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Abstract35

Sleep plays a key role in preserving brain function, keeping the brain network36

in a state that ensures optimal computational capabilities. Empirical evidence37

indicates that such a state is consistent with criticality, where scale-free neu-38

ronal avalanches emerge. However, the relationship between sleep, emergent39

avalanches, and criticality remains poorly understood. Here we fully character-40

ize the critical behavior of avalanches during sleep, and study their relationship41

with the sleep macro- and micro-architecture, in particular the cyclic alternat-42

ing pattern (CAP). We show that avalanche size and duration distributions43

exhibit robust power laws with exponents approximately equal to -3/2 e -2,44

respectively. Importantly, we find that sizes scale as a power law of the du-45

rations, and that all critical exponents for neuronal avalanches obey robust46

scaling relations, which are consistent with the mean-field directed percola-47

tion universality class. Our analysis demonstrates that avalanche dynamics48

depends on the position within the NREM-REM cycles, with the avalanche49

density increasing in the descending phases and decreasing in the ascending50

phases of sleep cycles. Moreover, we show that, within NREM sleep, avalanche51

occurrence correlates with CAP activation phases, particularly A1, which are52

the expression of slow wave sleep propensity and have been proposed to be ben-53

eficial for cognitive processes. The results suggest that neuronal avalanches,54

and thus tuning to criticality, actively contribute to sleep development and play55

a role in preserving network function. Such findings, alongside characterization56

of the universality class for avalanches, open new avenues to the investigation57

of functional role of criticality during sleep with potential clinical application.58
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Significance statement. We fully characterize the critical behavior of neu-59

ronal avalanches during sleep, and show that avalanches follow precise scaling laws60

that are consistent with the mean-field directed percolation universality class. The61

analysis provides first evidence of a functional relationship between avalanche oc-62

currence, slow-wave sleep dynamics, sleep stage transitions and occurrence of CAP63

phase A during NREM sleep. Because CAP is considered one of the major guardians64

of NREM sleep that allows the brain to dynamically react to external perturbation65

and contributes to the cognitive consolidation processes occurring in sleep, our ob-66

servations suggest that neuronal avalanches at criticality are associated with flexible67

response to external inputs and to cognitive processes, a key assumption of the crit-68

ical brain hypothesis.69

1 Introduction70

Sleep is an active and dynamic complex process regulated by mechanisms that guide71

the alternation of non-Rapid Eye Movement (NREM) and REM sleep across the72

night. Physiologically, sleep macro-architecture is characterized by the concentration73

of deep slow wave sleep (SWS) (stage N3) in the first half of the night, and the74

dominance of light sleep (mainly N2) and REM sleep in the second half of the night,75

a balanced skewness modulated by the homeostatic process and by the REM-off and76

REM-on systems (Brown et al., 2012). Throughout the night numerous transitions77

among these sleep stages occur, and, within sleep stages, micro-states on the scale78

of seconds and minutes are observed.79
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The cyclic alternating pattern (CAP) is one of the major adaptive components of80

NREM sleep. According to Terzano et al (Terzano et al., 2000), CAP is a periodic81

EEG activity of NREM sleep characterized by repeated spontaneous phases of EEG82

activation (A phase) and subsequent phases of return to background activity (B83

phase), evolving in a cycling pattern. Based on the distribution of slow and fast84

EEG frequencies, the A phases of CAP are classified in three subtypes: A1, A2 and85

A3 (Terzano et al., 2002). These CAP subtypes are not randomly distributed along86

the night, but instead their appearance is linked with the homeostatic, ultradian87

and circadian mechanisms of sleep regulation (Parrino et al., 1993; Terzano et al.,88

2005). In particular, subtypes A1 are the expression of slow wave sleep propensity89

and follow the exponential decline of the homeostatic process. A covariance between90

A1 subtypes and sleep slow wave activity (SWA) has been proposed and the two91

electroencephalographic elements likely share the beneficial effect on sleep-related92

cognitive processes (Ferri et al., 2008; Aricò et al., 2010). Furthermore, both CAP-93

A1 subtype and SWA are involved in the build-up and maintenance of deep NREM94

sleep, acting as protectors for sleep continuity (Terzano et al., 2000; Parrino and95

Vaudano, 2018).96

Spontaneous alternation of transient, synchronized active and quiescent periods97

is typical of systems that self-organize near a critical point of a non-equilibrium98

phase transition (Scarpetta and de Candia, 2014; Munoz, 2018; Lombardi et al.,99

2020b). Following a number of theoretical and numerical results (Cragg and Tem-100

perley, 1954; Crutchfield and Karl, 1990; Bak, 1996; Kinouchi and Copelli, 2006),101

it has been hypothesized that the brain self-organizes to criticality to maximize102
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information processing and computational capabilities, and thus achieve optimal103

functional performance. This hypothesis is supported by empirical observations of104

neuronal avalanches — cascades of neural activity exhibiting power-law size and105

duration distributions–— and long-range spatio-temporal correlations in neural ac-106

tivity across species, systems, and spatial scales (Linkenkaer-Hansen et al., 2001;107

Beggs and Plenz, 2003; Pasquale et al., 2008; Mazzoni et al., 2007; Petermann et al.,108

2009; Tagliazucchi et al., 2012; Palva et al., 2013; Ponce-Alvarez et al., 2018; Tkačik109

et al., 2015; Lombardi et al., 2021b; Mariani et al., 2021). In particular, presence110

of power law distributions indicates absence of characteristic temporal and spatial111

scales in the underlying dynamics, as observed at criticality.112

Empirical evidence shows that neuronal avalanches during sleep exhibit power113

law size and duration distributions (Priesemann et al., 2013; Bocaccio et al., 2019;114

Allegrini et al., 2015), and that sleep may play an active role in tuning the brain to115

criticality (Meisel et al., 2017, 2013). At the same time, recent studies demonstrated116

that bursts of dominant cortical rhythms exhibit the hallmarks of self-organized criti-117

cal dynamics across the sleep-wake cycle, suggesting that criticality could be essential118

mechanism for spontaneous sleep-stage and arousals transitions (Wang et al., 2019;119

Lombardi et al., 2020a). However, both the nature of the alleged criticality during120

sleep and the relationship between related avalanche dynamics and complex sleep121

macro- and micro-architecture—in particular the CAP—remain poorly understood.122

On the one hand, the scaling relations among exponents that are expected to hold at123

criticality have not been verified, and a general framework to understand criticality124

during sleep is currently missing. On the other hand, the dynamics of avalanches in125
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connection with the highly variable and distinct states composing long- and short-126

term sleep cycles has not been studied, and the potential functional role of avalanches127

in sleep regulation has not been explored.128

Herein, we fully characterize the critical behavior of neuronal avalanches dur-129

ing sleep, and determine the scaling relations that connect their critical exponents,130

showing that they are consistent with a specific universality class. We then study131

how avalanche dynamics interacts with the ascending and descending slope of the132

NREM-REM sleep cycles, and within NREM sleep, how the CAP phases couple133

with avalanche occurrence. Our analysis shows that avalanche dynamics is closely134

linked to NREM-REM sleep cycles across night sleep, and that neuronal avalanche135

occurrence correlates with the activation phase of the CAP. The results indicate that136

avalanches play an active role in sleep development, and point to a peculiar relation-137

ship between CAP, brain tuning to criticality during sleep, and cognitive processes.138

2 Materials and Methods139

2.1 Participants140

The data analyzed in this study were extracted from overnight polysomnographic141

(PSG) recordings acquired from the Parma (Italy) Sleep Disorders Center database.142

Ten healthy subjects, 5 males and 5 females, mean aged 39,6 years (age range 28-143

53), were selected after the accomplishment of an entrance investigation. Subjects144

were selected based on the following inclusion criteria: (i) absence of any psychiatric,145

medical and neurological disorder (ii) normal sleep/wake habits without any diffi-146
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culties in falling or remaining asleep at night: a personal interview integrated by a147

structured questionnaire confirmed good daytime vigilance level; ( iii) no drug intake148

at the time of PSG and the month before; (iv) full night unattended PSG recordings149

performed with EOG (2 channels), EEG [Ag/AgCl electrodes placed according to the150

10 - 20 International System referred to linked-ear lobes]. Recording electrodes were151

19 (Fp2, F4, C4, P4, O2, F8, T4, T6, Fz, Cz, Pz, Fp1, F3, C3, P3, O1, F7, T3, T5)152

in seven subjects and 25 in the remaining three: (CP3, CP4, C5, C6, C2, C1, FC4,153

FC3, F4, C4, P4, O2, F8, T4, T6, Fz, Cz, Pz, F3, C3, P3, O1, F7, T3, T5), EMG of154

the submentalis muscle, ECG, and signal for SpO2 (pulse-oximetry O2-saturation).155

PSG recordings were acquired using a Brain Quick Micromed System 98 (Micromed,156

SPA). A calibration of 50 µV was used for EEG channels with a time constant of 0.1157

s and a low-pass filter with 30 Hz cut-off frequency. EEG sampling rate was 256 Hz158

for six subjects while for the remaining four cases, one was recorded using a sampling159

rate of 128 Hz (subject #1) and the remaining three (subject #2, #3, #4) using 512160

Hz. Each signal was recorded and examined by an expert clinician (CM, IT, LP).161

Analysis of sleep recordings (see Section 2.2) was performed with Embla RemLogic162

Software. The institutional Ethical Committee Area Vasta Emilia Nord approved163

the study (protocol nr. 19750).164

2.2 Sleep analysis165

Analysis of sleep macro-architecture. Sleep was scored visually in 30-s epochs166

using standard rules according to the American Academy of Sleep Medicine (AASM)167

criteria (Berry et al., 2017). Conventional PSG parameters included total time in bed168
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(TIB) (minutes), total sleep time (TST) (minutes), sleep latency (minutes), rapid169

eye movement (REM) latency (minutes), sleep efficiency (%), wake after sleep onset170

(WASO) (minutes), as well as percentage of NREM (N1, N2, N3) and REM stages.171

Analysis of sleep micro-architecture. Sleep micro-architecture evaluation refers172

to the quantification of CAP parameters based on the published international atlas173

(Terzano et al., 2002), and was manually performed using Embla REM-logic software174

by somnologists with strong expertise in the field (LP, CM). CAP is a global EEG175

phenomenon involving extensive cortical areas, thus CAP phases should be visible on176

all or most EEG leads. CAP is characterized by the alternation of phase A (transient177

electrocortical events) and phase B (low voltage background), both lasting between178

2 and 60 seconds. According to published criteria (Terzano et al., 2002) phase A179

activities were classified into three subtypes:180

1. Subtype A1. EEG synchrony is the predominant activity and the EEG desyn-181

chrony occupies < 20% of the whole phase A. Subtype A1 may include delta182

burst, K-complex sequences, vertex sharp transients, polyphasic bursts with183

< 20% of EEG desynchrony.184

2. Subtype A2. It is a mixture of fast and slow rhythms where the EEG desyn-185

chrony occupies 20−50% of the entire phase A. This subtype includes polypha-186

sic bursts with 20− 50% of EEG desynchrony.187

3. Subtype A3. EEG desynchrony is the predominant activity (> 50%) of the188

phase A. Subtype A3 includes K-alpha, EEG arousal and polyphasic bursts189

with > 50% of EEG desynchrony.190
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The percentage of NREM sleep occupied by CAP sequences defines the CAP rate.191

The absence of CAP for more than 60 seconds is scored as non-CAP, and represents192

the portion of NREM sleep characterized by a sustained physiologic stability. CAP193

sequences usually precede sleep stage transitions, and, specifically, subtypes A2 and194

A3 typically assist the shift from NREM to REM sleep. Under physiologic circum-195

stances, CAP is not present during REM sleep. The following CAP variables were196

measured:197

(i) Total CAP time in minutes (total CAP time in NREM sleep),198

(ii) CAP rate (the ratio of CAP time over total NREM sleep time),199

(iii) Number and duration of CAP cycles,200

(iv) Number and duration of each phase A subtype (A1, A2, A3),201

(v) Total number of phase A (derived by the sum of A1, A2, and A3),202

(vi) Duration of phase A and B in seconds.203

2.3 Neuronal avalanche analysis204

Before performing avalanche analysis, waking and motion artifact segments during205

nocturnal sleep were manually identified and removed. Artifact-free EEG signals206

were z-score normalized to have zero mean and unit standard deviation (SD). To207

capture the spatio-temporal organization in avalanches of transient EEG events dur-208

ing sleep, we investigated clusters of large deflections of the artifact-free EEG signals.209
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For each EEG channel, large positive or negative excursions beyond a threshold θ = ±210

nSD were identified.211

To define the threshold θ, we analyzed the distribution of EEG amplitudes (Fig.212

1B). A Gaussian distribution of amplitudes is expected to arise from a superposition213

of many uncorrelated sources. Conversely, EEG amplitude distributions deviate from214

a Gaussian shape, indicating presence of spatio-temporal correlations and collective215

behaviors involving different cortical areas (Fig. 1). The comparison of the signal216

distribution to the best Gaussian fit indicates that the two distributions start to217

deviate from one another around θ = ±2 SD (Fig. 1). Thus, thresholds smaller than218

2 SD would lead to the detection of many events related to noise in addition to real219

events whereas much larger thresholds will miss many of the real events. To avoid220

noise-related events while preserving most of relevant events, in this study we used221

a threshold value θ = ±2 SD. Importantly, avalanche distributions are robust for a222

wide range of threshold values > 2 SD (Supplementary Material, Fig. S1).223

An avalanche was defined as a continuous time interval in which there is at least224

one excursion beyond threshold in at least one EEG channel (Fig. 1). Avalanches225

are preceded and followed by time intervals with no excursions beyond threshold226

on any EEG channel (Beggs and Plenz, 2003; Meisel et al., 2013). The size of an227

avalanche, s, was defined as the sum over all channels of the absolute values of the228

signals exceeding the threshold.229

To characterize the relationship between the avalanche dynamics and the sleep230

macro-architecture, we calculate for each subject the avalanche density as a function231

of time, i.e. the fraction of time occupied by avalanches, measured as232
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Figure 1: Identification of neuronal avalanches and definition of avalanche size and du-
ration. (A) Segments (2 hours) of Z-score normalized EEG signal traces for an individual subject.
Each trace correspond to an EEG channel. (B) Probability density of the z-score normalized EEG
signal amplitude. The cyan curves in the background are the probability densities for all individual
subjects (n = 10 subjects; for each subject we pooled all individual EEG channels). The black
curve is the grand average over all subjects. The red curve is the best Gaussian fit for the grand
average. We notice that the empirical probability density starts deviating from the Gaussian fit
around ±2 SD. (C) A neuronal avalanche is defined as a continuous sequence of signal excursions
beyond threshold (red thick line) on one or more EEG channels (upper panel). An avalanche is
preceded and followed by periods in which EEG signal are below the threshold in all channels. The
size of an avalanche is defined as the sum over all channels of the absolute values of the signals
exceeding the threshold (bottom panel).

Fav(t) =
uav(t)

u0

(1)

where uav(t) is the amount of time occupied by avalanches in a sliding window of233

length T (sliding step = 1/(sampling frequency)), and u0 = T . The window length234
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T has been chosen equal to 10 seconds (T = 10 s) as this is the order of magnitude235

of the largest avalanches in our recordings.236

To characterize the relationship between the avalanche dynamics and the sleep

micro-architecture, we compute the Pearson correlation coefficient between the avalanche

occurrence and the CAP measures, on a time scale dictated by the sampling rate of

the recordings. Given the binary values xi = 0, 1, yi = 0, 1, where xi = 1 indicates

the presence in the sample i of an ongoing avalanche, and yi = 1 indicates presence

of a particular feature of the CAP framework (CAP, NCAP, subtypes A1, A2, A3,

all A phases, phases B), we computes the Pearson correlation coefficient as:

ρx,y =

∑N
i (xi − x)(yi − y)√∑N

i (xi − x)2
√∑N

i (yi − y)2
(2)

where x =
∑N

i xi/N and N is the number of samples in the sleep recordings. Being237

binary values, the Pearson correlation coefficient is equivalent to the ϕ coefficient.238

The Pearson correlation coefficient has been also evaluated between avalanche oc-239

currence and sleep stages using Eq. 2, where xi = 1 indicates the presence (xi = 0240

absence) in the sample i of an ongoing avalanche, and yi = 1 indicates presence241

(yi = 0 absence) of a particular sleep stage (REM,N1,N2,N3).242

2.4 Statistical analysis243

Maximum likelihood estimation of power law exponents for avalanche size and dura-244

tion distributions was performed using the Power law Python package (Alstott et al.,245

2014). The power law fit minimized the Kolmogorov-Smirnov distance between orig-246
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inal and fitted values, D = supx|Fdata(x)− Ffit(x)|, where Fdata is the empirical cu-247

mulative distribution function (CDF) and Ffit the fitted CDF. The power law fit was248

compared to an exponential fit by evaluating the log-likelihood ratio R = lnLp/Le,249

where Lp,e =
∏n

i=1 pp,e(xi) is the likelihood. R is positive if the data are more likely250

to follow a power law distribution, and negative if the data are more likely to follow251

exponential distribution. The statistical significance for R (p-value) was estimated in252

the Power law Python package (Alstott et al., 2014). For further details see (Clauset253

et al., 2009). Pairwise comparisons in Fig. 5 and 6 were conducted using Students254

two-tailed t-test performed in Matlab (Mathworks).255

3 Results256

3.1 Critical exponents and scaling relations for neuronal257

avalanches during sleep258

To characterize cortical dynamics underlying sleep macro-architecture and sleep259

micro-architecture, we identify neuronal avalanches and investigate signatures of crit-260

icality across the entire sleep period. To this end, we compute the distribution of261

avalanche sizes, P (s), and avalanche durations, P (T ). In Fig. 2 we show the dis-262

tributions P (s) and P (T ) for all subjects. We find that both the size and duration263

distributions are well described by a power law, P (s) ∝ s−τ and P (T ) ∝ T−α, respec-264

tively. In both distributions the power law regime is followed by an exponential cutoff265

(Fig. 2). Power laws are the hallmark of criticality, and imply absence of character-266

istic scales in the underlying dynamics (Stanley, 1971). In this context, the observed267
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Figure 2: Avalanche size and duration distributions exhibit a robust power law behav-
ior during sleep periods. (A) The distribution of avalanche sizes (red circles) follows a power
law with exponent τ = 1.438 ± 0.001 (fit ± std. error on the fit; pooled data, 10 subjects). The
power law regime is followed by an exponential cut off. The Kolmogorov-Smirnov distance between
data and fit is D = 0.1, while the log-likelihood ratio between the power law and the exponential
fit is R = 295 (p < 10−5). (B) The distribution of avalanche duration follows a power law with
exponent α = 1.973± 0.002 (fit ± std. error on the fit), followed by an exponential cutoff (pooled
data, 10 subjects). The Kolmogorov-Smirnov distance between the data and the fit is D = 0.07
The log-likelihood ratio between the power-law and the exponential fit is R = 95 (p < 10−5). Max-
imum likelihood estimation of the power law exponents were performed using the Powerlaw Python
package (Alstott et al., 2014) over the range of values indicated by the thick black lines.

power law distributions indicate that neuronal avalanches have no characteristic size268

and duration, namely they are scale-free. Our analysis shows that the exponent τ269

for the size distribution is close to 3/2 (τ = 1.438 ± 0.001) (fit ± error on the fit),270

while the exponent α for the duration distribution is close to 2 (1.973± 0.002). We271

compared the power law with an exponential fit by evaluating the log-likelihood ratio272

R = lnLp

Le
between the likelihood Lp for the power law and Le for the exponential273

fit (Materials and Methods). We found R = 295 for the size and R = 95 (p-value274

< 10−5; see Materials and Methods) for the duration distribution, indicating that275

the respective power laws better describe the empirical distributions. Importantly,276

we observe that the power law exponents τ and α are robust and weakly depend on277

the scale of analysis (Fig. S1)—e.g. the threshold used to identify avalanches—–,278

and are consistent across subjects (Fig. 3). In Fig. 3 we show the avalanche size279
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Figure 3: Avalanche size and duration distributions consistently follow a power law
behavior during sleep periods across individual subjects. (A) The distribution of avalanche
sizes follows a power law with exponent τ = 1.45 ± 0.09 (mean ± SD). The power law regime is
followed by an exponential cut off in all individual subjects. (B) The distribution of avalanche
duration follows a power law with exponent τ = 1.96±0.16 (mean ± SD), followed by an exponential
cutoff. For each individual subject, maximum likelihood estimation of the power law exponents were
performed over the range of values corresponding to the thick black line using the Powerlaw Python
package (Alstott et al., 2014).

and duration distributions for all individual subjects. Both distributions show little280

variability across subjects, and follow a power law with exponents τ = 1.45 ± 0.09281

and α = 1.96 ± 0.16 (mean ± SD), in agreement with values measured on pooled282

distributions (Fig. 2). We note that this values are fully consistent with the the283

values predicted within the mean-field directed percolation (MF-DP) universality284

class—3/2 and 2, respectively (Pruessner, 2012).285

Next, we analyze the relationship between avalanche sizes and durations. Near286

criticality the average avalanche size ⟨s⟩ is expected to scale as a power of the duration287

T , namely ⟨s⟩ ∝ T k (Pruessner, 2012). We find that such a power law relationship288

between avalanche sizes and durations holds during sleep (Fig. 4). In particular,289

we observe that, for T ’s smaller than the duration corresponding to the onset of the290

exponential cutoff in the distribution P (T ) (Fig. 2 and 3), the average size scales291

as ⟨s⟩ ∝ T k with k ≈ 2 (Fig. 4). For larger durations, we observe a crossover to292
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Figure 4: Avalanche sizes and durations are connected by the scaling relationship
⟨s⟩ ∝ T k consistent with underlying criticality. (A) Average avalanche size as a function of
the avalanche duration T (red stars; pooled data, 10 subjects). The average avalanche size scales
as ⟨s⟩(T ) ∝ T k with k = 1.89 for T ’s within the scaling regime of the distribution P (T ). This
power-law regime is followed by a crossover to a power-law with a significantly smaller exponent
k = 1.4 for larger T ’s. The thick black line is a power law fit for 0.01 < T < 0.4 s; dashed black
line is a power law fit for 0.4 < T ≤ 5. Blue dots: (s,T) scatter plot. (B) Average avalanche size
as a function of the avalanche duration T for all individual subjects. The relationship between
avalanche sizes and durations is consistent across subjects, showing a crossover from an exponent
k = 1.96± 0.13, and k1 = 1.32± 0.19 (mean ± SD).

a power law relationship with a smaller exponent k ≈ 1.3 (Fig. 4). Importantly,293

the exponent k is robust and independent of the threshold θ used to detect neuronal294

avalanches (Fig. S1). Moreover, we observe that the relation ⟨s⟩ ∝ T k is consistent295

across individual subjects (Fig. 4B), the exponent k showing little variability across296

subjects. Specifically, we find k = 1.96 ± 0.13 (mean ± SD) for T ’s smaller than297

the duration corresponding to the onset of the exponential cutoff in the distribution298

P (T ), and k = 1.32± 0.19 (mean ± SD) for larger T ’s (Fig. 4B).299

Notably, we find that the exponent k measured in Fig. 4 is in agreement, within

errors, with the value predicted by the scaling relation

k =
α− 1

τ − 1
(3)

in the context of crackling noise (Sethna et al., 2001). Indeed, we have that α−1
τ−1

=300
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2.13± 0.26 (mean ± std error), and k = 1.96± 0.04 (mean ± std error). The scaling301

relation in Eq. 3 has a general validity in avalanche dynamics, as shown in (Scarpetta302

et al., 2018; Fosque et al., 2021), where Eq. 3 was derived with the only hypothesis303

that P (s) ∝ s−τ and P (T ) ∝ T−α, and that the size fluctuations for fixed durations304

are small and can be neglected.305

In sum, during sleep, the values of the critical exponents τ , α and k are very close306

to the ones predicted for the critical branching process, i.e. the mean field directed307

percolation (MF-DP) universality class, with exponents τ = 3/2 for the size and308

α = 2 for the duration distribution, and k = 2 (Pruessner, 2012).309

3.2 Avalanche dynamics and sleep macro-architecture310

We have shown that, during sleep, neuronal avalanches are characterized by a robust311

scaling behavior in their size and duration distributions (Fig. 2 and 3), and that312

avalanche size and duration are linked by precise scaling relationships (Eq. 3 and313

Fig. 4). These observations are robust and consistent across subjects, and indicate314

underlying tuning to criticality during sleep. Next, we investigate the relationship315

between critical avalanche dynamics, sleep stages, and sleep stage transitions.316

We first characterize sleep macro-architecture across all subjects. The main sleep317

parameters are described in Table 1 (macro-structural measures). The average TST318

across the 10 subjects was 423.9 min, with a mean SE of 88.92%. Around 56% of319

TST was spent in light sleep (N1 = 7.23%, N2 = 48.47%), 23.99% in deep sleep (N3320

= 23.99%), and 20.30% in REM.321

To study the interplay between sleep macro-architecture and avalanche dynamics,322
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Measure  MEAN SD 
Sleep latency (min) 9,90 12,25 

SE (%) 88,92 9,28 
TST (min) 423,90 63,31 

WASO (min) 40,97 30,46 
Stage N1 (min) 28,75 17,47 
Stage N1 (%) 7,23 5,20 

Stage N2 (min) 207,10 50,78 
Stage N2(%) 48,47 6,67 

Stage N3 (min) 99,35 13,40 
Stage N3(%) 23,99 4,90 

NREM sleep (min) 335,20 41,67 
REM sleep (min) 88,65 32,02 
REM sleep (%) 20,30 5,14 

 
Table 1: Average characteristics of sleep macro-architecture across the analyzed subjects
(n = 10). For each measure mean and standard deviation (SD) are reported. SE = sleep
efficiency (SE), TST= total sleep time, WASO = Wake After Sleep Onset.

we introduce the avalanche density, Fav(t), defined as the amount of time occupied323

by avalanches in a sliding window of length u0 (Materials and Methods), and study324

the temporal evolution of Fav(t) in relation to the sleep macro-architecture. In325

the following we fix u0 = 10 s, which approximately corresponds to the largest326

avalanche duration we observed (Fig. 2 and 3). In Fig. 5A we show the avalanche327

density Fav(t) as a function of time for an individual subject, together with the328

corresponding hypnogram. We observe that Fav(t) gradually increases in parallel329

with sleep deepening, i.e. going from REM to N1, N2, and finally N3: Fav is very330

small during stage N1, reaches an intermediate value during stage N2, and increases331

substantially during stage N3, where it peaks slightly before the following transition332

back to N2 and REM (Fig. 5A). Although the avalanche density tends to decrease333

across the night and is, on average, much smaller at the end of the night, we find that334

this trend repeats throughout the night in correspondence to the descending REM →335

N3 of the NREM-REM sleep cycle. In contrast to this gradually increasing trend, we336
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observe that the avalanche density decreases rather abruptly with transitions from337

N3 to N2 and N1—the ascending phase of the NREM-REM sleep cycle. In sum, we338

find that the avalanche density gradually increases during the descending slope of339

each sleep cycle, whilst it rapidly decreases in the ascending slope of the same cycles340

that precedes the onset of REM sleep (Fig. 5A).341

Our analysis shows that the density of avalanches is significantly higher during342

N3 as compared to N2, N1, and REM (Fig. 5B, C). The analysis of the Pearson343

correlation coefficient ρx,y (Materials and Methods, Eq. 2) shows that avalanche344

occurrence, on average, is positively correlated with N3, while it is either weakly or345

slightly negatively correlated with other sleep stages (Fig. 5D). Finally, we observe346

that, during N3, the avalanche density tends to increase with time (Fig. 5A). This347

suggests that the mechanisms related to generation of neuronal avalanches become348

more and more effective during SWS, and move the system towards the deepest349

phase of sleep.350

Importantly, we notice that the avalanche density peak—typically located within351

N3 periods—is higher in the first half of the night, progressively decreases during the352

second half of the night. To quantify the significance of this behavior with respect353

to the characteristics of neuronal avalanches, we compare the avalanche density, as354

well as avalanche size and duration distributions, in the first and last N3 stage of355

the sleep recordings. We find that avalanche size and duration distributions in the356

first N3 are comparable to the distributions calculated in the last N3 (SI, Fig. S2).357

Furthermore, the scaling relation ⟨s⟩ ∝ T k between avalanche size and duration is358

satisfied both in the first and last N3, with the same values of the exponent k (SI,359
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Figure 5: Overnight sleep macro-architecture is associated with strong modulation of
avalanche dynamics. (A) The density of avalanches (blue dots), Fav(t), is shown as a function of
time, together with the corresponding sleep stages and sleep stage transitions (REM, N1, N2, N3
black line) for an individual subject. Fav(t) increases gradually in N2 and N3, and then abruptly
decreases when transitioning from N3 to either N2, N1 or REM. Waking periods during sleep have
been removed. (B) Mean avalanche density for each sleep stage (REM, N1, N2, N3) averaged
across subjects. The density Fav(t) is highest in N3 and gradually decreases for N2, N1, and REM.
Differences between N3 and all other sleep stages are significant (N3 versus N2: p = 1.7 · 10−9; N3
versus N1: p = 1.5 ·10−11; N3 versus REM: p = 1.6 ·10−11). Fav in N2 is significantly different from
the density in N1 (p = 0.019) and REM (p = 0.002). (C) Mean avalanche density for each sleep
stage and for each individual subject. The behavior observed for the group average is consistent
across individual subject, N3 being the sleep stage with the highest density of avalanches. (D) The
mean Pearson correlation coefficients ρx,y (see Eq. (2)) between avalanche occurrence and sleep
macro-architecture (namely REM,N1,N2,N3) shows that avalanches tend to occur mostly during
N3. In all bar plots error bars indicate the standatd error of mean. Differences between N3 and
all other sleep stages are significant (N3 versus N2: p = 2.7 · 10−13; N3 versus N1: p = 8.7 · 10−12;
N3 versus REM: p = 1.7 · 10−13). N2 is significantly different from N1 (p = 0.002), and N1 is
significantly different from REM (p = 0.0006). (E) Mean density of avalanches in the first and last
N3 stage of the recordings averaged over all subjects. We observe that the density is significantly
higher during the first N3 (p = 0.04). (F) Avalanche density in the first N3 (blue) and last N3
(red) for each individual subject. The density is higher in the first N3 for all subjects but the
subject #6, for which we observe that the density is higher in the last N3. Such deviation from
the average behavior may be related to general differences we observed in sleep of subject #6. For
instance, this subject presented an unusually short duration of the N3 stage at the beginning of
the night, followed by a gradual increase of N3 in the second half of the sleep. Significance legend:
*** for p < 0.001; ** for p < 0.01; * for p < 0.05. The *** in panel B and D refers to the pairwise
comparison between N3 and all the other sleep stages. The ** in panel B refers to the pairwise
comparison between N2, N1, and REM. Differences are not significant where no stars are reported.

Fig. S1). On the other hand, we observe that the avalanche density is significantly360

higher during the first N3 as compared to the last N3 (Fig. 5E, F) (t-test: p = 0.04).361

This is consistent across subjects (Fig. 5F), with only one exception (subject #6,362
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Fig. 5F).363

3.3 Avalanche dynamics and sleep micro-architecture364

The analysis of the avalanche density across sleep stages has shown that neuronal365

avalanches tend to occur with higher frequency during NREM sleep. However,366

NREM sleep has a complex micro-architecture that is characterized by the CAP367

phenomenon (Terzano et al., 2002). In our data, the mean CAP rate was 49.19%368

with the following distribution across NREM stages: N1= 41.69%, N2= 48.36%,369

and N3= 53.37% (Table 2). On average, subjects presented 37.1 CAP sequences per370

night, with a mean duration of 4.55 min. With respect to CAP subtypes distribution,371

206 were A1 (25.7% of the CAP time); 67.2 were A2 (9.2% of the CAP time), and372

83.8 were A3 (14.19% of the CAP time). A1’s were more present during stage N3373

(50.21%) as compared to N2 (5.72%) and N1 (1.49%), in agreement with previous374

studies (Halász et al., 2004). On the other hand, subtypes A2 and A3 predominated375

in stage N1 (particularly A3, 37,77%) and N2 (14.39% for A2 and 17.46% for A3) 2.376

To dissect the relationship between CAP and occurrence of neuronal avalanches377

during NREM sleep, we compare the time course of the avalanche density with the378

density of distinct CAP phases (Fig. 6A) defined as FX(t) = (uX(t))/u0, where X379

denotes the specific CAP phase—A, A1, A2, A3, B—and uX(t) the time occupied by380

the specific CAP phase in a window of length u0 = 10 s. We observe a remarkable381

time correspondence between the temporal profile of the density of avalanches Fav(t)382

and the density of CAP, with the peaks in avalanche density corresponding to high383

density of CAP—in particular phase A and A1 (Fig. 6A). Specifically, we notice384
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Measure MEAN SD 
CAP time (minutes) 162,51 42,3 

CAP rate (%) 49,05 14,4 
CAP sequences (n) 37,1 8,3 

CAP sequences length (min) 4,55 1,6 
CAP cycle (n) 357,6 104,1 

Phase A length (s) 8,59 1,4 
Phase B length (s) 20,67 3,5 

Phase A1 (n) 206 86,9 
Phase A2 (n) 67,2 39,2 
Phase A3 (n) 83,8 34,9 

CAP A1 Rate (%)  25,7 11,7 
CAP A2 Rate (%)  9,2 5,8 
CAP A3 Rate (%)  14,19 7,4 
CAP Rate N1 (%) 41,69 17,3 
CAP Rate N2 (%) 48,36 19,3 
CAP Rate N3 (%) 53,37 18,8 
CAP A1 N1 (%) 1,75 3,0 
CAP A1 N2 (%) 16,9 12,2 
CAP A1 N3 (%) 50,21 19,5 
CAP A2 N1 (%) 2,37 3,1 
CAP A2 N2 (%) 14,39 9,4 
CAP A2 N3 (%) 5,72 2,1 
CAP A3 N1 (%) 37,77 17,9 
CAP A3 N2 (%) 17,46 9,4 
CAP A3 N3 (%) 1,49 1,7 

 Subtype A1 duration (s) 6,42 2,0 
 Subtype A2 duration (s) 8,63 2,0 
 Subtype A3 duration (s) 12,72 1,32 

 
Table 2: Average characteristics of sleep micro-architecture across the analyzed subjects
(n = 10).

that, with sleep deepening, the progressive increase of CAP density is accompanied385

by a parallel increase in avalanche density. We find that the percentage of phase386

A occupied by neuronal avalanches is about 42.16%, while the percentage of sleep387

time occupied by avalanches is 19,21% (Materials and Methods). Interestingly, CAP388

phase A1 is even richer in avalanches compared to CAP A phases A2 and A3 (53,32%389

versus 43,84% and 27,72%, respectively).390

The physiological increase of CAP cycles during N2 and N3, indirectly leads to a391

reduction of time occupied by NCAP sleep. Furthermore, during the deepest stages392

of NREM sleep, CAP’s typically present shorter phases B. These changes in the sleep393
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Figure 6: Occurrence of neuronal avalanches is coupled with the occurrence of the
CAP. (A) Density of avalanches versus density of CAP phases as function of time for an individual
subject. Density of avalanches in blue, density of phase A in red, density of phase A1 in green,
density of CAP in black. (B) The mean Pearson correlation coefficients ρ(x, y) (average over
subjects; see Materials and Methods, Eq. (2)) between avalanche occurrence and micro-architecture
features (NCAP, CAP, B, A, and A subtypes A3,A2,A1). Error bars indicate the standard error
of the mean. Differences are all significant (p < 0.01 for all couples except av-B versus av-A3 and
av-A2 versus av-A3) but av-CAP versus av-A3 and av-A2, av-A versus av-A1, and av-NCAP versus
av-B. Significance legend: *** for p < 0.001; ** for p < 0.01; * for p < 0.05. The ** in panel B
refers to the pairwise comparison between av-A1 and all the other bars but av-A. Differences are
not significant where no stars are reported.

micro-dynamics lastly sustain the observed increase of avalanche density.394

Next, we measure the Pearson correlation coefficients between occurrence of neu-395

ronal avalanches and different CAP phases (see Materials and Methods, Eq. 2). We396

find positive correlations between occurrence of avalanches and CAP phase A, in par-397

ticular CAP phase A1 (Fig. 6B). On the contrary, we observe negative correlations398

between occurrence of avalanches, CAP phase B, NCAP periods. This indicates that399

the occurrence of avalanches during NREM sleep is strictly related to occurrence of400

CAP, and in particular CAP phase A1. These results are consistent across subjects,401

as shown in Table 3.402
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Subject av-NCAP av-CAP av-B av-A3 av-A2 av-A1 av-A
#1 -0,240 0,240 0,113 0,050 0,080 0,270 0,260

#2 -0,140 0,140 -0,016 0,130 0,150 0,220 0,290

#3 -0,060 0,060 -0,041 0,090 0,090 0,170 0,190

#4 -0,140 0,140 0,039 0,010 0,110 0,230 0,190

#5 -0,040 0,040 -0,013 0,000 0,050 0,190 0,130

#6 -0,020 0,020 -0,206 0,040 0,090 0,250 0,270

#7 -0,070 0,070 -0,074 0,080 0,110 0,200 0,240

#8 -0,220 0,220 0,056 0,040 0,110 0,330 0,340

#9 -0,140 0,140 0,016 0,050 0,060 0,240 0,230

#10 0,080 -0,080 -0,158 -0,030 0,030 0,160 0,130

Mean -0,099 0,099 -0,029 0,046 0,088 0,226 0,227

Std error 0,030 0,030 0,097 0,219 0,016 0,011 0,015

Table 3: Pearson correlation coefficient between avalanche occurrence and CAP
subtypes for the analyzed individual subjects (n = 10) (Materials and Methods).

4 Discussion403

In this paper we analyzed the scaling properties of neuronal avalanches during sleep404

in healthy volunteers, and investigated the relationship between avalanche dynam-405

ics and sleep macro- and micro-architecture, with a particular focus on the cyclic406

alternating patterns (CAP). We showed that the scaling exponents characterizing407

neuronal avalanches are consistent with the MF-DP universality class, and obey the408

scaling relations theoretically predicted. This indicates that, during physiological409

sleep, brain dynamics is consistent with criticality and is satisfactorily described by410

the MF-DP universality class. Furthermore, we introduced a measure—the density411

of avalanches—to quantify the relationship between avalanche dynamics and sleep412

macro- and micro-architecture. Our analysis showed that distributions of avalanches413

in time is not random but closely follow the descending and ascending phase of414
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the NREM-REM cycles. Within such cycles, the presence of neuronal avalanches is415

linked to the occurrence of CAP during NREM sleep. Specifically, we found that the416

density of avalanches is higher during NREM, and, within NREM sleep, avalanche417

occurrence is positively correlated with the phase A of the CAP, in particular the418

phase A1. This suggests a close relationship between modulation and control of brain419

criticality, sleep macro- and micro-architecture, and brain function, which we discuss420

in turn.421

Brain dynamics and criticality during sleep422

Empirical evidence indicates that the human brain operates close to a critical regime423

both in resting wakefulness and during sleep (Priesemann et al., 2013; Bocaccio424

et al., 2019; Allegrini et al., 2015; Lombardi et al., 2021b, 2020a; Wang et al., 2019).425

In particular, recent studies suggest that criticality plays a key role in determining426

the temporal organization of sleep stage and arousal transitions (Lombardi et al.,427

2020a; Wang et al., 2019). However, critical dynamics during sleep remains poorly428

understood. In this respect, a key open question concerns the universality class to429

which brain criticality obeyed during sleep. To the best of our knowledge, this is430

the first study investigating this problem, and exploring the scaling relation among431

critical exponents of neuronal avalanches during sleep. We reported a picture that432

is fully consistent with the MF-DP universality class. Indeed, we have shown that433

(i) the critical exponents for the avalanche size and duration distributions are very434

close to the prediction of the critical branching process, MF-DP universality class,435

i.e. τ = 3/2, α = 2, respectively; (ii) the exponent k connecting sizes and durations436
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is very close to 2, as predicted; (iii) the exponents τ , α, and k correctly satisfy the437

expected scaling relation.438

The exponent k has been previously measured in the awake resting-state, from439

Zebrafish and rats to monkeys and humans (Ponce-Alvarez et al., 2018; Miller et al.,440

2019; Fontenele et al., 2019; Lombardi et al., 2021a; Mariani et al., 2021; Dalla Porta441

and Copelli, 2019). In line with our findings, Miller et al. (Miller et al., 2019)442

found that, in awake monkeys, k ≃ 2 in the range corresponding to the power law443

regime of the size and duration distributions, while k ≃ 1 − 1.5 in the region that444

corresponds to the exponential cut-off of the distributions—where we found k ≈ 1.3.445

Similar results were found in Zebrafish (Ponce-Alvarez et al., 2018). Deviation from446

the value k = 2 was observed in the resting-state of the human brain (Lombardi447

et al., 2021a), in ex-vivo turtle visual cortex (Shew et al., 2015), in the barrel cortex448

of anesthetized rats (Mariani et al., 2021), in cortex slice cultures (Friedman et al.,449

2012), and in freely behaving and anesthetized rats (Fontenele et al., 2019). Notably,450

a recent work (Apicella et al., 2022) has shown that, in a 2D neural network, the451

value of the exponent k is related to the network connectivity, with k ≃ 1.3 for a452

2D connectivity, and k = 2 when the mean-field approximation is justified, namely453

when the spatial extension can be considered small as compared to the system’s454

connectivity range. This suggests that the crossover observed in S(T ) (Fig. 4) from455

k ≃ 2 to k ≃= 1.3 could be due to the different nature of small, localized avalanches,456

which propagate over a densely connected network, and larger avalanches, which rely457

on the structured topology of large scale brain networks with sparser and long-range458

connections. Subsampling in brain activity recordings has also been suggested as a459
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potential origin of the observed scaling exponents (Carvalho et al., 2021).460

Neuronal avalanches and sleep macro-architecture461

The static properties of neuronal avalanches during sleep, i.e. size and duration dis-462

tributions, have been investigated in previous studies. Analyses of scalp EEG and463

human intracranial depth recordings showed that such distributions follow a simi-464

lar power law behavior across the sleep-wake cycle, with exponents in line with our465

observations (Allegrini et al., 2015; Priesemann et al., 2013). Similarly, the analy-466

sis of whole-brain fMRI data confirmed a robust critical (or near-critical) behavior467

from wakefulness to deep sleep, with little differences in the power-law exponent468

of the avalanche size distribution (in particular between wakefulness and stage N2)469

(Bocaccio et al., 2019).470

On the other hand, here we have shown that, although the static properties471

remain fairly stable across different sleep stages (Bocaccio et al., 2019; Allegrini et al.,472

2015; Priesemann et al., 2013), avalanche dynamics is modulated by the ascending473

and descending slope of the NREM-REM sleep cycles. By analyzing the temporal474

evolution of the avalanche density, we found that avalanche occurrence markedly475

and progressively increases with NREM sleep stages N2 and N3 and, specifically,476

during periods of sleep deepening (descending slope of sleep cycles), in parallel with477

the increase of SWA. On the contrary, the abrupt decrease in avalanche density478

during the ascending slope of sleep cycles suggests a negative influence from REM-479

on/wakefulness circuits with respect to their appearance. The different behavior of480

avalanche density during the descending and ascending slopes of the sleep cycles was481
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not previously observed, despite the crucial role of such dynamics for sleep regulation.482

In terms of sleep physiology, the descending and ascending slopes of sleep cycles are483

markedly different: during the descending slope, sleep-promoting forces are stronger,484

the thalamo-cortical system works in the burst-firing mode and brainstem cholinergic485

pathways are tonically repressed. Conversely, during the ascending slope, the NREM486

driving forces become weaker, sleep is more vulnerable towards pro-arousal intrusions487

and REM-promoting outputs prevail (Halász et al., 2004). Taking this into account,488

our results suggest that avalanche occurrence is not random across the sleep cycles,489

but instead contributes to define and sustain the dynamical interplay between sleep-490

wake promoting networks.491

Avalanches and sleep micro-architecture492

Sleep architecture is composed of numerous oscillatory patterns, including, above493

all, the CAP (Terzano et al., 2000). CAP’s occur on time scales of seconds or494

minutes, accompany sleep stage shifts, and contribute to the organization of sleep495

cycles. The CAP is a periodic EEG activity that reflects a state of brain instability,496

and is characterized by the alternation of phases of higher EEG amplitude (CAP497

phases A, “activation phases”) separated by periods of lower EEG amplitude (CAP498

phases B, “de-activation phases”)—both phases lasting between 2 and 60 seconds.499

Conversely, the NCAP is defined as a period of sustained physiologic stability. CAP500

phases A can be further subdivided into three subtypes: A1, A2 and A3. Isolated501

A1 phases, not followed by a subsequent phase A within 60 seconds, are scored as502

NCAP, confirming that the dynamic interplay between phases of activation/baseline503
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is key characteristic of the CAP framework.504

Our analyses demonstrated positive correlations between CAP and avalanche505

occurrence, and negative correlations for NCAP sleep. Such link suggests a close506

relationship between CAP and brain tuning to criticality during sleep, a key aspect507

that should be further investigated in future work.508

Although the definition of avalanches (large, collective non-gaussian fluctuations509

of brain activity) is not related to the definition of CAP phase A, our results show510

that neuronal avalanches are correlated with the occurrence of CAP phase A. In511

particular, we observed stronger correlations between avalanche occurrence and the512

CAP A1 subtype, and weaker positive correlation with subtypes A2 and A3. Inter-513

estingly, the correlation between avalanches and the phase A of the CAP is more514

prominent than the correlation with the CAP itself— phase A and phase B together.515

We speculate that this could be due to the opposite significance of CAP phase A516

and B with respect to sleep dynamics. Electrophysiologically the phase B is char-517

acterized by the rebound of background EEG activity after the strong ‘activation’518

driven by the phase A. Compared to phase A, the phase B could be described as519

“lower arousal reaction” or vehicles of deactivation (Parrino et al., 2012). Impor-520

tantly, we did not observe significant correlation between avalanche occurrence and521

phase B, corroborating our assumption about the relationship between CAP phase A522

and avalanches. The prominent correlation between avalanche occurrence and CAP523

“activation phase” A1 may suggest that neuronal avalanches emerge at the edge of524

a synchronization phase transition, as recent numerical studies indicate (Di Santo525

et al., 2018; Scarpetta and de Candia, 2014; Scarpetta et al., 2013).526
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Finally, we note that CAP-A1 physiologically prevail in the first half of the night527

and during the descending slope of each sleep cycle, boosting or maintaining SWS.528

Similarly, the avalanche density decreases moving from the first to the last sleep529

cycle. Hence, both CAP phase A and neuronal avalanches follow a physiological,530

homeostatic decay throughout the night, and they may both contribute to the build-531

up of the deepest stages of NREM sleep.532

Neuronal avalanches, CAP, and learning mechanisms: an in-533

triguing hypothesis534

Sleep is crucial to renormalize synaptic weight, ensure an optimal and effective net-535

work state for information processing, and preserve cognition (Cirelli and Tononi,536

2021). Renormalization of synaptic weights taking place during sleep may serve537

to keep the network close to criticality (Pearlmutter and Houghton, 2009). In line538

with this view, the here reported higher concentration of avalanches during SWS and539

CAP-A1 indicate that these states may exert a pivotal role in modulating and restor-540

ing brain criticality. Furthermore, because CAP-A1 has been proposed to play a role541

in the sleep-dependent learning processes (Ferri et al., 2008), our observations point542

to a functional link between critical avalanche dynamics and sleep-dependent learn-543

ing processes, as shown in recent numerical studies (Scarpetta and de Candia, 2014;544

Scarpetta, 2019). Specifically, it has been demonstrated that, within the alternation545

of up- and down-states observed during SWS, the sequence of avalanches occurring546

in the up-states correspond to an intermittent reactivation of stored spatiotemporal547

patterns, a mechanism that is key for memory consolidation (Dupret et al., 2010).548
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Conclusions and limitations of the study549

Overall, our findings open a novel perspective on the relationship between critical550

brain dynamics and physiological sleep. We provided a comprehensive account of551

the critical exponents and scaling relations for neuronal avalanches, demonstrating552

that brain dynamics during sleep follows the MF-DP universality class. This sets the553

bases for future investigation of neural collective behaviors occurring during sleep,554

including their functional role in relation to criticality. As a first step in this direc-555

tion, our study provides evidence of a functional link between avalanche occurrence,556

slow-wave sleep dynamics, sleep stage transitions and occurrence of CAP phase A557

during NREM sleep. As CAP is considered one of the major guardians of NREM558

sleep that allows the brain to react dynamically to any external perturbation and559

contributes to the cognitive consolidation processes occurring in sleep, our observa-560

tions suggest that neuronal avalanches at criticality might be associated with flexible561

response to external inputs and to cognitive processes—a key assumption of the crit-562

ical brain hypothesis. This is a crucial aspect that should be investigated in future563

work. Moreover, based on our results, one could speculate that a relationship between564

occurrence of neuronal avalanches and physiological sleep measures exists. To ad-565

dress this point, additional studies in pathological sleep conditions where both CAP566

and criticality-based metrics show a deviation from the physiological parameters are567

needed (Parrino and Vaudano, 2017; Zimmern, 2020). Future work should also over-568

come some limitations we acknowledge in the current study. The limited number of569

subjects and the use of scalp EEG (we enrolled healthy volunteers for which more570

invasive techniques are not allowed), which limits the analysis of collective neural571
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Fig. S1: Avalanche size (A) and duration distribution (B) for an individual subject
and for different values of the threshold θ used to identify neuronal avalanches (Ma-
terials and Methods) (blue tick line: θ = 1 SD; green tick line: θ = 2 SD; red tick line
= θ = 3 SD). The dotted black line is the power law fit for θ = 2SD. The average
size as a function of the duration (C) follows the power law relationship ⟨s⟩ ∝ T k

with k = 2 (black thick line) for all threshold values and for T ’s smaller than the
onset of the exponential cut-off of the duration distribution P (T ). For larger T ’s
k = 1.3.
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Fig. S2: Distribution of size (A) and duration (B) for avalanches in the FIRST N3
(green) and the LAST N3 (magenta), and (C) average size as a function of the dura-
tion for avalanches in the FIRST N3 (green) and in the LAST N3 (magenta). Both
the distributions and the relationship between average avalanche size and avalanche
durations remain stable when moving from the FIRST N3 to the LAST N3.
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