percentage of paired bases in the MFE structure as a measure of secondary structure prevalence in a sequence. We are aware 356

that this is not an ideal measure based on (20), but we use it as it is simple to compute and relatively agnostic to experimental 357

context. 358

Fig S5. Distribution of fraction of unpaired bases in MFE structures in various SeqWalk libraries. An “Unpaired” value of 1 indicates
no bound bases in the MFE structure of a sequence. The 3 letter libraries are designed using {A, C, T}, while the 4 letter libraries use
{A, C, T, G}. The code used to generate libraries can be found in Supplemental File X, the libraries can be found in Supplemental Files
Y-Z, and the code used to make this plot can be found in Supplemental File W.

To filter sequences for secondary structure, we can again use a naive algorithm, such as the one below, which is constant time 359

and memory in the size of the library. 360

function SS_filter(SeqWalk_library, SS_threshold) 361

362

filtered_library = [] 363

364

for seq in SeqWalk_library 365

ss = NUPACK_MFE_Unpaired_fraction(seq) 366

if ss < SS_threshold 367

push!(filtered_library, seq) 368

end 369

end 370

371

end 372

373

Gowri et al. | SeqWalk bioRχiv | 7

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2022. ; https://doi.org/10.1101/2022.07.11.499592doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499592
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Note 4: Orthogonality with Reverse Complements374

For the case of 3-letter alphabets and odd SSM k values, we present an efficient algorithm for selecting maximally sized375

orthogonal libraries which prevent crosstalk with reverse complements of sequences in the library. Without loss of generality,376

let’s consider the case of sequences constructed with an A, C, T library.377

We seek to have a library which contains no repeated k-mers, and no k-mers whose reverse complement also appears in the378

library. K-mers containing "C" cannot have their reverse complements also appear in the library, since the library will not379

contain "G". So, we only need to consider k-mers composed entirely of "A" and "T".380

In order to use k-mers whose reverse complement will not appear in the library, we seek partition all "AT" k-mers into two sets,381

such that the reverse complement of each sequence in a set appears in the other set.382

In other words, if we consider a "Reverse Complement" graph, in which each node is a k-mer, and there is an edge between383

k-mers which are reverse complementary, we would like find a balanced bipartitioning of the graph.384

Upon this partitioning, we can remove all sequences containing k-mers from one partition. Thus, the reverse complements of385

any k-mers that appear in the library will not be present.386

For odd k, we can find such a partitioning by noting that the middle base in the k-mer will be different in its reverse complement.387

For example in a 5mer, the third base will never be the same as the third base of its reverse complement. As such, we can find388

a bipartition of the Reverse Complement graph by dividing the nodes into two sets, where all nodes in one set have "A" as the389

middle base, and all nodes in the other set have "T" as the middle base.390

Below is the pseudocode for efficiently filtering sequences in a odd K, 3 letter alphabet library, such that orthogonality with391

reverse complements is respected.392

function filter_for_RCs(SeqWalk_library, k)393

394

to_remove = []395

middle = k/2 + 0.5396

397

for each sequence in library:398

for each kmer in sequence:399

if "C" in kmer:400

continue401

elif kmer[middle] == "A":402

push(to_remove, sequence)403

end404

end405

end406

407

return remove(SeqWalk_library, to_remove)408

409

end410

Using this algorithm, we can easily lower bound the size of a resulting library will be upon filtering. We know that there are411

2k kmers consisting entirely of A and T. Half of these k-mers will have "A" as the middle base. At most, we will remove one412

sequence from the libray for each kmer. As such, we can lowerbound the number of sequences upon reverse complementarity413

filtering, Nrc using414

Nrc ≥N −2k−1

This theoretical result indicates that SeqWalk still produces relatively large sequence libraries upon such filtering. For example,415

for the case of 25nt barcodes with 3 letter code, SSM k = 13, and removal of reverse complements, we will have a sequence416

library with at least Nrc ≥ 313

13 −212 = 1.18544∗105 sequences.417

In the case of a four-letter alphabet, filtering is an untenable solution because we cannot constrain reverse complementary k-418

mers to AT sequences. Instead, we use a modification of the Hierholzer algorithm, in which we mark both the visited k-mer419

and its reverse-complement “visited” during traversal. This method requires keeping track of visited nodes, and as such is less420

time/memory efficient than the shift rule traversal. Our implementation can be found in the adapted_hierholzer function421

in the generation module of the seqwalk source code (github.com/storyetfall/seqwalk)422
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Supplementary Note 5: Preventing specific sequence patterns 423

We can place lower bounds on the number of sequences present after a filtering for a specific sequence pattern of length p < k.
The number of k-mers containing a specific pattern of length p is

Kp = (k−p+ 1)∗mk−p

where m is the size of the alphabet. Since no k-mer appears in more than one sequence in the library, we must remove at most
Kp sequences from our library to remove all sequences containing a pattern of length p. As such, the size of the filtered library,
Np, is

Np ≥N −Kp
Such lower bounds are simple to determine for practically relevant pattern constraints, such as the prevention of homopolymeric 424

regions. 425

For example, we can consider the case of preventing 4G regions, as well as 4N (any of 4A, 4T, 4C, 4G) regions. To lower 426

bound the number of sequences after removing all 4N regions, we can use 427

N4N =N − (K4A+K4T +K4C +K4G)

Below, we see plots of these bounds for various k and L. 428

Fig S6. Lower bounds on library size for various design problems under different sequence pattern prevention constraints. In particular,
we plot lower bounds for 4 letter SeqWalk libraries preventing 4G and preventing all 4N, in comparison to libraries with no pattern
prevention constraints.

Gowri et al. | SeqWalk bioRχiv | 9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 11, 2022. ; https://doi.org/10.1101/2022.07.11.499592doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.11.499592
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplementary Note 6: Proof of maximality429

A. Definitions.430

• Sequence library: set of sequences of length N over alphabet of size m431

• k-mer: subsequence of length k432

• SSM satisfied for length k: no subsequence of length k appears more than once, for k < N433

• Maximally sized SSM sequence library: A sequence library satisfying SSM for length k with size such that no larger434

sequence library satisfying SSM for length k exists.435

B. Lemma 1. A maximally sized sequence library that satisfies SSM for length k contains at most mk distinct k-mers.436

C. Proof of Lemma 1. Assume for the sake of contradiction that there exists an SSM satisfying library for length k, which437

has K > mk k-mers. Since there are only mk possible k-mers, by the pigeonhole principle, at least one k-mer must appear438

> 1 times in the library. Since a k-mer appears more than once in the library, it does not satisfy SSM. We have arrived a439

contradiction.440

D. Theorem 1. A sequence library generated by the partitioning of a Hamiltonian path in a k de Bruijn graph is a maximally441

sized SSM sequence library for length k.442

E. Proof of Theorem 1. By definition, the number of k-mers in such a library is equal to the number of nodes in the corre-443

sponding de Bruijn graph. The number of nodes in the de Bruijn graph, by definition, is mk. By Lemma 1, a maximally sized444

sequence library that satisfies SSM for length contains at most mk k-mers. Thus, no larger SSM satisfying library exists.445
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