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1 Cellular response to genetic perturbation is central to numerous biomedical applications
> from identifying genetic interactions involved in cancer to methods for regenerative medicine.
s However, the combinatorial explosion in the number of possible multi-gene perturbations
+ severely limits experimental interrogation. Here, we present GEARS, a method that can
s predict transcriptional response to both single and multi-gene perturbations using single-
s cell RNA-sequencing data from perturbational screens. GEARS is uniquely able to predict
7 outcomes of perturbing combinations consisting of novel genes that were never experimen-
s tally perturbed by leveraging geometric deep learning and a knowledge graph of gene-gene
s relationships. GEARS has higher precision than existing approaches in predicting five dis-
10 tinct genetic interaction subtypes and can identify the strongest interactions more than twice
11 as well as prior approaches. Overall, GEARS can discover novel phenotypic outcomes to

12 multi-gene perturbations and can thus guide the design of perturbational experiments.
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» Introduction

12 The transcriptional response of a cell to genetic perturbation reveals fundamental insights into how
15 the cell functions. It can describe diverse functionality ranging from how gene regulatory ma-
16 chinery helps maintains cellular identity to how modulating gene expression can reverse disease
17 phenotypes [1-3]. This has important implications for biomedical research, especially in the de-
18 sign of more effective and patient-specific therapeutics. For instance, if perturbing the expression
19 of a gene is found to reduce cancer cell proliferation, then a drug targeting that gene would have
20 a significantly higher likelihood of success in clinical trials than one without such target valida-
21 tion [4]. Alternatively, in the multi-gene setting, synergistic gene pairs could be identified that
22 are far more effective in limiting tumor growth when targeted in combination rather than when
23 each gene is targeted individually [5-7]. Knowledge of genetic perturbation outcomes can also
2« dramatically influence the field of stem cell biology and regenerative medicine. Since complex
25 cellular phenotypes are known to be produced by genetic interactions between small sets of genes,
26 these same interactions could also be leveraged to make the precise engineering of cell identity
27 more experimentally tractable [8—12]. While recent improvements in the precision and scale of
28 perturbational screens have enabled scientists to more rapidly sample perturbation outcomes ex-
29 perimentally [8, 13—16], the combinatorial explosion of many possible multi-gene perturbations
s makes computational approaches indispensable in uncovering outcomes for the vast majority of
st combinations.

3 However, existing computational methods for predicting perturbational outcomes present
a3 their own limitations. The predominant approach for 1-gene perturbation outcome prediction re-
s lies on inferring transcriptional relationships between genes in the form of a network [17-19].
ss This is limited either by the difficulty in accurately inferring a network from large single-cell
s gene expression datasets [20] or by the incompleteness of networks derived from existing public
a7 databases [21-23]. Moreover, predictive models built using such networks linearly combine the
s effects of individual perturbations which renders them incapable of predicting non-additive genetic
39 interaction effects [19,24]. Thus, they cannot predict outcomes for multi-gene perturbations that
s often exhibit emergent phenotypes such as synergy and epistasis.

41 More recent work uses deep neural networks trained on data from large perturbational screens


https://doi.org/10.1101/2022.07.12.499735
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.07.12.499735; this version posted July 15, 2022. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

42 to skip the network inference step and directly map genetic relationships into a latent space for
4«3 multi-gene perturbation outcome prediction [25,26]. While the use of deep learning enables the
s prediction of non-additive genetic interactions between combinations of genes, these methods still
45 require that each gene in the combination be experimentally perturbed before the effect of perturb-
s 1ng the combination can be predicted. This is caused by the inability to leverage prior knowledge
47 of genetic relationships, which makes existing models entirely dependent on data from expen-
48 sive experimental perturbations. For example, the outcome of a 2-gene combinatorial perturbation
49 can only be predicted by such models if both genes have been seen experimentally individually
so perturbed in the training data. By the same reasoning, no 1-gene perturbation outcome can be
st predicted since that gene would not have been seen experimentally perturbed.

52 Here, we present GEARS (Graph-Enhanced gene Activation and Repression Simulator), a
ss computational method that integrates deep learning with a knowledge graph of gene-gene relation-
s« ships to simulate the effects of a genetic perturbation. The incorporation of biological knowledge
55 gives GEARS the unique ability to predict the outcomes of perturbing single genes, or combina-
ss tions consisting of genes, that were never experimentally perturbed. GEARS uses a new approach
s7 of representing each gene and each perturbation with its own multi-dimensional embedding. This
ss allows GEARS to more effectively capture gene-specific heterogeneity and better predict non-
s linear interaction effects compared to existing methods. A comprehensive evaluation establishes
so that GEARS can accurately predict outcomes of 2-gene combinatorial genetic perturbations, sig-
st nificantly outperforming all current approaches. GEARS can predict five different genetic inter-
&2 action subtypes (synergy, suppression, neomorphism, epistasis and redundancy) and, for four of
s these, GEARS is twice as accurate as the next best approach in predicting the strongest inter-
s« actions. GEARS is also able to generalize to new regions of perturbational space by predicting
s post-perturbation phenotypes that are unlike what was seen during training yet still biologically
es meaningful. Thus, GEARS can directly impact the design of future perturbational experiments
7 through uncovering a larger region of combinatorial perturbational space than was previously pos-

s sible using the same experimental data.
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o Results

70 GEARS combines prior knowledge with deep learning to predict post-perturbation gene ex-
71 pression. GEARS is a deep learning-based model that predicts the gene expression outcome of
72 combinatorially perturbing a set of arbitrarily many genes. The perturbation of each gene in this
73 perturbation set’ is defined as either the activation or repression of the expression of that gene,
74 represented as a signed binary value. GEARS takes as input a vector of expression values that
75 represent an unperturbed cell along with the perturbation set being applied (Figure 1a). The out-
76 put is the transcriptional state of the cell following the perturbation defined by this set. GEARS
77 is trained using single-cell gene expression data for both unperturbed cells and cells that have
78 undergone known genetic perturbations (Methods).

79 In the case of a multi-gene perturbation, if each gene in the perturbation set has previously
s been seen experimentally perturbed, then predicting the outcome of that perturbation is trivial un-
s1 less the interaction effects are not linearly additive. Thus, accurately capturing these non-additive
s2 effects is critical for any model that predicts multi-gene perturbational outcomes. GEARS ad-
ss dresses this issue through a new approach of representing each gene and each gene perturbation
s« using its own embedding vector (Figure 1b). By doing so, GEARS more effectively captures the
ss gene-specific heterogeneity of response to perturbation that is responsible for non-linear interac-
ss tion effects. Each gene’s embedding is sequentially combined with the perturbation embedding of
&7 each gene in the perturbation set. This process is independent of the size of the perturbation set
ss making GEARS easily extendable to larger sets. The resulting *perturbed’ gene embeddings are
ss combined into a single ’cross-gene’ embedding vector which captures transcriptome-wide infor-
o0 mation for each cell. GEARS uses this vector to account for transcriptional effects that were not
o1 directly caused by the external perturbation but as a secondary effect of the activation/repression
o2 of other genes.

o GEARS is uniquely able to extend perturbation outcome prediction to perturbation sets
s« where one or more genes have not been experimentally perturbed. This includes 1-gene pertur-
os bations. GEARS does this by not relying entirely on arbitrary encodings to represent each gene
96 perturbation but instead using embeddings that incorporate prior knowledge in the form of gene-

o7 gene relationships. The gene co-expression knowledge graph is used as an inductive bias when
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s learning gene embeddings and the same is done using a Gene Ontology-derived knowledge graph
9o for the gene perturbation embeddings (Methods). Here we rely on two biological intuitions: (i)
100 genes that share similar expression patterns should likely respond similarly to external perturba-
101 tions and (i1) genes that are involved in similar pathways should impact the expression of similar
102 genes upon perturbation (Figure 1b). GEARS is itself independent of the choice and structure of
103 the underlying knowledge graph (Methods). Thus, different knowledge graphs may prove more
104 suitable depending upon the use case and the gene set of interest. GEARS functionalizes this
105 graph-based inductive bias using a graph neural network architecture (Methods) (Figure 1b). Each
106 gene or gene perturbation in the respective input graph is represented as a distinct node and its

107 node-feature vector is set to be its gene embedding or gene perturbation embedding respectively.

1 GEARS predicts outcomes for perturbing single genes not seen perturbed during training.
109 In the case of predicting the outcome of 1-gene perturbations, GEARS was evaluated on
110 the perturbation of genes that had been held out at the time of training (Figure 2a). We compare
11 performance with an existing deep learning-based model (CPA) [26] that also learns to represent
12 perturbations in a latent space but models each perturbation using a one-hot encoding and does
113 not use any prior information (Methods). Because no other existing method has this functionality,
112 we also designed two alternative approaches for evaluation of performance. The first (No-Perturb)
ns assumes that the perturbation does not result in any change in gene expression. The second is a
1s linear model which uses the gene co-expression graph to linearly scale and propagate the effect of
117 perturbing a gene (Methods).

118 Two different genetic perturbation screens consisting of 87 1-gene perturbations (Adamson
19 et al. [16]) and 24 1-gene perturbations (Dixit et al. [14]) were used for the evaluation. These
120 were run using the Perturb-Seq assay which combines a pooled screen with a single-cell RNA
121 sequencing readout of the entire transcriptome for each cell [14, 16]. Both datasets contained
122 between 50,000 and 90,000 cells with an average of 300-700 cells per perturbation and at least
123 7,000 unperturbed cells.

124 GEARS was trained separately on each dataset. A hold-out set of test perturbations was
125 defined for each dataset such that no cell that underwent one of the test perturbations was seen at

126 the time of training. We tested model performance by measuring the mean squared error (MSE)
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127 (Figure 2b) and the Pearson correlation (Figure 2c) between the predicted post-perturbation gene
128 expression and the true post-perturbation expression for the held-out set. Since the vast majority
129 of genes do not show significant variation between unperturbed and perturbed states, we restricted
130 our MSE analysis to the harder task of only considering the top 20 most differentially expressed
131 genes. This also makes the evaluation more rigorous since the model cannot trivially predict no
122 perturbation effect for most genes and still achieve a low MSE. GEARS outperforms all baselines
133 significantly on both datasets with an MSE improvement of over 50% (Figure 2b). When looking
13« across all genes using the Pearson correlation, GEARS shows more than three times better per-
135 formance in the case of both the Adamson and Dixit datasets (Figure 2c). GEARS also shows a
136 clear improvement in capturing the right direction of change in expression following perturbation

137 (Figure 2d) which reflects a more accurate representation of regulatory relationships.

138 GEARS predicts multi-gene perturbation outcomes for both previously seen and unseen
139 genes.

140 GEARS predicts outcomes for perturbation sets consisting of multiple genes. However,
141 GEARS was only evaluated on 2-gene perturbations since this was the only combinatorial per-
12 turbation data that was publicly available. We used a Perturb-Seq dataset (Norman et al. [8]) con-
143 taining 131 2-gene perturbations and 105 1-gene perturbations (which included all genes that were
144 perturbed in combination), with 300-700 cells treated with each perturbation. In the case of multi-
145 gene perturbations, there are multiple categories of generalization which impact the difficulty of the
146 prediction task. Therefore, we defined three such generalization classes when evaluating GEARS
147 on the 2-gene perturbations in the Norman dataset (Figure 2e). The first and simplest case was
1.8 when the model had seen each of the 2 genes in the combination experimentally perturbed in the
149 training data (2-gene perturbation, 0/2 unseen); the second is when either one of the two individual
150 perturbations had not been seen experimentally perturbed at the time of training (2-gene pertur-
151 bation, 1/2 unseen) and the third is when both perturbed genes had not been seen experimentally
12 perturbed in the training data (2-gene perturbation, 2/2 unseen) (Supplementary Information Fig
153 1). GEARS improves performance by approximately 45% across all three levels of generalization
14 (Figure 2f). In fact, even when GEARS was trained with only 1 out of the 2 genes seen experi-

155 mentally perturbed at the time of training, it was able to perform comparably with the next best
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156 performing method that had seen both genes experimentally perturbed.

157 Model performance was also analyzed on a gene-by-gene basis to make sure that GEARS
158 didn’t overly prioritize some genes over others. In the case of predicting the outcome of perturbing
150 the 2-gene combination FOSB+CEBPB, GEARS correctly captures both the right trend and the
10 magnitude of perturbation across all 20 differentially expressed genes (Figure 2g) even though
1e1 one of the genes (CEBPB) had not been seen experimentally perturbed during training. GEARS
12 makes accurate predictions in cases of both up and downregulation (e.g. change in the expression
s of LST1 and GYPB). Similarly, good performance is observed for several other examples across
1« generalization categories (Extended Data Figure2, Supplementary Figure 2).

165 While the incorporation of knowledge graphs was instrumental in enabling these predictions
16 (Extended Data Figure 4), it also limits GEARS’ ability to predict outcomes for perturbing genes
167 that are both not well connected in this graph and have also not been experimentally perturbed
s (Methods) (Extended Data Figure 3). GEARS makes use of a Bayesian formulation to overcome
10 this challenge by outputting an uncertainty metric that is inversely correlated with model perfor-
170 mance (Supplementary Figure 5). By allowing users to filter out predictions with high uncertainty,
171 this uncertainty metric builds confidence in GEARS’ predictions, especially in the case of pertur-

172 bation sets containing genes that were not seen experimentally perturbed.

173 GEARS can predict new biologically meaningful phenotypes to help uncover the landscape
174 of combinatorial perturbation outcomes.

175 We applied GEARS to the discovery of new phenotypes through predicting the outcomes of
176 all 5,460 pairwise combinatorial perturbations of the 105 genes for which 1-gene post-perturbation
177 expression data was available in the Norman et al. dataset [8] (Figure 3a). GEARS was trained
178 using the post-perturbational gene expression profiles for all 1-gene perturbation outcomes as well
179 as 131 2-gene perturbation outcomes (Figure 3b). The predicted post-perturbation expression cap-
180 tured many distinct phenotypic clusters including all of those previously identified in [8]. Broad
181 trends toward three key lineages of erythroid cells, granulocytes and megakaryocytes were visible
1.2 (Figure 3c). In addition to these phenotypes, GEARS predicts novel phenotypes that are distinct
1ss  from those that were observed at the time of training.

184 For one such cluster showing high erythroid marker expression (containing 158 perturbations
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15 including IKZF3+PRDM1, ATLI+FEV and IKZF3+SPII), we verified whether the novel pheno-
186 type that it represented was biologically meaningful (Figure 3d). Mean differential expression
1e7 (DE) between unperturbed cells (lymphoblasts) from Norman et al. [8] and each of the genetic
188 perturbation outcomes predicted by GEARS was compared with the DE between hematopoietic
180 progenitor cells and proerythroblast cells (an early stage in the erythroid lineage) in the Tabula
190 Sapiens cell atlas [27]. The goal here was to identify which perturbations produced a change in
191 gene expression that was most similar to that observed in the transition from hematopoietic pro-
192 genitor cells to an erythroid lineage. The log fold change in expression for differentially expressed
193 genes was used to define a DE vector for each of these transitions. Using the dot product between
19« the DE vector for each GEARS-predicted perturbation outcome and the DE vector for proerythrob-
15 lasts in Tabula Sapiens, we observed that perturbations in the novel cluster showed more similarity
196 to the transition to proerythroblasts than any other perturbation seen at the time of training (Figure
197 3e, 3f) (Supplementary Information). Thus, this cluster was displaying a phenotype that was not
198 only novel but also biologically meaningful, illustrating how GEARS is able to effectively gener-
190 alize to new regions of perturbation space. It also highlights how GEARS can be used to discover

200 hew experimental routes (perturbations) for engineering cells towards desired phenotypes.

200 GEARS predicts non-additive effects of combinatorial perturbation and identifies genetic
202 interaction subtypes.

203 The ability to predict non-additive interaction effects is critical for a multi-gene perturbation
20« model. In the case of a 2-gene perturbation, if the outcomes of perturbing the two genes inde-
205 pendently are already known, then a naive model could simply add the perturbational effects to
206 estimate the effect of the combinatorial perturbation (Figure 4a). However, this would not always
207 be accurate since genes are known to interact with one another to produce non-additive genetic
208 interactions (GI) upon perturbation. There are five key GI subtypes: synergy, suppression, neo-
200 morphism, redundancy, and epistasis (Methods) (Figure 4b) [8]. For example, two genes that in-
210 dependently cause a minor loss in cell growth could synergistically interact with one another upon
211 combinatorial perturbation to cause cell death. Alternatively, the interaction between two genes
212 could also be epistatic, where one gene dominates the phenotype produced by the combination and

213 masks the effect of the other gene.
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214 GIs were defined using metrics (GI scores) that compare observed post-perturbation gene ex-
215 pression with that expected under an additive model. In the case where both genes for each 2-gene
216 combination had been seen experimentally perturbed, GI scores predicted by GEARS showed a
217 very strong correlation to those calculated using true expression (R? =~ 0.5 for all 4 GI scores),
2is much higher than existing methods (e.g. R? ~ 0 in the case of CPA) (Extended Data Figure 5). To
219 simulate a real application of GEARS for recommending experiments, performance metrics were
220 calculated on the top-ranked predictions for each GI subtype. Given the top-10 2-gene combi-
221 nations predicted to most strongly exhibit a GI subtype phenotype, precision@ 10 measures what
222 fraction truly exhibits that GI subtype based on experimentally measured post-perturbation gene
223 expression. GEARS increases precision@ 10 by more than 50% across 4 out of 5 GI subtypes when
224 compared to baseline methods (Figure 4c) with an improvement greater than 100% in the case of
225 redundancy and epistasis. GEARS also shows a doubling in accuracy when directly predicting the
226 set of 10 interactions that are strongest for a GI subtype (Top-10 Accuracy) (Extended Data Figure
227 6b).

228 In the novel scenario where one of the two genes in the combination has not been seen
229 perturbed experimentally at the time of training, GEARS also shows significant improvement over
230 baseline approaches. In this case, predictions with high uncertainty were filtered (Methods). When
231 compared to a random baseline, GEARS shows more than a tripling of performance across all
2;2 Interaction types in the case of top-10 accuracy and a doubling of performance in the case of
233 precision@ 10 for three out of the five GI subtypes (Extended Data Figure 8a, 8b). There was
2. an especially strong performance in the detection of synergy where 72% of all interactions (after
235 filtering for low uncertainty) are correctly detected (Extended Data Figure 8c).

236 Non-additive interactions can also be evaluated at the level of individual genes. For this, the
237 20 most non-additively expressed genes were identified for each 2-gene combination. These were
23 the genes where experimentally measured post-perturbation expression deviated most from what
23 was expected under an additive interaction. Based on the MSE for these genes, GEARS is able
2s0 to capture non-additive effects more than 40% better than existing methods across three out of the
241 five GI subtypes (Extended Data Figure 6a). In the remaining two subtypes, GEARS predictive
2.2 performance is on par with existing methods. As an example, GEARS was consistently able to

2e3  predict the correct non-additive effects across almost all of the top 10 non-additively expressed

9
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2e4  genes following the perturbation of the 2-gene combination PTPN124+ZBTB25 (Figure 4d). These
25 effects were in many different forms; such as synergy in the case of the change in expression
26 of ALAS2 and HBAI, suppression in the case of HISTIHIC and neomorphic gene expression in
247 the case of TUFM. This was also observed across other examples of combinatorial perturbations

28 belonging to different GI subtypes (Extended Data Figure 9).

229 GEARS can effectively search combinatorial perturbation space for novel genetic interac-
250 tions .

251 GEARS can predict the presence of genetic interactions among all pairwise combinations
252 of a set of genes (Figure 5a). A GI map measuring four different GI scores was generated to
253 simultaneously capture five different Gls: synergy, suppression, neomorphism, redundancy and
254 epistasis. GI scores were calculated using the post-perturbation gene expression predicted for each
255 of the 5.460 pairwise combinatorial perturbations. The GI map reveals a diverse GI landscape
256 where many genes show strong tendencies towards specific GI subtypes (Figure 5b). This effect is
257 most evident in the interactions between functionally related genes which is in line with previous
258 experimental results [13, 14, 28]. For instance, genes involved in early erythroid differentiation
25 pathways (PTPNI12, IKZF3, LHX1) show a consistent trend of strong synergistic interactions with
260 one another.

261 The uniqueness of this GI map is in how it captures a much broader range of interactions as
262 opposed to conventional GI maps which focus primarily on cell fitness or synergy. For instance,
263 consider the two combinatorial perturbations CEBPE+TBX2 and MAML2+TBX2 that would have
264 shown a similar interaction phenotype if only synergy (GI scores: 0.62, 0.57) was being mea-
265 sured. However, GEARS is able to highlight the difference between the two using its measure
266 for neomorphic interactions (Figure 5d), even when they share a common perturbed gene (7BX2).
267 'The source of this difference is clearly visible when analyzing the most non-additively expressed
268 genes for both perturbations. In the case of MAML2+TBX2, GEARS predicts a consistent trend
269 Of suppression for these genes without any significant change in direction or scale of expression.
270 However, in the case of CEBPE+TBX2, several genes display a change in direction of expression.
21 The non-overlapping nature of different GI subtypes is also clearly visible in the low dimensional

22 UMAP representation of the post-perturbation gene expression for each of the perturbations con-

10
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273 sidered in the GI map (Figure 5c). While neomorphic and redundant interactions tend to cluster in
274 specific regions of this space, epistatic interactions are much more widely distributed. GEARS is
275 further able to identify clusters of activity within each GI subtype. For instance, strongly synergis-
276 tic combinations tend to produce a similar phenotype for this dataset and distinctly cluster together
277 as opposed to other synergistic combinations.

278 Finally, the GI map was further expanded to include those combinations where one of the
279 two genes in the combination had not been seen perturbed at the time of training (Extended Data
250 Figure 10). Based on the results of the model evaluation for this harder generalization setting,
281 predictions were only made for synergy and only those under a reasonable threshold of uncertainty
252 were reported. (Extended Data Figure 7). To our knowledge, this is the first example of extending
253 a pairwise GI map beyond those genes that have been seen perturbed individually, opening the door
25« for systematically interrogating much larger regions of perturbational space than was previously

255 possible using the same data.

» Discussion

257 Predicting transcriptional outcomes of genetic interventions is an important problem in molecular
283 biology with wide-ranging impacts on a number of biomedical research disciplines from regen-
289 erative medicine to drug discovery. While recent developments in high throughput perturbational
200 screens have increased both the precision with which genes can be targeted [29, 30] as well as
201 the scale of information generated [15,31], these experiments remain very costly. Moreover, the
202 combinatorial explosion in multi-gene perturbational space further makes computational methods
203 indispensable for prioritizing which combinations of genes to perturb. However, existing compu-
204 tational approaches face many challenges in fulfilling this potential and are unable to effectively
205 predict multi-gene perturbation outcomes.

296 We present GEARS, which uses single-cell gene expression data from large perturbational
297 screens to predict outcomes of perturbing novel combinations of genes. GEARS is uniquely able
208 to predict the outcomes of perturbing combinations consisting of genes that have never been per-
200 turbed experimentally by leveraging prior knowledge of how genes are interrelated. As CRISPR-
a0 based perturbational screens become more ubiquitous for drug discovery, GEARS is uniquely po-

301 sitioned to complement these experiments through inferring an exponentially larger space of multi-

11
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32 gene perturbation outcomes than existing methods using the same experimental data. Moreover,
ss GEARS can guide the design of new screens by identifying perturbations that would maximize
s« the biological information gained while minimizing experimental cost (Extended Data Figure 3).
a5 One constraint in this process is that GEARS must be trained on a particular cell type or a desired
a6 experimental condition to make reliable predictions under those same conditions. Building trans-
a7 ferability across cell types would help address this issue while also uncovering important insights
ss about how far gene regulatory relationships are shared across cell types.

309 GEARS is also able to capture gene-specific heterogeneity using a new approach of repre-
a0 senting each gene and each gene perturbation with its own multi-dimensional embedding. This al-
a1 lows GEARS to precisely detect the occurrence of non-additive genetic interactions between pairs
sz of genes, especially the strongest interactions for which GEARS is twice as accurate as existing
sz methods. Predicting such emergent behavior is very relevant for discovering tractable routes for
a4 engineering cell identity, where cells are guided between transcriptional states that are often sig-
a5 nificantly different from one another. For instance, GEARS can guide the precise re-engineering
st of immune cells to prevent exhaustion when targeting cancer [32]. GEARS can also guide the
a1z reprogramming of induced pluripotent stem cells to create patient-specifc in-vitro models of dis-
ais ease [33,34]. Moreover, GEARS is not limited to predicting perturbations that can achieve target
19 states that it has seen at the time of training as it is able to predict novel phenotypes that are bi-
a0 ologically meaningful. Overall, this can have significant implications for the field of regenerative
a1 medicine. Thus, GEARS can not only impact the discovery of novel small molecules for target-
322 1Ing disease but also push the frontier in the design of the next generation of cell and gene based

223 therapeutics.

12
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s+ Data availability. All data used for this project has been previously published and the associated

s25 citations are referenced in the text.

a6 Code availability. All code for this project is available at https://github.com/snap-stanford/ GEARS
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Figure 1: GEARS combines prior knowledge with deep learning to predict post-perturbation gene expression. (a) Problem
formulation: Given an n-dimensional gene expression vector for an unperturbed cell on which a set of genetic perturbations is applied,
the goal for GEARS is to predict the gene expression outcome of this perturbation. The perturbation of each gene in the set is defined
as either the activation or repression of the expression of that gene. The set can consist of a single gene or multiple genes. (b)
GEARS model architecture: For each gene in the unperturbed gene expression vector, GEARS initializes a gene embedding vector
and a gene perturbation embedding vector. These embedding vectors are assigned as node features in the gene relationship graph
and the perturbation relationship graph respectively. A graph neural network is used to combine information between neighbors in
each graph. Each resulting gene embedding is summed with the perturbation embedding of each perturbation in the perturbation
set. The output is combined across all genes using the cross-gene layer and fed into gene-specific output layers. The final result is
post-perturbation gene expression. Crucially, the use of the gene and perturbation relationship graphs allows GEARS to generalize
to genes that were never experimentally perturbed during training.
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Figure 2: GEARS outperforms alternative approaches in predicting post-perturbation gene expression. (a) Train-test data
split for 1-gene perturbations. Single gene not seen experimentally perturbed during training is perturbed at the time of testing (1
Unseen of 1) (b) GEARS decreases by 50 — 60% the normalized mean squared error (MSE) in predicted post-perturbation gene
expression for 1-gene perturbations. For each perturbation, the 20 most differentially expressed genes were considered. MSE is
normalized to the no-perturbation case. Perturbation data is from the Adamson et al. dataset [16] and the Dixit et al. dataset [14].
(¢) GEARS increases the Pearson correlation across all genes by > 300% in case of 1-gene perturbations and 26% in case of 2-gene
perturbations, as measured between mean predicted post-perturbation differential gene expression over control and mean true post-
perturbation differential gene expression over control. (d) GEARS increases the percentage of top 20 differentially expressed genes
where the predicted post-perturbation expression has opposite direction (activation/inhibition) compared to the ground truth by 75%
in case of 1-gene perturbations and by 25% in case of 2-gene perturbation. (e) Train-test data split categories for 2-gene perturbations.
(i) 2-gene perturbations where both genes in the combination have been seen experimentally perturbed individually at the time of
training (0 unseen of 2) and the model then predicts the perturbation result when both genes are perturbed. (ii) 2-gene perturbations
where only one (1 unseen of 2) (iii) or none (2 unseen of 2) of the two genes has been seen experimentally perturbed individually
at the time of training but at prediction time the model predicts a 2-gene perturbation. (f) GEARS increases by 45% the normalized
MSE in predicted post-perturbation gene expression for 2-gene perturbations from the Norman et al. dataset [8]. (g) GEARS predicts
the right trend in gene expression on a gene-by-gene basis. Predicted gene expression across 20 most differentially expressed genes
after a combinatorial perturbation (FOSB+CEBPB). In this case, only CEBPB has been seen experimentally perturbed at the time
of training (1 Unseen of 2). The green dotted line corresponds to the mean unperturbed control expression for each gene, the boxes
indicate true post-perturbation differential gene expression over control and the red symbol is the mean post-perturbation differential
expression predicted by GEARS.
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Figure 3: GEARS can predict new biologically meaningful phenotypes to help uncover the landscape of combinatorial per-
turbation outcomes. (a) Workflow for predicting all pairwise genetic interactions for a set of genes (1) Experimentally perturb all
single genes in the set and some combinations. (2) GEARS is trained using post-perturbation gene expression for experimentally
perturbed genes to predict post-perturbation gene expression for novel perturbations not experimentally perturbed. (3) After training,
GEARS predicts post-perturbation gene expression for all pairwise combinations of the gene set. (b) Low-dimensional (UMAP)
representation of post-perturbation gene expression for experimental perturbations used to train GEARS. Key lineages of erythroid
cells, megakaryocytes and granulocytes are visible. The UMAP consists of 105 1-gene perturbations and 131 2-gene perturbations
from [8]. A random selection of perturbations is labelled. (¢) GEARS predicts post-perturbation gene expression for all 5,460
pairwise combinations of the 105 single genes seen experimentally perturbed at the time of training. Low-dimensional (UMAP) rep-
resentation shows how predicted post-perturbation phenotypes (non-black symbols) are often novel and different from phenotypes
seen experimentally (black symbols). Colors indicate Leiden clusters labelled using marker gene expression, following the labeling
in [8]. (d) GEARS identifies a novel phenotypic cluster of 158 perturbations which displayed significantly higher erythroid marker
expression. A random selection of perturbations is labelled. (e) Novel cluster identified by GEARS shows differential expression
(DE) most similar to proerythroblast-like DE. Color bar measures the dot product between the DE corresponding to the transition
from hematopoietic progenitor cells to proerythroblasts (from Tabula Sapiens) and that for the transition from unperturbed controls
to each perturbation outcome. (f) Maximum proerythroblast-like DE observed for perturbations in the novel cluster is much higher
than that observed for any post-perturbation phenotype seen experimentally at the time of training.
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Figure 4: GEARS accurately predicts non-additive combinatorial effects and genetic interaction subtypes. (a) Illustration of
an additive interaction between two genes upon perturbation. X and Y represent single-gene perturbations that cause a square-like
shape and an increase in the size of the cell respectively. Z = (X,Y) is a combinatorial perturbation of both genes that results in a
larger, square-like cell (i.e. an additive interaction). (b) Definition of genetic interactions. Each vector represents the gene expression
(phenotypic) change over the unperturbed state caused by a specific perturbation. Under an additive interaction, the true comblnatorlal
phenotype (2) is equivalent to the additive phenotype, i.e. the resultant of the two individual perturbation vectors (X + Y) In the
case of non-additive interactions, this relationship does not hold true and we see variation in the direction and magnitude of the
true combinatorial phenotypic vector as compared to the additive phenotypic vector. Five genetic interaction subtypes are defined.
In the case of synergy and suppression, the true combinatorial phenotypic vector is similar in direction to the additive vector but
different in magnitude. In the case of neomorphism. the direction is different. Redundancy corresponds to an equivalence between
each of the individual perturbations and the combination perturbation. Epistasis occurs when one phenotype masks the effect of the
other perturbation in the combination. (¢) GEARS improves model precision@ 10 in predicting genetic interactions across all GI
subtypes. All 131 2-gene combinations in [8] were ranked using the genetic interaction (GI) score for each GI subtype (Methods).
Precision@ 10 was calculated as the fraction of the top-10 combinations predicted by GEARS for each GI subtype that also showed
that GI phenotype based on true post-perturbation expression. The random model corresponds to the result from 1000 random draws.
Both GEARS and CPA were trained using a leave-one-out testing approach for each of the 131 combinations. (d) GEARS captures
different types of non-additive effects at the level of individual genes. Change in gene expression over unperturbed control after
perturbing the combination of genes PTPNI2 and ZBTB25. The gray bars show the true post-perturbation gene expression change
over unperturbed control for a particular gene. The hatched yellow bars show the true post-perturbation gene expression for each
of the two single-gene perturbations performed individually. The naive additive model assumes that the effect of the combination is
just the sum of the two known single-gene perturbation outcomes. The red bar indicates the prediction made by GEARS. The genes
on the y-axis are those with the largest difference between true post-perturbation expression following combinatorial perturbation of
PTPNI2 and ZBTB25 and the additive prediction for that combination.
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Figure 5: GEARS can search perturbational space for novel genetic interactions of different subtypes (a) Workflow for pre-
dicting genetic interaction (GI) scores: First, GEARS predicts the post perturbation gene expression for a given combination. Using
this, GI scores are then computed. (b) Multi-dimensional GI map generated by GEARS for all pairwise combinations of the 105
single genes perturbed in [8]. For each combination, GEARS predicted GI scores for five different GIs: synergy and suppression (red
to blue) measured using the magnitude metric, neomorphism (green) measured using model fit, redundancy (orange) measured using
correlation between 1-gene and 2-gene perturbation outcomes and epistasis (purple) measured using the equality of contribution be-
tween the two 1-gene perturbations (Methods). The heatmap is clustered by the mangitude metric. (¢) Genetic interactions are widely
distributed across phenotypic space and are often non-overlapping. Low dimensional (UMAP) representation of post-perturbation
gene expression for all the perturbations considered in the heatmap (Same UMAP as that in Figure 3(b), 3(c)). UMAPs are colored by
the GI scores for each perturbation corresponding to the colorbars used in the heatmap. (d) [lustration of how the multi-dimensional
GI map can capture significant differences in transcriptional response by accounting for different axes of variability that are not rep-
resented in single-dimensional maps. Even though CEBPE+TBX2 and MAML2+TBX?2 produce the same score for suppression, the
GI score for neomorphism indicates that the predicted outcomes are very different. Upon measuring the gene expression changes for
the most non-additively expressed genes, MAML2+TBX?2 shows considerable variability in the direction and magnitude of predicted
gene expression compared to an additive model. On the other hand, CEBPE+TBX?2 shows a consistent suppressive phenotype.
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» Methods

a2s Data preprocessing. The three single-cell RNA-seq datasets used for this study all underwent the
329 same preprocessing. First, each cell was normalized by total counts over all genes and then a log
a0 transformation was applied. To reduce the complexity of the prediction problem, we restricted the
s31  dataset to only the 5000 most highly varying genes. This is similar to the pre-processing performed
a2 by [26] which enabled a more accurate performance comparison (Fig. 2). Since our model requires
a3 a gene embedding for every perturbed gene as well, we additionally included any perturbed gene
ss¢ to our dataset that wasn’t already accounted for in the set of most highly varying genes. For the
asss  analysis of genetic interactions (Fig. 4), we used the gene set from [8] to ensure consistency in our
ass model’s predictions as compared to the original analysis on the experimental data in [8]. This was

a7 generated by identifying all genes in the raw data that had mean UMI value greater than 0.5.

s Overview of GEARS. GEARS considers a perturbation dataset of N cells D = {(g’, P)}¥,,
9 where g' € RY is the gene expression vector of cell i with K genes and P! = (P},--- , Pi,) is
a0 the set of perturbations of size M performed on cell 2. When M = 0, no perturbation is performed
a1 and this is the case for an unperturbed cell. Since we are only considering genetic perturbations,
a2 each perturbation F, in the set corresponds to the index of a gene. The goal of GEARS is to learn
a3 a function f that maps a novel perturbation set P to its post-perturbation outcome, which is a gene
a4 expression vector g.

345 Specifically, given a perturbation set P = (P, --- , Pys), GEARS first applies an encoder
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s function fper : Z — R? that maps each genetic perturbation P € P to a d-dimensional gene
a7 perturbation embedding. The encoder is a graph neural network (GNN) that operates on the Gene
ss  Ontology (GO) graph described later. Another GNN-based encoder function feene : Z — R?
ae  maps each gene into a gene embedding. GEARS then combines the set of perturbation embeddings
a0 with each of the gene embeddings using a compositional module to capture genetic interactions.
ss1 A cross-gene decoder fy. : {R¢}E, — RX then takes in the set of perturbed gene embeddings
352 and maps them to the post-perturbation gene expression vector. The entire network is trained

33 end-to-end with an auto-focus direction-aware loss.

s+ Gene co-expression GNN encoder. GEARS first obtains a faithful representation for each gene
355 that captures co-expression patterns in the cell, these are assumed to act together across perturba-
ss6  tions. We observe that the relative heterogeneity of perturbational response is high for each gene,
357 suggesting that the model should assign capacity to capture this heterogeneity. Thus, instead of
a8 representing each gene as a scalar, GEARS represents each gene u € Z as a learnable embedding
o X2 € RY.

360 To enable the gene embeddings to reflect these co-expression relationships, we apply a GNN
1 on a constructed gene co-expression graph Geene. Particularly, nodes in G are genes and edges
sz link co-expressed genes. GEARS calculates Pearson correlation p, ,, among genes u,v in the
ses  training dataset. For each gene u, we connect it to the top Hene genes that have highest p,, ,, and

se4 are above some threshold 0. Next, we apply a GNN parameterized by 6, that augments every gene
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s u’s embedding x£°"°) by integrating information from the embeddings of its co-expressed genes

%6 (i.e. neighboring genes in Gyene) : h&™ = GNNy, (X, Gyene) € R

7 Injecting perturbation structure with gene ontology GNN. GEARS predicts the outcome of
ss  perturbing genes never seen perturbed before through leveraging a key intuition that perturbation
a9 responses are extremely similar for genes that are involved in the same pathways. This observa-
a0 tion suggests that we could build a representation of novel gene perturbations by learning from
a1 a composition of previously seen gene perturbations that share the same pathways as recorded in
a2 the Gene Ontology graph [35] Ggo. GEARS leverages this prior knowledge and injects it into the
a7s  model through a GNN encoder.

a74 More specifically, we first construct a gene perturbation similarity graph G based on the
a5 Gene Ontology graph Ggo. Ggo is a bipartite graph where an edge links a gene to a pathway GO
s term. We denote NV, as the set of pathways for a gene u. We compute Jaccard index between a pair

s77 of gene u, v as J,, = I%MBAN[UI It measures the fraction of shared pathways between the two genes.

s For each gene u, we then select the top H gene v with the highest .J,, ,, to construct G,,.;. Next, we
579 initialize all possible gene perturbations (P, - - - , Px’) with learnable embeddings (x5, - - - | x5%").
seo We then feed them into a GNN parameterized by ¢, to augment every perturbation v’s embedding

81 XD by integrating information from perturbation embeddings that share similar pathways (i.e.

2 neighboring perturbations in Gper): hi™" = GNNy (xP", Gper) € R

sss  Modeling combinatorial perturbation across genes. During training, GEARS maps each gene
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a4 to a perturbation embedding using the gene ontology GNN above. Given a perturbation set
s P = (P, , Py), GEARS looks up the perturbation embedding of each element of that set
386 (h‘;fln, e ,h?f;). To model the genetic interactions among multiple perturbations, we use the
%7 ’sum’ compositional operator followed by a multi-layer perceptron (MLP): h” = MLPy, <Zf\i1 h‘lfirt> .
sss The ’sum’ operator allows extendability to perturbations of any size. Thus, each perturbation em-
= bedding from (h};",--- hi") is applied to every gene embedding to obtain a post-perturbation

w0 gene embedding. For gene u, we have hP™Pt = MLP,  (h&™ + h”).

a1 Cross-gene gene-specific decoder. Following the application of the perturbations in the em-
s2 bedding space, GEARS maps the post-perturbation gene embedding to its corresponding post-
a3 perturbation gene expression vector. Since each gene has its own perturbation pattern, for every
s04  gene u, we apply a gene-specific linear layer parameterized by w, € R? b, € R to map it to
s a scalar of perturbation gene expression effect z, = w,hP>"P" 4 p, € R. We then concate-
6 nate the individual effect to a single perturbation effect vector z € R for the cell. Since the
se7 perturbational effect on a gene can incur secondary effects on other genes, we wanted to use the
a8 transcriptome-wide ’cross-gene’ information for the cell when predicting final gene expression for
ass each gene. Thus, we added an additional MLP that generates a cross-gene embedding for the cell
wo h® = MLPy_ (z) € R?. Conditioned on this cross-gene state, for every gene u, a gene-specific
w0t decoder parameterized by we¢ € R+ ¢ € R augments z, to 2, = W (z,||h) + b€ € R.

w2 Finally, the predicted perturbation effect vector z € R¥ is added to the gene expression of a ran-
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a3 domly sampled unperturbed control cell to arrive at the predicted post-perturbation gene expression
a4 vector for that cell g = z + gci,1. Thus, GEARS learns to predict the change in gene expression
a5 over control following perturbation instead of the absolute post-perturbation expression. This al-
a6 lows it to avoid allocating model capacity on learning basal gene expression and instead focus on

s07 learning perturbation effects.

ws  Autofocus direction-aware loss. GEARS optimizes model parameters to fit the predicted g post-
a9 perturbation gene expression to true post-perturbation gene expression g using stochastic gradient
a0 descent. We observed that majority of genes incur minimal perturbational effects. Since we are
a1 most interested in the differentially expressed genes, we designed an autofocus loss that automati-
sz cally give a higher weight to differentially expressed genes by elevating the exponent of the error.
a3 Particularly, given a minibatch of 7" perturbations, where each perturbation k has 7} cells, and
a1aeach cell has K genes with predicted post-perturbation gene expression g and true expression g,

#15  the loss is defined as:

I~y 5 )(2+)
Lautotocus = T Z Fk Z 5 (gu - gu) :
k=1 =1 = u=1
416 In addition to the absolute value of perturbation effect, the direction of change in expression

s17 - compared to control is also important since it captures whether the perturbation activates or inhibits

ss a gene. A standard loss is insensitive to this directionality. To address this, GEARS incorporates
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s19  an additional direction-aware loss:
11 1 & ,
Lgirection = T Z T Z a Z (Sign (gu — gztrl) — sign (gu _ gzm)) '

k=

1 k =1 u=1

20 The prediction loss function is L = Lutofocus + ALdirection, Where A adjusts the weight for the

s21  directionality loss.

222 Uncertainty. GEARS generates an uncertainty score to measure the confidence of model predic-
2s tion on a novel perturbation. GEARS fixes a Gaussian likelihood A (g,,52) to model the post-
224 perturbation gene expression value for gene u under perturbation P, where g, is the predicted
s post-perturbation scalar, and 62 is the variance [36]. We add an additional gene-specific layer to
26 predict the log-variance term s,, = logs? = wmChPoPert  pun¢ for each gene u and learn it through

27 a modified bayesian neural network loss [36]:

I _1§:121§: _ _ )@
unc — ? T a eXp( Su)(gu gu) :

=1 k= Y u=t

=

28 Mechanistically speaking, the loss encourages log-variance to be large when the error is large.
29 Thus, the log-variance is learned to be a proxy of model uncertainty. If the uncertainty score is
s30 desired at the time of inference, GEARS simply needs to update the prediction loss function L by

a3t adding the uncertainty 1oss L.

132 Hyperparameters. We use HyperBand [37] on the validation set of a fixed split of the Norman
s33  dataset to find the best hyperparameters. The same set of hyperparameters are then used across all

s34 datasets and multiple splits. The set of ranges for the hyperparameters include: GNN architecture —
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s {graph convolutional network (GCN) [38], graph attention network (GAT) [39], simplifying graph
se  convolutional network (SGC) [40]}; GNN layer size — {1, 2, 3}; hidden size d — {32, 64, 128};
a7 autofocus loss coefficient v — {2, 4}; direction loss regularization term A — {1, 0.1, 0.01}; the
s number of top similar genes in the co-expression network Hpe, — {3, 5, 10, 20}; the number of
439 top similar genes in the perturbation network Hgene — {3, 5, 10, 20}; correlation threshold for co-
a0 expression network § - {0.4, 0.8}; learning rate — {1e-2, le-3, le-4}; batch size — {32, 64, 128}.
a1 Since we have a large set of hyperparameters, for a more efficient selection, we apply HyperBand
a2 on different groups of hyperparameters where each group has a small set of hyperparameters while
ss  fixing the rest. The final set of hyperparameters are the following: GNN architecture - SGC; GNN
ss layer - 1; hidden size - 64; v - 2; A — 0.1; Hper - 205 Hgene - 5; 0 = 0.4; learning rate - 1e-3; batch

w5 Size - 32.

us Using a graph to represent prior knowledge. GEARS does not require a specific representation
a7 of prior knowledge about gene-gene relationships. For capturing similarities between the gene
ss  embeddings we chose to use the gene coexpression graph. For the gene perturbation embeddings,
w9 we used the Gene Ontology graph which was generated by adding weighted edges between genes
ss0 that shared a significant number of GO terms. The generation procedures for both graphs were
s51 described previously. We also experimented with a few different networks to use in place of the
s52 Gene Ontology network including a protein-protein interaction network [21], a gene coessentiality

s network [41] or the gene co-expression network described above. We decided to proceed with the
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s+ Gene Ontology network because it had the best coverage over the gene set that we were interested
s55  in, produced very good predictive performance and was the most general-purpose for application

456 to future tasks.

s57 Model evaluation for predicting overall gene expression. For predicting overall gene expres-
a8 sion, we used the mean square error between the model predictions and the true post-perturbation
ss0 - gene expression for perturbations held out in the test set. Generally, it is quite expensive (if not
w0 1impossible) to perturb all genes or all combinations of genes when running a perturbational screen.
st This makes it very useful to be able to computationally predict perturbational response to pertur-
a2 bations that were not seen at the time of training.

463 To simulate this real world scenario, we constructed a data split to account for all possibilities
a4 for single-gene and 2-gene perturbations. In the case of 2-gene combinations, there are three possi-
a5 ble types of perturbations from a data split perspective: (1) combinatorial perturbations where both
w6 single-gene perturbations in the combination have been seen perturbed individually at the time of
a7 training (2-gene perturbation, 0/2 unseen); (2) those where only one of the two single-gene pertur-
a8 bations have been seen perturbed individually at the time of training (1/2 unseen) or perturbations
w0 where neither of the two single-gene perturbations have been seen perturbed individually at the
a0 time of training (2/2) unseen. In the case of single-gene perturbations, there is only one category
a1 which is simply those perturbations that were not seen at the time of training (1-gene perturbation

a2 1/1 unseen).
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473 To generate a data split for the Norman et al. dataset which contained both single and 2-
a74  gene perturbations [8], we first randomly sample K% from the gene list and consider them as
a7s the gene set that is seen at the time of training. Thus, all single-gene perturbations with genes
76 belonging to this set are used for training. The rest of the genes (1-K )% are used as the unseen
a7 gene set and the corresponding single-gene perturbations are used for testing. Next, within the
a8 2-gene combination perturbations, in the case when both individual perturbations are in the seen
ar9  set (0 unseen of 2), we randomly sample K% of them as training perturbations and the rest (1-
s0 K ()% are held out in the test set. For the other 2 categories: 1/2 unseen and 2/2 unseen, we simply
ss1 hold out all 2-gene combinations where at least one of the individual genes being perturbed in that
sz combination is in the unseen set. See Extended Figure 1 for an illustration. In our study, we set
w3 Kg = 75, Kc = 75 to obtain the train+validation and test set and then in the train+valid set, we
s8¢ 1un K = 90, Ko = 90 to obtain the train and validation set. In the case of datasets containting
ses only single-gene perturbations (Adamson et al. [16], Dixit et al. [14]), we only test performance

sss  on single-gene perturbations which were not seen perturbed at the time of training (single unseen).

.7 Baseline models. The following baseline models were used for comparing model performance:

488 1. No perturbation model: This model simply predicts that there was no effect of performing

489 a perturbation and that the unperturbed cell state is the same as the post-perturbed one.

2. Linear model: This model uses the gene coexpression graph to learn weights between all

the genes. When a perturbation is applied to a specific gene, it propagates the effect of that
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perturbation to its neighbors through its edges which linearly scale the magnitude of that
perturbation. Those neighbors in turn will further propagate the effect of that perturbation to
their own neighbors. We allowed perturbations to propagate this way upto 3 hops away from
the site of the original perturbation. Let E represent the adjacency matrix of the weighted
gene coexpression graph and 6 represent a genetic perturbation vector. ¢ is n-dimensional
vector where 7 is the number of genes. It has a value of zeros at every position except at
the indices of genes where perturbations are being applied, where it is either +1 or —1.
Let d = 3 be the number of hops. Then, the change in gene expression Xy caused by a

perturbation # under the linear model would be:

d
xo=([]E]-¢ (1)

h=1
490 3. Compositional Perturbation Autoencoder (CPA) [26]: This model uses an adversarial
491 autoencoder with no other prior information to predict the effect of applying a specific per-

492 turbation to a given unperturbed cell.

s Measuring genetic interaction scores. For identifying and categorizing genetic interactions we
a4 followed the definitions and metrics defined in Norman et al. [8]. They defined the following
a5 types of GIs: additive, epistatic, neomorphic, potentiation, redundant, suppressive, synergy (sim-
a6 1lar/dissimilar). The authors make a distinction between synergistic combinations based on the

a7 similarity of the combining single-gene perturbations. We did not include this division because
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a8 our focus was on evaluating predictions for combinatorial perturbations. We also did not include
s99 'potentiation’ as a separate category and instead grouped it under synergy. This is because it was
soo defined as the combined interaction of high synergy and epistasis and we evaluated those GIs in-

5

o

1 dividually. *Additive’ interactions (or the no-GI class), which are defined as the complement of
sz seeing either synergy or suppression are only included in Extended Data Figures 4, 5.

503 Norman et al. [8] defined metrics (GI scores) for identifying Gls using a linear model of the
sos  combinatorial perturbation effect. Let g' € RX be the post-perturbation gene expression vector
sos of a cell i with K genes. Let Cy be the set of cells under perturbation k, where |Cy| = T}. The
sos first step is to compute the average post-perturbation gene expression (g*) for each of the two

so7  combining genes a, b perturbed singly as well as in combination (a + b):

1 .
gt = — Zg’, where k € {a,b, (a+b)}

Then the change over mean expression in unperturbed control cells (g°"!) is computed as:

—ctrl

ogh=g"—g
And it is used to fit the following linear model:
68 = ¢,08% + ¢,08" + ¢ )

508 Here € captures the error in the model fit. Following the procedure in Norman et al [8], the

so9 model was fit using robust regression with a Theil-Sen estimator (fit on 10,000 random subsamples
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5

o of 1,000 genes at a time) Using the values of the coefficients, the following metrics (or GI scores)

si1 were defined shown below. To simplify the notation we write 5g(*) as ab, 6g® as a and 6g” as b.

Metric (GI score) Definition Relevant GI
1 Magnitude \/m Synergy, Suppression, Additivity
2 | Similarity of (single/double) corr([a, b], ab) Redundancy
512 transcriptional profiles
Model fit corr(cq,a + cpb, ab) Neomorphism
4 |  Equality of contribution r?;}?ggg:é::g;jgg:&:g))) Epistasis
513 Here, corr refers to a distance correlation and the square brackets represent the concatenation

s« operation. When predicting a GI score, first the mean post perturbation expression vectors are pre-
sis dicted for both the combination perturbation and the single-gene perturbations (6g**?, 5g®, 6g).
sie  These are then used to estimate the relevant parameters such as in (2). When calculating the true
517 value for the GI score, the same procedure is performed with true post perturbation gene expression

sis  vectors (6g(**Y 6g®, 6gh).

si9  Identifying genetic interaction subtypes. For each defined GI subtype ¢, the authors in [8] de-
s20 fined a set of 2-gene combinatorial perturbations S, as expressing that type of interaction. How-
s21 - ever, they did not explicitly state the GI score thresholds used to define these sets. To estimate
s22  these thresholds, we first computed the relevant GI score for every element belonging to a given
s2s GI subtype set S, using true post-perturbation gene expression. We then estimated the minimum
s24 score in case of a lower bounded condition and the maximum score in case of an upper bounded

s2s  condition and used this as the score threshold 7, for each GI subtype ¢g. These thresholds are also
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s26 visualized as colored horizontal lines in Extended Data Fig 5. The result was the following condi-
s27  tions for labeling an interaction as belonging to a specific GI subtype. Overall, no GI subtype set

s2s  accounted for more than 50% of all 131 combinations being tested.

n

Genetic Interaction (GI) Defintion
Synergy Magnitude > 1.15
Suppressive Magnitude < 1.0
- Neomorphism Model fit < 0.88
Redunant Similarity of (single/double) transcriptional profiles > 0.85
Epistasis Equality of Contribution > 0.28

sso  Model evaluation for predicting genetic interaction. We evaluated GEARS’s ability to correctly
ss1 - predict different GI subtypes. A leave-one-out testing procedure was followed for this analysis. For
s32  every combinatorial perturbation experimentally tested in Norman et al. [8], we trained GEARS
sss from scratch while only holding out that specific interaction in the test set. Thus, we trained 131
ss¢  different models. We performed the same procedure with the deep learning-based baseline model
sss CPA [26].

536 Once each model was trained, we computed all the GI scores (Table 1) for the perturbation
se7  that was held out in the test set. Using thresholds from Table 2, we identified whether a specific GI
sss  was predicted to exhibit a specific GI subtype. The same procedure was also performed using true
ss9  post perturbation gene expression. The performance of GEARS in predicting each GI subtype was

s¢0 evaluated using the following metrics

* Precision: The fraction of combinatorial perturbations predicted to show a specific GI sub-
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type that were also identified to do so based on true post-perturbation expression (Extended
Data Figure 5,6). Let Sq be the set of perturbations predicted to show a specific GI subtype

and S, be the perturbations that truly show that GI subtype.

S,01S4|

S|

Precision =

Recall: The fraction of combinatorial perturbations that were identified as showing a specific
GI subtype based on true post perturbation gene expression that were also predicted to do so

by the model being evaluated (Extended Data Figure 5,6).

S,NS,|
1S4l

Recall =
Precision@10: Of the 10 combinatorial perturbations predicted to have the highest GI score
for a given GI subtype, precision@ 10 refers to the fraction that were truly identified as be-
longing to that GI subtype using true post-perturbation expression. For example, the ten
combinatorial perturbations with the highest score for magnitude were used to evaluate pre-
cision@ 10 for synergistic interactions while those with the lowest were used to do the same

. . & 10 . . . .
for suppressive interactions. Let S, be the set of 10 combinatorial perturbations predicted

by a model to have the highest GI score for a given GI subtype. Here |S,| > 10.

10
S, NS,
’S—lo

Precision@10 =

¢ |

In practice, it is more common for scientists to choose a handful of promising combinations

to test experimentally as opposed to exhaustively testing all likely combinations. Thus, by
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543 focussing on the model’s ability to correctly rank the most likely genetic interactions, pre-
544 cision@ 10 captures the success probability of follow-on experiments that aim to validate
545 model predictions. We compared our performance to a random baseline by drawing 1000
546 random sets of 10 combinations from this set and plotting their mean and standard deviation
547 as a null model. This set of 131 combination perturbations was slightly biased towards the
548 presence of an interaction, thus the random baseline helps to put our predictive performance
549 in context. We did not use the naive baseline that assumed that the combination perturbation
550 effect would be a simple sum of the single-gene perturbation effects, because this would
551 trivially result in the same GI score for all combinations.

552 * Top-10 Accuracy: Of the 10 combinatorial perturbations predicted to have the highest GI
553 score for a given GI subtype, top 10 Accuracy refers to the fraction that were also identified
554 as being part of the 10 combinatorial perturbations identified to have the highest GI score
555 using true post-perturbation expression. Thus, top-10 accuracy is more robust to biases in the
556 dataset towards oversampling genetic interactions but it is also a more conservative metric
557 for measuring performance. Let S;O be the set of 10 combinatorial perturbations identified
558 to have the highest GI score for a given GI subtype as measured using true post-perturbation
559 gene expression.

S, NS

Top-10 Accuracy= |S—30|
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Model evaluation for predicting non-additive effects. The GI scores defined above [8] consider
the expression values of all genes when calculating the score. Often, it is only the expression of
a few genes that manifests an interaction phenotype or a non-additive effect. To focus our analy-
sis on these interacting genes, we measured how many genes post-perturbation were expressed in
a manner that was very different from a simple additive effect. We first defined a naive additive
model that simply added together the effects of the individual single gene perturbations. As defined
previously, if §g(*) represents the mean change in expression over unperturbed control when per-
turbing gene x, then the naive additive model predicts that the effect of perturbing the combination

of genes (a + b) would result in the following effect:

5§(a+b) _ (')‘gzz + 5gb

nv

We used this naive sum to sort genes by how far their true post-perturbation expression under

a combination perturbation deviated from this naive prediction (Fig. 3a).

W

Deviation = |6gl®*? — 6g

560 We then measured the mean squared error in predicting the top 20 with the highest deviation

ss1 across all combination perturbations. The final results were categorized by GI type (Figure 3b).

Selecting predictions with low uncertainty. GEARS is able to predict an uncertainty value s, =
log o2 for each gene u. To generate a transcriptome-level uncertainty value, we simply took the

mean across all model-predicted uncertainty values for all genes. So, for some cell 7, we estimated
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its uncertainty value as the following:

T
L N
§ = K Z Su
u=1
562 To allow comparison of this uncertainty value across different models, we performed z-score

ses normalization using the mean and standard deviations of the predicted uncertainty values for all
se« the data used to train that model. If C;, are the cells in the training data, we first calculate the mean
ses  [1- and standard deviation oy, of the set of uncertainty values {si Vi € Cy ).

We can then z-score normalize the uncertainty values for any cell j across different trained

models as follows:

s — Hir
Otr

2 =

566
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583 most one of the combining genes is not seen at the time of training.
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Extended Data Fig. 1: Comprehensive evaluation establishes robustness of GEARS ’s prediction of post-perturbation expres-
sion. (a) Fraction of the top 20 differentially expressed genes for each perturbation that have predicted post-perturbation expression
within the 40*" percentile and the 60" percentile of the true post-perturbation expression. (b) Fraction of the 20 most differentially
expressed genes for each perturbation that have predicted post-perturbation expression within +/- 25% of true post-perturbation ex-

5" percentile and the 75" percentile of the true post-perturbation

pression variation. This corresponds to the interval between the 2
expression. (¢) Measuring variability in predictions using the average Z-Score across top 20 differentially expressed genes. Z-score
was computed using the mean and standard deviation of the true post-perturbation expression distribution for each gene after each
perturbation. (d) Fold change between predicted post-perturbation expression and true expression. (e) MSE in predicted post-
perturbation expression for top 100 differentially expressed genes. (f) MSE in predicted post-perturbation expression for top 200

differentially expressed genes.
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Extended Data Fig. 2: Examples of predicted gene expression across 20 most differentially expressed genes after combinato-
rial perturbation. (a) Change in gene expression after perturbing FOXA3+FOXL2. (b) Change in gene expression after perturbing
CEBPB+MAPKI. (c) Change in gene expression after perturbing FEV+MAP7DI1. (d) Change in gene expression after perturb-
ing SAMD1+ZBTB1.(e) Change in gene expression after perturbing ETS2+IKZF3.(f) Change in gene expression after perturbing
CEBPE+RUNXITI.
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Extended Data Fig. 3: Model performance relationship with network connectivity. Each point in the scatter plot corresponds
to a prediction made for a novel single-gene perturbation not seen at the time of training. The y-axis plots the pearson correlation
between the true mean post-perturbation differential expression over unperturbed control and the same predicted by GEARS. The
x-axis measures the number of connections between the novel perturbed gene and other genes in the network that had been seen at

the time of training.
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Extended Data Fig. 4: Model Ablation performance. Evaluation of importance of each component of GEARS by testing the
performance after removing individual component. ”No Graph” removes both the gene ontology graph and co-expression graph; ”No
GO Graph” removes the gene ontology graph; "No Co-Express Graph” removes the co-expression graph; ”No Cross-gene” removes
the cross-gene MLP layer; "No Gene-specific Decoder” removes the gene specific decoder MLP and uses a shared MLP instead;
”"MSE Loss” switches from the auto-focus loss to the regular L2 loss. (a) Model ablation in MSE of top 20 most differentially
expressed genes. (b) Model ablation in pearson correlation between the true mean post-perturbation differential expression over
control for across all genes and that which is predicted for the same. (c) Percentage of top 20 differentially expressed genes that
fall within one standard deviation of the true post-perturbation gene expression distribution. (d) Percentage of top 20 differentially

expressed genes that have the opposite direction as compared to the true post-perturbation gene expression direction.
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Extended Data Fig. 5: Model performance at predicting GI scores (a) Each plot in the panel corresponds to predicted or true GI
scores for set of combinatorial perturbations that were defined as expressing a specific GI sub-type phenotype in [8]. The gray dots
correspond to GI scores computed using true post-perturbation gene expression. The red dots correspond to GI scores computed
using predicted post-perturbation gene expression under three different models: GEARS, CPA and Naive models. The naive model
here corresponds to a simple additive model where the individual effects of perturbing each of the combining genes are simply added
together. The other two models were trained on all the data from [8] while only holding out one specific combinatorial perturbation
at a time. Single-gene perturbations for that combination were also seen at the time of training. The metrics on the y-axis correspond
to different GI scores and the dotted lines indicate the defined thresholds for determining if a combination is exhibiting a specific GI
sub-type phenotype. (b) Scatter plots of GI scores for all 131 2-gene combinatorial perturbations in [8]. The x-axis shows GI scores
computed using true post-perturbation gene expression and the y-axis shows scores predicted using predicted post-perturbation gene
expression. The top row shows predictions made by GEARS and the bottom row shows predictions made by CPA [26] R? refers to

the coefficient of determination.
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Extended Data Fig. 6: Model performance in predicting genetic interactions. (a) Mean Square Error (MSE) in predicting
non-additive combinatorial effects between the additive model which assumes that the effect of the combination is just the sum of
the two known single-gene perturbation outcomes and GEARS predictions. MSE was measured on the 20 genes with the largest
difference between true post-perturbation expression following 2-gene combinatorial perturbation and the additive prediction for that
combination. Combinations are categorized on the x-axis by genetic interaction (GI) sub-types defined in [8]. (b) Top 10 accuracy
in predicting GIs: Model accuracy in predicting the set of 10 strongest interactions for each GI sub-type as determined using true
expression. (c) Precision and recall in predicting GIs. GIs were identified across all combatorial perturbations using GI sub-type

specific thresholds (Methods) applied to model predicted GI scores as well as true GI scores.
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Extended Data Fig. 7: Model performance at predicting GI scores when one of the combining genes is not seen at the time

of training All measurements were performed only on that half of the 262 predicted combinations that had lower uncertainty. Each

combination is predicted by the model twice, each time holding out one of the combining genes in the test set. These are treated

as distinct predictions. (a) Each plot in the panel corresponds to predicted or true GI scores for set of combinatorial perturbations

that were defined as expressing a specific GI sub-type phenotype in [8]. The gray dots correspond to GI scores computed using

true post-perturbation gene expression. The red dots correspond to GI scores computed using predicted post-perturbation gene

expression from GEARS. GEARS was trained on all the data from [8] while only holding out all combinations that contained one

specific gene, making it a novel unseen gene at the time of prediction. The metrics on the y-axis correspond to different GI scores

and the dotted lines indicate the defined thresholds for determining if a combination is exhibiting a specific GI sub-type phenotype.

(b) Scatter plots of GI scores for all 131 2-gene combinatorial perturbations in [8]. The x-axis shows GI scores computed using true

post-perturbation gene expression and the y-axis shows scores predicted using predicted post-perturbation gene expression. The top

row shows predictions made by GEARS and the bottom row shows predictions made by CPA [26] R? refers to the coefficient of

determination.
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Extended Data Fig. 8: Model performance in predicting genetic interactions when one of the interacting genes is not seen
perturbed at the time of training. All measurements were performed only on that half of the 262 predicted combinations that
had lower uncertainty. Each combination is predicted by the model twice, each time holding out one of the combining genes in the
test set. These are treated as distinct predictions. (a) Precision@10: Model precision in predicting genetic interactions from 110
(possibly non-unique) 2-gene combinations. The combinations were ranked using the corresponding genetic interaction (GI) scores
for each GI sub-type (Methods). Precision@ 10 was calculated as the fraction of the top 10 combinations predicted by GEARS
for each GI sub-type that also showed that GI phenotype based on true post-perturbation expression. (b) Top 10 Accuracy: For
each GI sub-type, this metric is the size of the intersection between the set of 10 strongest interactions predicted by the model and
the 10 strongest interactions determined using true expression. Precision and Recall: GIs were identified across all combatorial

perturbations using GI sub-type specific thresholds (Methods) applied to model predicted GI scores as well as true GI scores.
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Extended Data Fig. 9: GEARS predicts non-additive combinatorial effects across all GI sub-types Each panels shows a change
in gene expression over unperturbed control after perturbing a combination of genes corresponding to a specific GI sub-type. The
gray bars show the true post-perturbation gene expression change over unperturbed control for a particular gene. The hatched yellow
bars show the true post-perturbation gene expression for each of the two single-gene perturbations performed individually. The
naive additive model assumes that the effect of the combination is just the sum of the two known single-gene perturbation outcomes.
The red bar indicates the prediction made by GEARS. The genes on the x-axis are those with the largest difference between true
post-perturbation expression following combinatorial perturbation and the additive prediction for that combination. The different GI

sub-types considered are: (a) Redundancy (b) Synergy (c) Epistasis (d) Neomorphism (e) Suppression
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Extended Data Fig. 10: Model predicted genetic interactions for all combinations where at most one of the combining genes
is not seen at the time of training. (a) Workflow for predicting all pairwise genetic interactions for a set of genes where a subset of
those genes are not seen perturbed individually at the time of training. (1) Given a set of seen and unseen genes, (2) the first step is
to experimentally perturb all single seen genes and measure the post-perturbation gene expression. The same experiment can also be
performed on a selection of combinations depending upon time and cost. (3) GEARS is then trained using this data to predict post-
perturbation gene expression. (4) After training, GEARS predicts post-perturbation gene expression for all pairwise combinations
of seen and unseen genes where at least one gene has been seen perturbed individually at the time of training. (5) Synergy GI
score for each combination can then be calculated using post-perturbation gene expression. (b) GEARS predicted genetic interaction
scores for synergy for all combinations of genes in the seen and unseen gene sets where at least one gene has been seen perturbed

individually at the time of training.
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