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Cellular response to genetic perturbation is central to numerous biomedical applications1

from identifying genetic interactions involved in cancer to methods for regenerative medicine.2

However, the combinatorial explosion in the number of possible multi-gene perturbations3

severely limits experimental interrogation. Here, we present GEARS, a method that can4

predict transcriptional response to both single and multi-gene perturbations using single-5

cell RNA-sequencing data from perturbational screens. GEARS is uniquely able to predict6

outcomes of perturbing combinations consisting of novel genes that were never experimen-7

tally perturbed by leveraging geometric deep learning and a knowledge graph of gene-gene8

relationships. GEARS has higher precision than existing approaches in predicting five dis-9

tinct genetic interaction subtypes and can identify the strongest interactions more than twice10

as well as prior approaches. Overall, GEARS can discover novel phenotypic outcomes to11

multi-gene perturbations and can thus guide the design of perturbational experiments.12
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Introduction13

The transcriptional response of a cell to genetic perturbation reveals fundamental insights into how14

the cell functions. It can describe diverse functionality ranging from how gene regulatory ma-15

chinery helps maintains cellular identity to how modulating gene expression can reverse disease16

phenotypes [1–3]. This has important implications for biomedical research, especially in the de-17

sign of more effective and patient-specific therapeutics. For instance, if perturbing the expression18

of a gene is found to reduce cancer cell proliferation, then a drug targeting that gene would have19

a significantly higher likelihood of success in clinical trials than one without such target valida-20

tion [4]. Alternatively, in the multi-gene setting, synergistic gene pairs could be identified that21

are far more effective in limiting tumor growth when targeted in combination rather than when22

each gene is targeted individually [5–7]. Knowledge of genetic perturbation outcomes can also23

dramatically influence the field of stem cell biology and regenerative medicine. Since complex24

cellular phenotypes are known to be produced by genetic interactions between small sets of genes,25

these same interactions could also be leveraged to make the precise engineering of cell identity26

more experimentally tractable [8–12]. While recent improvements in the precision and scale of27

perturbational screens have enabled scientists to more rapidly sample perturbation outcomes ex-28

perimentally [8, 13–16], the combinatorial explosion of many possible multi-gene perturbations29

makes computational approaches indispensable in uncovering outcomes for the vast majority of30

combinations.31

However, existing computational methods for predicting perturbational outcomes present32

their own limitations. The predominant approach for 1-gene perturbation outcome prediction re-33

lies on inferring transcriptional relationships between genes in the form of a network [17–19].34

This is limited either by the difficulty in accurately inferring a network from large single-cell35

gene expression datasets [20] or by the incompleteness of networks derived from existing public36

databases [21–23]. Moreover, predictive models built using such networks linearly combine the37

effects of individual perturbations which renders them incapable of predicting non-additive genetic38

interaction effects [19, 24]. Thus, they cannot predict outcomes for multi-gene perturbations that39

often exhibit emergent phenotypes such as synergy and epistasis.40

More recent work uses deep neural networks trained on data from large perturbational screens41
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to skip the network inference step and directly map genetic relationships into a latent space for42

multi-gene perturbation outcome prediction [25, 26]. While the use of deep learning enables the43

prediction of non-additive genetic interactions between combinations of genes, these methods still44

require that each gene in the combination be experimentally perturbed before the effect of perturb-45

ing the combination can be predicted. This is caused by the inability to leverage prior knowledge46

of genetic relationships, which makes existing models entirely dependent on data from expen-47

sive experimental perturbations. For example, the outcome of a 2-gene combinatorial perturbation48

can only be predicted by such models if both genes have been seen experimentally individually49

perturbed in the training data. By the same reasoning, no 1-gene perturbation outcome can be50

predicted since that gene would not have been seen experimentally perturbed.51

Here, we present GEARS (Graph-Enhanced gene Activation and Repression Simulator), a52

computational method that integrates deep learning with a knowledge graph of gene-gene relation-53

ships to simulate the effects of a genetic perturbation. The incorporation of biological knowledge54

gives GEARS the unique ability to predict the outcomes of perturbing single genes, or combina-55

tions consisting of genes, that were never experimentally perturbed. GEARS uses a new approach56

of representing each gene and each perturbation with its own multi-dimensional embedding. This57

allows GEARS to more effectively capture gene-specific heterogeneity and better predict non-58

linear interaction effects compared to existing methods. A comprehensive evaluation establishes59

that GEARS can accurately predict outcomes of 2-gene combinatorial genetic perturbations, sig-60

nificantly outperforming all current approaches. GEARS can predict five different genetic inter-61

action subtypes (synergy, suppression, neomorphism, epistasis and redundancy) and, for four of62

these, GEARS is twice as accurate as the next best approach in predicting the strongest inter-63

actions. GEARS is also able to generalize to new regions of perturbational space by predicting64

post-perturbation phenotypes that are unlike what was seen during training yet still biologically65

meaningful. Thus, GEARS can directly impact the design of future perturbational experiments66

through uncovering a larger region of combinatorial perturbational space than was previously pos-67

sible using the same experimental data.68
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Results69

GEARS combines prior knowledge with deep learning to predict post-perturbation gene ex-70

pression. GEARS is a deep learning-based model that predicts the gene expression outcome of71

combinatorially perturbing a set of arbitrarily many genes. The perturbation of each gene in this72

’perturbation set’ is defined as either the activation or repression of the expression of that gene,73

represented as a signed binary value. GEARS takes as input a vector of expression values that74

represent an unperturbed cell along with the perturbation set being applied (Figure 1a). The out-75

put is the transcriptional state of the cell following the perturbation defined by this set. GEARS76

is trained using single-cell gene expression data for both unperturbed cells and cells that have77

undergone known genetic perturbations (Methods).78

In the case of a multi-gene perturbation, if each gene in the perturbation set has previously79

been seen experimentally perturbed, then predicting the outcome of that perturbation is trivial un-80

less the interaction effects are not linearly additive. Thus, accurately capturing these non-additive81

effects is critical for any model that predicts multi-gene perturbational outcomes. GEARS ad-82

dresses this issue through a new approach of representing each gene and each gene perturbation83

using its own embedding vector (Figure 1b). By doing so, GEARS more effectively captures the84

gene-specific heterogeneity of response to perturbation that is responsible for non-linear interac-85

tion effects. Each gene’s embedding is sequentially combined with the perturbation embedding of86

each gene in the perturbation set. This process is independent of the size of the perturbation set87

making GEARS easily extendable to larger sets. The resulting ’perturbed’ gene embeddings are88

combined into a single ’cross-gene’ embedding vector which captures transcriptome-wide infor-89

mation for each cell. GEARS uses this vector to account for transcriptional effects that were not90

directly caused by the external perturbation but as a secondary effect of the activation/repression91

of other genes.92

GEARS is uniquely able to extend perturbation outcome prediction to perturbation sets93

where one or more genes have not been experimentally perturbed. This includes 1-gene pertur-94

bations. GEARS does this by not relying entirely on arbitrary encodings to represent each gene95

perturbation but instead using embeddings that incorporate prior knowledge in the form of gene-96

gene relationships. The gene co-expression knowledge graph is used as an inductive bias when97
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learning gene embeddings and the same is done using a Gene Ontology-derived knowledge graph98

for the gene perturbation embeddings (Methods). Here we rely on two biological intuitions: (i)99

genes that share similar expression patterns should likely respond similarly to external perturba-100

tions and (ii) genes that are involved in similar pathways should impact the expression of similar101

genes upon perturbation (Figure 1b). GEARS is itself independent of the choice and structure of102

the underlying knowledge graph (Methods). Thus, different knowledge graphs may prove more103

suitable depending upon the use case and the gene set of interest. GEARS functionalizes this104

graph-based inductive bias using a graph neural network architecture (Methods) (Figure 1b). Each105

gene or gene perturbation in the respective input graph is represented as a distinct node and its106

node-feature vector is set to be its gene embedding or gene perturbation embedding respectively.107

GEARS predicts outcomes for perturbing single genes not seen perturbed during training.108

In the case of predicting the outcome of 1-gene perturbations, GEARS was evaluated on109

the perturbation of genes that had been held out at the time of training (Figure 2a). We compare110

performance with an existing deep learning-based model (CPA) [26] that also learns to represent111

perturbations in a latent space but models each perturbation using a one-hot encoding and does112

not use any prior information (Methods). Because no other existing method has this functionality,113

we also designed two alternative approaches for evaluation of performance. The first (No-Perturb)114

assumes that the perturbation does not result in any change in gene expression. The second is a115

linear model which uses the gene co-expression graph to linearly scale and propagate the effect of116

perturbing a gene (Methods).117

Two different genetic perturbation screens consisting of 87 1-gene perturbations (Adamson118

et al. [16]) and 24 1-gene perturbations (Dixit et al. [14]) were used for the evaluation. These119

were run using the Perturb-Seq assay which combines a pooled screen with a single-cell RNA120

sequencing readout of the entire transcriptome for each cell [14, 16]. Both datasets contained121

between 50,000 and 90,000 cells with an average of 300-700 cells per perturbation and at least122

7,000 unperturbed cells.123

GEARS was trained separately on each dataset. A hold-out set of test perturbations was124

defined for each dataset such that no cell that underwent one of the test perturbations was seen at125

the time of training. We tested model performance by measuring the mean squared error (MSE)126
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(Figure 2b) and the Pearson correlation (Figure 2c) between the predicted post-perturbation gene127

expression and the true post-perturbation expression for the held-out set. Since the vast majority128

of genes do not show significant variation between unperturbed and perturbed states, we restricted129

our MSE analysis to the harder task of only considering the top 20 most differentially expressed130

genes. This also makes the evaluation more rigorous since the model cannot trivially predict no131

perturbation effect for most genes and still achieve a low MSE. GEARS outperforms all baselines132

significantly on both datasets with an MSE improvement of over 50% (Figure 2b). When looking133

across all genes using the Pearson correlation, GEARS shows more than three times better per-134

formance in the case of both the Adamson and Dixit datasets (Figure 2c). GEARS also shows a135

clear improvement in capturing the right direction of change in expression following perturbation136

(Figure 2d) which reflects a more accurate representation of regulatory relationships.137

GEARS predicts multi-gene perturbation outcomes for both previously seen and unseen138

genes.139

GEARS predicts outcomes for perturbation sets consisting of multiple genes. However,140

GEARS was only evaluated on 2-gene perturbations since this was the only combinatorial per-141

turbation data that was publicly available. We used a Perturb-Seq dataset (Norman et al. [8]) con-142

taining 131 2-gene perturbations and 105 1-gene perturbations (which included all genes that were143

perturbed in combination), with 300-700 cells treated with each perturbation. In the case of multi-144

gene perturbations, there are multiple categories of generalization which impact the difficulty of the145

prediction task. Therefore, we defined three such generalization classes when evaluating GEARS146

on the 2-gene perturbations in the Norman dataset (Figure 2e). The first and simplest case was147

when the model had seen each of the 2 genes in the combination experimentally perturbed in the148

training data (2-gene perturbation, 0/2 unseen); the second is when either one of the two individual149

perturbations had not been seen experimentally perturbed at the time of training (2-gene pertur-150

bation, 1/2 unseen) and the third is when both perturbed genes had not been seen experimentally151

perturbed in the training data (2-gene perturbation, 2/2 unseen) (Supplementary Information Fig152

1). GEARS improves performance by approximately 45% across all three levels of generalization153

(Figure 2f). In fact, even when GEARS was trained with only 1 out of the 2 genes seen experi-154

mentally perturbed at the time of training, it was able to perform comparably with the next best155
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performing method that had seen both genes experimentally perturbed.156

Model performance was also analyzed on a gene-by-gene basis to make sure that GEARS157

didn’t overly prioritize some genes over others. In the case of predicting the outcome of perturbing158

the 2-gene combination FOSB+CEBPB, GEARS correctly captures both the right trend and the159

magnitude of perturbation across all 20 differentially expressed genes (Figure 2g) even though160

one of the genes (CEBPB) had not been seen experimentally perturbed during training. GEARS161

makes accurate predictions in cases of both up and downregulation (e.g. change in the expression162

of LST1 and GYPB). Similarly, good performance is observed for several other examples across163

generalization categories (Extended Data Figure2, Supplementary Figure 2).164

While the incorporation of knowledge graphs was instrumental in enabling these predictions165

(Extended Data Figure 4), it also limits GEARS’ ability to predict outcomes for perturbing genes166

that are both not well connected in this graph and have also not been experimentally perturbed167

(Methods) (Extended Data Figure 3). GEARS makes use of a Bayesian formulation to overcome168

this challenge by outputting an uncertainty metric that is inversely correlated with model perfor-169

mance (Supplementary Figure 5). By allowing users to filter out predictions with high uncertainty,170

this uncertainty metric builds confidence in GEARS’ predictions, especially in the case of pertur-171

bation sets containing genes that were not seen experimentally perturbed.172

GEARS can predict new biologically meaningful phenotypes to help uncover the landscape173

of combinatorial perturbation outcomes.174

We applied GEARS to the discovery of new phenotypes through predicting the outcomes of175

all 5,460 pairwise combinatorial perturbations of the 105 genes for which 1-gene post-perturbation176

expression data was available in the Norman et al. dataset [8] (Figure 3a). GEARS was trained177

using the post-perturbational gene expression profiles for all 1-gene perturbation outcomes as well178

as 131 2-gene perturbation outcomes (Figure 3b). The predicted post-perturbation expression cap-179

tured many distinct phenotypic clusters including all of those previously identified in [8]. Broad180

trends toward three key lineages of erythroid cells, granulocytes and megakaryocytes were visible181

(Figure 3c). In addition to these phenotypes, GEARS predicts novel phenotypes that are distinct182

from those that were observed at the time of training.183

For one such cluster showing high erythroid marker expression (containing 158 perturbations184
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including IKZF3+PRDM1, ATL1+FEV and IKZF3+SPI1), we verified whether the novel pheno-185

type that it represented was biologically meaningful (Figure 3d). Mean differential expression186

(DE) between unperturbed cells (lymphoblasts) from Norman et al. [8] and each of the genetic187

perturbation outcomes predicted by GEARS was compared with the DE between hematopoietic188

progenitor cells and proerythroblast cells (an early stage in the erythroid lineage) in the Tabula189

Sapiens cell atlas [27]. The goal here was to identify which perturbations produced a change in190

gene expression that was most similar to that observed in the transition from hematopoietic pro-191

genitor cells to an erythroid lineage. The log fold change in expression for differentially expressed192

genes was used to define a DE vector for each of these transitions. Using the dot product between193

the DE vector for each GEARS-predicted perturbation outcome and the DE vector for proerythrob-194

lasts in Tabula Sapiens, we observed that perturbations in the novel cluster showed more similarity195

to the transition to proerythroblasts than any other perturbation seen at the time of training (Figure196

3e, 3f) (Supplementary Information). Thus, this cluster was displaying a phenotype that was not197

only novel but also biologically meaningful, illustrating how GEARS is able to effectively gener-198

alize to new regions of perturbation space. It also highlights how GEARS can be used to discover199

new experimental routes (perturbations) for engineering cells towards desired phenotypes.200

GEARS predicts non-additive effects of combinatorial perturbation and identifies genetic201

interaction subtypes.202

The ability to predict non-additive interaction effects is critical for a multi-gene perturbation203

model. In the case of a 2-gene perturbation, if the outcomes of perturbing the two genes inde-204

pendently are already known, then a naive model could simply add the perturbational effects to205

estimate the effect of the combinatorial perturbation (Figure 4a). However, this would not always206

be accurate since genes are known to interact with one another to produce non-additive genetic207

interactions (GI) upon perturbation. There are five key GI subtypes: synergy, suppression, neo-208

morphism, redundancy, and epistasis (Methods) (Figure 4b) [8]. For example, two genes that in-209

dependently cause a minor loss in cell growth could synergistically interact with one another upon210

combinatorial perturbation to cause cell death. Alternatively, the interaction between two genes211

could also be epistatic, where one gene dominates the phenotype produced by the combination and212

masks the effect of the other gene.213
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GIs were defined using metrics (GI scores) that compare observed post-perturbation gene ex-214

pression with that expected under an additive model. In the case where both genes for each 2-gene215

combination had been seen experimentally perturbed, GI scores predicted by GEARS showed a216

very strong correlation to those calculated using true expression (R2 ⇡ 0.5 for all 4 GI scores),217

much higher than existing methods (e.g. R2 ⇡ 0 in the case of CPA) (Extended Data Figure 5). To218

simulate a real application of GEARS for recommending experiments, performance metrics were219

calculated on the top-ranked predictions for each GI subtype. Given the top-10 2-gene combi-220

nations predicted to most strongly exhibit a GI subtype phenotype, precision@10 measures what221

fraction truly exhibits that GI subtype based on experimentally measured post-perturbation gene222

expression. GEARS increases precision@10 by more than 50% across 4 out of 5 GI subtypes when223

compared to baseline methods (Figure 4c) with an improvement greater than 100% in the case of224

redundancy and epistasis. GEARS also shows a doubling in accuracy when directly predicting the225

set of 10 interactions that are strongest for a GI subtype (Top-10 Accuracy) (Extended Data Figure226

6b).227

In the novel scenario where one of the two genes in the combination has not been seen228

perturbed experimentally at the time of training, GEARS also shows significant improvement over229

baseline approaches. In this case, predictions with high uncertainty were filtered (Methods). When230

compared to a random baseline, GEARS shows more than a tripling of performance across all231

interaction types in the case of top-10 accuracy and a doubling of performance in the case of232

precision@10 for three out of the five GI subtypes (Extended Data Figure 8a, 8b). There was233

an especially strong performance in the detection of synergy where 72% of all interactions (after234

filtering for low uncertainty) are correctly detected (Extended Data Figure 8c).235

Non-additive interactions can also be evaluated at the level of individual genes. For this, the236

20 most non-additively expressed genes were identified for each 2-gene combination. These were237

the genes where experimentally measured post-perturbation expression deviated most from what238

was expected under an additive interaction. Based on the MSE for these genes, GEARS is able239

to capture non-additive effects more than 40% better than existing methods across three out of the240

five GI subtypes (Extended Data Figure 6a). In the remaining two subtypes, GEARS predictive241

performance is on par with existing methods. As an example, GEARS was consistently able to242

predict the correct non-additive effects across almost all of the top 10 non-additively expressed243
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genes following the perturbation of the 2-gene combination PTPN12+ZBTB25 (Figure 4d). These244

effects were in many different forms; such as synergy in the case of the change in expression245

of ALAS2 and HBA1, suppression in the case of HIST1H1C and neomorphic gene expression in246

the case of TUFM. This was also observed across other examples of combinatorial perturbations247

belonging to different GI subtypes (Extended Data Figure 9).248

GEARS can effectively search combinatorial perturbation space for novel genetic interac-249

tions .250

GEARS can predict the presence of genetic interactions among all pairwise combinations251

of a set of genes (Figure 5a). A GI map measuring four different GI scores was generated to252

simultaneously capture five different GIs: synergy, suppression, neomorphism, redundancy and253

epistasis. GI scores were calculated using the post-perturbation gene expression predicted for each254

of the 5.460 pairwise combinatorial perturbations. The GI map reveals a diverse GI landscape255

where many genes show strong tendencies towards specific GI subtypes (Figure 5b). This effect is256

most evident in the interactions between functionally related genes which is in line with previous257

experimental results [13, 14, 28]. For instance, genes involved in early erythroid differentiation258

pathways (PTPN12, IKZF3, LHX1) show a consistent trend of strong synergistic interactions with259

one another.260

The uniqueness of this GI map is in how it captures a much broader range of interactions as261

opposed to conventional GI maps which focus primarily on cell fitness or synergy. For instance,262

consider the two combinatorial perturbations CEBPE+TBX2 and MAML2+TBX2 that would have263

shown a similar interaction phenotype if only synergy (GI scores: 0.62, 0.57) was being mea-264

sured. However, GEARS is able to highlight the difference between the two using its measure265

for neomorphic interactions (Figure 5d), even when they share a common perturbed gene (TBX2).266

The source of this difference is clearly visible when analyzing the most non-additively expressed267

genes for both perturbations. In the case of MAML2+TBX2, GEARS predicts a consistent trend268

of suppression for these genes without any significant change in direction or scale of expression.269

However, in the case of CEBPE+TBX2, several genes display a change in direction of expression.270

The non-overlapping nature of different GI subtypes is also clearly visible in the low dimensional271

UMAP representation of the post-perturbation gene expression for each of the perturbations con-272
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sidered in the GI map (Figure 5c). While neomorphic and redundant interactions tend to cluster in273

specific regions of this space, epistatic interactions are much more widely distributed. GEARS is274

further able to identify clusters of activity within each GI subtype. For instance, strongly synergis-275

tic combinations tend to produce a similar phenotype for this dataset and distinctly cluster together276

as opposed to other synergistic combinations.277

Finally, the GI map was further expanded to include those combinations where one of the278

two genes in the combination had not been seen perturbed at the time of training (Extended Data279

Figure 10). Based on the results of the model evaluation for this harder generalization setting,280

predictions were only made for synergy and only those under a reasonable threshold of uncertainty281

were reported. (Extended Data Figure 7). To our knowledge, this is the first example of extending282

a pairwise GI map beyond those genes that have been seen perturbed individually, opening the door283

for systematically interrogating much larger regions of perturbational space than was previously284

possible using the same data.285

Discussion286

Predicting transcriptional outcomes of genetic interventions is an important problem in molecular287

biology with wide-ranging impacts on a number of biomedical research disciplines from regen-288

erative medicine to drug discovery. While recent developments in high throughput perturbational289

screens have increased both the precision with which genes can be targeted [29, 30] as well as290

the scale of information generated [15, 31], these experiments remain very costly. Moreover, the291

combinatorial explosion in multi-gene perturbational space further makes computational methods292

indispensable for prioritizing which combinations of genes to perturb. However, existing compu-293

tational approaches face many challenges in fulfilling this potential and are unable to effectively294

predict multi-gene perturbation outcomes.295

We present GEARS, which uses single-cell gene expression data from large perturbational296

screens to predict outcomes of perturbing novel combinations of genes. GEARS is uniquely able297

to predict the outcomes of perturbing combinations consisting of genes that have never been per-298

turbed experimentally by leveraging prior knowledge of how genes are interrelated. As CRISPR-299

based perturbational screens become more ubiquitous for drug discovery, GEARS is uniquely po-300

sitioned to complement these experiments through inferring an exponentially larger space of multi-301
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gene perturbation outcomes than existing methods using the same experimental data. Moreover,302

GEARS can guide the design of new screens by identifying perturbations that would maximize303

the biological information gained while minimizing experimental cost (Extended Data Figure 3).304

One constraint in this process is that GEARS must be trained on a particular cell type or a desired305

experimental condition to make reliable predictions under those same conditions. Building trans-306

ferability across cell types would help address this issue while also uncovering important insights307

about how far gene regulatory relationships are shared across cell types.308

GEARS is also able to capture gene-specific heterogeneity using a new approach of repre-309

senting each gene and each gene perturbation with its own multi-dimensional embedding. This al-310

lows GEARS to precisely detect the occurrence of non-additive genetic interactions between pairs311

of genes, especially the strongest interactions for which GEARS is twice as accurate as existing312

methods. Predicting such emergent behavior is very relevant for discovering tractable routes for313

engineering cell identity, where cells are guided between transcriptional states that are often sig-314

nificantly different from one another. For instance, GEARS can guide the precise re-engineering315

of immune cells to prevent exhaustion when targeting cancer [32]. GEARS can also guide the316

reprogramming of induced pluripotent stem cells to create patient-specifc in-vitro models of dis-317

ease [33, 34]. Moreover, GEARS is not limited to predicting perturbations that can achieve target318

states that it has seen at the time of training as it is able to predict novel phenotypes that are bi-319

ologically meaningful. Overall, this can have significant implications for the field of regenerative320

medicine. Thus, GEARS can not only impact the discovery of novel small molecules for target-321

ing disease but also push the frontier in the design of the next generation of cell and gene based322

therapeutics.323
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Data availability. All data used for this project has been previously published and the associated324

citations are referenced in the text.325

Code availability. All code for this project is available at https://github.com/snap-stanford/GEARS326
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Figure 1: GEARS combines prior knowledge with deep learning to predict post-perturbation gene expression. (a) Problem
formulation: Given an n-dimensional gene expression vector for an unperturbed cell on which a set of genetic perturbations is applied,
the goal for GEARS is to predict the gene expression outcome of this perturbation. The perturbation of each gene in the set is defined
as either the activation or repression of the expression of that gene. The set can consist of a single gene or multiple genes. (b)
GEARS model architecture: For each gene in the unperturbed gene expression vector, GEARS initializes a gene embedding vector
and a gene perturbation embedding vector. These embedding vectors are assigned as node features in the gene relationship graph
and the perturbation relationship graph respectively. A graph neural network is used to combine information between neighbors in
each graph. Each resulting gene embedding is summed with the perturbation embedding of each perturbation in the perturbation
set. The output is combined across all genes using the cross-gene layer and fed into gene-specific output layers. The final result is
post-perturbation gene expression. Crucially, the use of the gene and perturbation relationship graphs allows GEARS to generalize
to genes that were never experimentally perturbed during training.
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Figure 2: GEARS outperforms alternative approaches in predicting post-perturbation gene expression. (a) Train-test data
split for 1-gene perturbations. Single gene not seen experimentally perturbed during training is perturbed at the time of testing (1
Unseen of 1) (b) GEARS decreases by 50 � 60% the normalized mean squared error (MSE) in predicted post-perturbation gene
expression for 1-gene perturbations. For each perturbation, the 20 most differentially expressed genes were considered. MSE is
normalized to the no-perturbation case. Perturbation data is from the Adamson et al. dataset [16] and the Dixit et al. dataset [14].
(c) GEARS increases the Pearson correlation across all genes by > 300% in case of 1-gene perturbations and 26% in case of 2-gene
perturbations, as measured between mean predicted post-perturbation differential gene expression over control and mean true post-
perturbation differential gene expression over control. (d) GEARS increases the percentage of top 20 differentially expressed genes
where the predicted post-perturbation expression has opposite direction (activation/inhibition) compared to the ground truth by 75%
in case of 1-gene perturbations and by 25% in case of 2-gene perturbation. (e) Train-test data split categories for 2-gene perturbations.
(i) 2-gene perturbations where both genes in the combination have been seen experimentally perturbed individually at the time of
training (0 unseen of 2) and the model then predicts the perturbation result when both genes are perturbed. (ii) 2-gene perturbations
where only one (1 unseen of 2) (iii) or none (2 unseen of 2) of the two genes has been seen experimentally perturbed individually
at the time of training but at prediction time the model predicts a 2-gene perturbation. (f) GEARS increases by 45% the normalized
MSE in predicted post-perturbation gene expression for 2-gene perturbations from the Norman et al. dataset [8]. (g) GEARS predicts
the right trend in gene expression on a gene-by-gene basis. Predicted gene expression across 20 most differentially expressed genes
after a combinatorial perturbation (FOSB+CEBPB). In this case, only CEBPB has been seen experimentally perturbed at the time
of training (1 Unseen of 2). The green dotted line corresponds to the mean unperturbed control expression for each gene, the boxes
indicate true post-perturbation differential gene expression over control and the red symbol is the mean post-perturbation differential
expression predicted by GEARS.
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Figure 3: GEARS can predict new biologically meaningful phenotypes to help uncover the landscape of combinatorial per-
turbation outcomes. (a) Workflow for predicting all pairwise genetic interactions for a set of genes (1) Experimentally perturb all
single genes in the set and some combinations. (2) GEARS is trained using post-perturbation gene expression for experimentally
perturbed genes to predict post-perturbation gene expression for novel perturbations not experimentally perturbed. (3) After training,
GEARS predicts post-perturbation gene expression for all pairwise combinations of the gene set. (b) Low-dimensional (UMAP)
representation of post-perturbation gene expression for experimental perturbations used to train GEARS. Key lineages of erythroid
cells, megakaryocytes and granulocytes are visible. The UMAP consists of 105 1-gene perturbations and 131 2-gene perturbations
from [8]. A random selection of perturbations is labelled. (c) GEARS predicts post-perturbation gene expression for all 5,460
pairwise combinations of the 105 single genes seen experimentally perturbed at the time of training. Low-dimensional (UMAP) rep-
resentation shows how predicted post-perturbation phenotypes (non-black symbols) are often novel and different from phenotypes
seen experimentally (black symbols). Colors indicate Leiden clusters labelled using marker gene expression, following the labeling
in [8]. (d) GEARS identifies a novel phenotypic cluster of 158 perturbations which displayed significantly higher erythroid marker
expression. A random selection of perturbations is labelled. (e) Novel cluster identified by GEARS shows differential expression
(DE) most similar to proerythroblast-like DE. Color bar measures the dot product between the DE corresponding to the transition
from hematopoietic progenitor cells to proerythroblasts (from Tabula Sapiens) and that for the transition from unperturbed controls
to each perturbation outcome. (f) Maximum proerythroblast-like DE observed for perturbations in the novel cluster is much higher
than that observed for any post-perturbation phenotype seen experimentally at the time of training.
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Figure 4: GEARS accurately predicts non-additive combinatorial effects and genetic interaction subtypes. (a) Illustration of
an additive interaction between two genes upon perturbation. X and Y represent single-gene perturbations that cause a square-like
shape and an increase in the size of the cell respectively. Z = (X,Y ) is a combinatorial perturbation of both genes that results in a
larger, square-like cell (i.e. an additive interaction). (b) Definition of genetic interactions. Each vector represents the gene expression
(phenotypic) change over the unperturbed state caused by a specific perturbation. Under an additive interaction, the true combinatorial
phenotype (~Z) is equivalent to the additive phenotype, i.e. the resultant of the two individual perturbation vectors ( ~X + ~Y ). In the
case of non-additive interactions, this relationship does not hold true and we see variation in the direction and magnitude of the
true combinatorial phenotypic vector as compared to the additive phenotypic vector. Five genetic interaction subtypes are defined.
In the case of synergy and suppression, the true combinatorial phenotypic vector is similar in direction to the additive vector but
different in magnitude. In the case of neomorphism. the direction is different. Redundancy corresponds to an equivalence between
each of the individual perturbations and the combination perturbation. Epistasis occurs when one phenotype masks the effect of the
other perturbation in the combination. (c) GEARS improves model precision@10 in predicting genetic interactions across all GI
subtypes. All 131 2-gene combinations in [8] were ranked using the genetic interaction (GI) score for each GI subtype (Methods).
Precision@10 was calculated as the fraction of the top-10 combinations predicted by GEARS for each GI subtype that also showed
that GI phenotype based on true post-perturbation expression. The random model corresponds to the result from 1000 random draws.
Both GEARS and CPA were trained using a leave-one-out testing approach for each of the 131 combinations. (d) GEARS captures
different types of non-additive effects at the level of individual genes. Change in gene expression over unperturbed control after
perturbing the combination of genes PTPN12 and ZBTB25. The gray bars show the true post-perturbation gene expression change
over unperturbed control for a particular gene. The hatched yellow bars show the true post-perturbation gene expression for each
of the two single-gene perturbations performed individually. The naive additive model assumes that the effect of the combination is
just the sum of the two known single-gene perturbation outcomes. The red bar indicates the prediction made by GEARS. The genes
on the y-axis are those with the largest difference between true post-perturbation expression following combinatorial perturbation of
PTPN12 and ZBTB25 and the additive prediction for that combination.
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Figure 5: GEARS can search perturbational space for novel genetic interactions of different subtypes (a) Workflow for pre-
dicting genetic interaction (GI) scores: First, GEARS predicts the post perturbation gene expression for a given combination. Using
this, GI scores are then computed. (b) Multi-dimensional GI map generated by GEARS for all pairwise combinations of the 105
single genes perturbed in [8]. For each combination, GEARS predicted GI scores for five different GIs: synergy and suppression (red
to blue) measured using the magnitude metric, neomorphism (green) measured using model fit, redundancy (orange) measured using
correlation between 1-gene and 2-gene perturbation outcomes and epistasis (purple) measured using the equality of contribution be-
tween the two 1-gene perturbations (Methods). The heatmap is clustered by the mangitude metric. (c) Genetic interactions are widely
distributed across phenotypic space and are often non-overlapping. Low dimensional (UMAP) representation of post-perturbation
gene expression for all the perturbations considered in the heatmap (Same UMAP as that in Figure 3(b), 3(c)). UMAPs are colored by
the GI scores for each perturbation corresponding to the colorbars used in the heatmap. (d) Illustration of how the multi-dimensional
GI map can capture significant differences in transcriptional response by accounting for different axes of variability that are not rep-
resented in single-dimensional maps. Even though CEBPE+TBX2 and MAML2+TBX2 produce the same score for suppression, the
GI score for neomorphism indicates that the predicted outcomes are very different. Upon measuring the gene expression changes for
the most non-additively expressed genes, MAML2+TBX2 shows considerable variability in the direction and magnitude of predicted
gene expression compared to an additive model. On the other hand, CEBPE+TBX2 shows a consistent suppressive phenotype.
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Methods327

Data preprocessing. The three single-cell RNA-seq datasets used for this study all underwent the328

same preprocessing. First, each cell was normalized by total counts over all genes and then a log329

transformation was applied. To reduce the complexity of the prediction problem, we restricted the330

dataset to only the 5000 most highly varying genes. This is similar to the pre-processing performed331

by [26] which enabled a more accurate performance comparison (Fig. 2). Since our model requires332

a gene embedding for every perturbed gene as well, we additionally included any perturbed gene333

to our dataset that wasn’t already accounted for in the set of most highly varying genes. For the334

analysis of genetic interactions (Fig. 4), we used the gene set from [8] to ensure consistency in our335

model’s predictions as compared to the original analysis on the experimental data in [8]. This was336

generated by identifying all genes in the raw data that had mean UMI value greater than 0.5.337

Overview of GEARS. GEARS considers a perturbation dataset of N cells D = {(gi
,P i)}Ni=1,338

where gi 2 RK is the gene expression vector of cell i with K genes and P i = (P i
1, · · · , P i

M) is339

the set of perturbations of size M performed on cell i. When M = 0, no perturbation is performed340

and this is the case for an unperturbed cell. Since we are only considering genetic perturbations,341

each perturbation Pk in the set corresponds to the index of a gene. The goal of GEARS is to learn342

a function f that maps a novel perturbation set P to its post-perturbation outcome, which is a gene343

expression vector g.344

Specifically, given a perturbation set P = (P1, · · · , PM), GEARS first applies an encoder345
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function fpert : Z �! Rd that maps each genetic perturbation P 2 P to a d-dimensional gene346

perturbation embedding. The encoder is a graph neural network (GNN) that operates on the Gene347

Ontology (GO) graph described later. Another GNN-based encoder function fgene : Z �! Rd
348

maps each gene into a gene embedding. GEARS then combines the set of perturbation embeddings349

with each of the gene embeddings using a compositional module to capture genetic interactions.350

A cross-gene decoder fdec : {Rd
i }Ki=1 �! RK then takes in the set of perturbed gene embeddings351

and maps them to the post-perturbation gene expression vector. The entire network is trained352

end-to-end with an auto-focus direction-aware loss.353

Gene co-expression GNN encoder. GEARS first obtains a faithful representation for each gene354

that captures co-expression patterns in the cell, these are assumed to act together across perturba-355

tions. We observe that the relative heterogeneity of perturbational response is high for each gene,356

suggesting that the model should assign capacity to capture this heterogeneity. Thus, instead of357

representing each gene as a scalar, GEARS represents each gene u 2 Z as a learnable embedding358

xgene 2 Rd.359

To enable the gene embeddings to reflect these co-expression relationships, we apply a GNN360

on a constructed gene co-expression graph Ggene. Particularly, nodes in Ggene are genes and edges361

link co-expressed genes. GEARS calculates Pearson correlation ⇢u,v among genes u, v in the362

training dataset. For each gene u, we connect it to the top Hgene genes that have highest ⇢u,v and363

are above some threshold �. Next, we apply a GNN parameterized by ✓g that augments every gene364
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u’s embedding xgene
u , by integrating information from the embeddings of its co-expressed genes365

(i.e. neighboring genes in Ggene) : hgene
u = GNN✓g (x

gene
u ,Ggene) 2 Rd.366

Injecting perturbation structure with gene ontology GNN. GEARS predicts the outcome of367

perturbing genes never seen perturbed before through leveraging a key intuition that perturbation368

responses are extremely similar for genes that are involved in the same pathways. This observa-369

tion suggests that we could build a representation of novel gene perturbations by learning from370

a composition of previously seen gene perturbations that share the same pathways as recorded in371

the Gene Ontology graph [35] GGO. GEARS leverages this prior knowledge and injects it into the372

model through a GNN encoder.373

More specifically, we first construct a gene perturbation similarity graph Gpert based on the374

Gene Ontology graph GGO. GGO is a bipartite graph where an edge links a gene to a pathway GO375

term. We denote Nu as the set of pathways for a gene u. We compute Jaccard index between a pair376

of gene u, v as Ju,v = |Nu\Nv |
|Nu[Nv | . It measures the fraction of shared pathways between the two genes.377

For each gene u, we then select the top Hpert gene v with the highest Ju,v to construct Gpert. Next, we378

initialize all possible gene perturbations (P1, · · · , PK) with learnable embeddings (xpert
1 , · · · ,xpert

K ).379

We then feed them into a GNN parameterized by ✓p to augment every perturbation v’s embedding380

xpert
v by integrating information from perturbation embeddings that share similar pathways (i.e.381

neighboring perturbations in Gpert): hpert
v = GNN✓p(x

pert
v ,Gpert) 2 Rd.382

Modeling combinatorial perturbation across genes. During training, GEARS maps each gene383
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to a perturbation embedding using the gene ontology GNN above. Given a perturbation set384

P = (P1, · · · , PM), GEARS looks up the perturbation embedding of each element of that set385

(hpert
P1

, · · · ,hpert
PM

). To model the genetic interactions among multiple perturbations, we use the386

’sum’ compositional operator followed by a multi-layer perceptron (MLP): hP = MLP✓c

⇣PM
i=1 h

pert
Pi

⌘
.387

The ’sum’ operator allows extendability to perturbations of any size. Thus, each perturbation em-388

bedding from (hpert
P1

, · · · ,hpert
PM

) is applied to every gene embedding to obtain a post-perturbation389

gene embedding. For gene u, we have hpost-pert
u = MLP✓pp

�
hgene
u + hP�.390

Cross-gene gene-specific decoder. Following the application of the perturbations in the em-391

bedding space, GEARS maps the post-perturbation gene embedding to its corresponding post-392

perturbation gene expression vector. Since each gene has its own perturbation pattern, for every393

gene u, we apply a gene-specific linear layer parameterized by wu 2 Rd
, bu 2 R to map it to394

a scalar of perturbation gene expression effect zu = wuhpost-pert
u + bu 2 R. We then concate-395

nate the individual effect to a single perturbation effect vector z 2 RK for the cell. Since the396

perturbational effect on a gene can incur secondary effects on other genes, we wanted to use the397

transcriptome-wide ’cross-gene’ information for the cell when predicting final gene expression for398

each gene. Thus, we added an additional MLP that generates a cross-gene embedding for the cell399

hcg = MLP✓cg (z) 2 Rd. Conditioned on this cross-gene state, for every gene u, a gene-specific400

decoder parameterized by wcg
u 2 Rd+1

, b
cg
u 2 R augments zu to ẑu = wcg

u (zukhcg) + b
cg
u 2 R.401

Finally, the predicted perturbation effect vector ẑ 2 RK is added to the gene expression of a ran-402
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domly sampled unperturbed control cell to arrive at the predicted post-perturbation gene expression403

vector for that cell ĝ = ẑ + gctrl. Thus, GEARS learns to predict the change in gene expression404

over control following perturbation instead of the absolute post-perturbation expression. This al-405

lows it to avoid allocating model capacity on learning basal gene expression and instead focus on406

learning perturbation effects.407

Autofocus direction-aware loss. GEARS optimizes model parameters to fit the predicted ĝ post-408

perturbation gene expression to true post-perturbation gene expression g using stochastic gradient409

descent. We observed that majority of genes incur minimal perturbational effects. Since we are410

most interested in the differentially expressed genes, we designed an autofocus loss that automati-411

cally give a higher weight to differentially expressed genes by elevating the exponent of the error.412

Particularly, given a minibatch of T perturbations, where each perturbation k has Tk cells, and413

each cell has K genes with predicted post-perturbation gene expression ĝ and true expression g,414

the loss is defined as:415

Lautofocus =
1

T

TX

k=1

1

Tk

TkX

l=1

1

G

KX

u=1

(gu � ĝu)
(2+�)

.

In addition to the absolute value of perturbation effect, the direction of change in expression416

compared to control is also important since it captures whether the perturbation activates or inhibits417

a gene. A standard loss is insensitive to this directionality. To address this, GEARS incorporates418
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an additional direction-aware loss:419

Ldirection =
1

T

TX

k=1

1

Tk

TkX

l=1

1

G

KX

u=1

�
sign

�
gu � gctrl

u

�
� sign

�
ĝu � gctrl

u

��2
.

The prediction loss function is L = Lautofocus + �Ldirection, where � adjusts the weight for the420

directionality loss.421

Uncertainty. GEARS generates an uncertainty score to measure the confidence of model predic-422

tion on a novel perturbation. GEARS fixes a Gaussian likelihood N (ĝu, �̂
2
u) to model the post-423

perturbation gene expression value for gene u under perturbation P , where ĝu is the predicted424

post-perturbation scalar, and �̂
2
u is the variance [36]. We add an additional gene-specific layer to425

predict the log-variance term su = log�̂2
u = wunc

u hpost-pert
u +b

unc
u for each gene u and learn it through426

a modified bayesian neural network loss [36]:427

Lunc =
1

T

TX

k=1

1

Tk

TkX

l=1

1

G

KX

u=1

exp(�su)(gu � ĝu)
(2+�)

.

Mechanistically speaking, the loss encourages log-variance to be large when the error is large.428

Thus, the log-variance is learned to be a proxy of model uncertainty. If the uncertainty score is429

desired at the time of inference, GEARS simply needs to update the prediction loss function L by430

adding the uncertainty loss Lunc.431

Hyperparameters. We use HyperBand [37] on the validation set of a fixed split of the Norman432

dataset to find the best hyperparameters. The same set of hyperparameters are then used across all433

datasets and multiple splits. The set of ranges for the hyperparameters include: GNN architecture –434
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{graph convolutional network (GCN) [38], graph attention network (GAT) [39], simplifying graph435

convolutional network (SGC) [40]}; GNN layer size – {1, 2, 3}; hidden size d – {32, 64, 128};436

autofocus loss coefficient � – {2, 4}; direction loss regularization term � – {1, 0.1, 0.01}; the437

number of top similar genes in the co-expression network Hpert – {3, 5, 10, 20}; the number of438

top similar genes in the perturbation network Hgene – {3, 5, 10, 20}; correlation threshold for co-439

expression network � - {0.4, 0.8}; learning rate – {1e-2, 1e-3, 1e-4}; batch size – {32, 64, 128}.440

Since we have a large set of hyperparameters, for a more efficient selection, we apply HyperBand441

on different groups of hyperparameters where each group has a small set of hyperparameters while442

fixing the rest. The final set of hyperparameters are the following: GNN architecture - SGC; GNN443

layer - 1; hidden size - 64; � - 2; � � 0.1; Hpert - 20; Hgene - 5; � = 0.4; learning rate - 1e-3; batch444

size - 32.445

Using a graph to represent prior knowledge. GEARS does not require a specific representation446

of prior knowledge about gene-gene relationships. For capturing similarities between the gene447

embeddings we chose to use the gene coexpression graph. For the gene perturbation embeddings,448

we used the Gene Ontology graph which was generated by adding weighted edges between genes449

that shared a significant number of GO terms. The generation procedures for both graphs were450

described previously. We also experimented with a few different networks to use in place of the451

Gene Ontology network including a protein-protein interaction network [21], a gene coessentiality452

network [41] or the gene co-expression network described above. We decided to proceed with the453

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2022. ; https://doi.org/10.1101/2022.07.12.499735doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.12.499735
http://creativecommons.org/licenses/by-nc-nd/4.0/


Gene Ontology network because it had the best coverage over the gene set that we were interested454

in, produced very good predictive performance and was the most general-purpose for application455

to future tasks.456

Model evaluation for predicting overall gene expression. For predicting overall gene expres-457

sion, we used the mean square error between the model predictions and the true post-perturbation458

gene expression for perturbations held out in the test set. Generally, it is quite expensive (if not459

impossible) to perturb all genes or all combinations of genes when running a perturbational screen.460

This makes it very useful to be able to computationally predict perturbational response to pertur-461

bations that were not seen at the time of training.462

To simulate this real world scenario, we constructed a data split to account for all possibilities463

for single-gene and 2-gene perturbations. In the case of 2-gene combinations, there are three possi-464

ble types of perturbations from a data split perspective: (1) combinatorial perturbations where both465

single-gene perturbations in the combination have been seen perturbed individually at the time of466

training (2-gene perturbation, 0/2 unseen); (2) those where only one of the two single-gene pertur-467

bations have been seen perturbed individually at the time of training (1/2 unseen) or perturbations468

where neither of the two single-gene perturbations have been seen perturbed individually at the469

time of training (2/2) unseen. In the case of single-gene perturbations, there is only one category470

which is simply those perturbations that were not seen at the time of training (1-gene perturbation471

1/1 unseen).472
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To generate a data split for the Norman et al. dataset which contained both single and 2-473

gene perturbations [8], we first randomly sample KG% from the gene list and consider them as474

the gene set that is seen at the time of training. Thus, all single-gene perturbations with genes475

belonging to this set are used for training. The rest of the genes (1-KG)% are used as the unseen476

gene set and the corresponding single-gene perturbations are used for testing. Next, within the477

2-gene combination perturbations, in the case when both individual perturbations are in the seen478

set (0 unseen of 2), we randomly sample KC% of them as training perturbations and the rest (1-479

KC)% are held out in the test set. For the other 2 categories: 1/2 unseen and 2/2 unseen, we simply480

hold out all 2-gene combinations where at least one of the individual genes being perturbed in that481

combination is in the unseen set. See Extended Figure 1 for an illustration. In our study, we set482

KG = 75, KC = 75 to obtain the train+validation and test set and then in the train+valid set, we483

run KG = 90, KC = 90 to obtain the train and validation set. In the case of datasets containting484

only single-gene perturbations (Adamson et al. [16], Dixit et al. [14]), we only test performance485

on single-gene perturbations which were not seen perturbed at the time of training (single unseen).486

Baseline models. The following baseline models were used for comparing model performance:487

1. No perturbation model: This model simply predicts that there was no effect of performing488

a perturbation and that the unperturbed cell state is the same as the post-perturbed one.489

2. Linear model: This model uses the gene coexpression graph to learn weights between all

the genes. When a perturbation is applied to a specific gene, it propagates the effect of that
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perturbation to its neighbors through its edges which linearly scale the magnitude of that

perturbation. Those neighbors in turn will further propagate the effect of that perturbation to

their own neighbors. We allowed perturbations to propagate this way upto 3 hops away from

the site of the original perturbation. Let E represent the adjacency matrix of the weighted

gene coexpression graph and ✓ represent a genetic perturbation vector. ✓ is n-dimensional

vector where n is the number of genes. It has a value of zeros at every position except at

the indices of genes where perturbations are being applied, where it is either +1 or �1.

Let d = 3 be the number of hops. Then, the change in gene expression x✓ caused by a

perturbation ✓ under the linear model would be:

x✓ =

 
dY

h=1

E

!
· ✓ (1)

3. Compositional Perturbation Autoencoder (CPA) [26]: This model uses an adversarial490

autoencoder with no other prior information to predict the effect of applying a specific per-491

turbation to a given unperturbed cell.492

Measuring genetic interaction scores. For identifying and categorizing genetic interactions we493

followed the definitions and metrics defined in Norman et al. [8]. They defined the following494

types of GIs: additive, epistatic, neomorphic, potentiation, redundant, suppressive, synergy (sim-495

ilar/dissimilar). The authors make a distinction between synergistic combinations based on the496

similarity of the combining single-gene perturbations. We did not include this division because497
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our focus was on evaluating predictions for combinatorial perturbations. We also did not include498

’potentiation’ as a separate category and instead grouped it under synergy. This is because it was499

defined as the combined interaction of high synergy and epistasis and we evaluated those GIs in-500

dividually. ’Additive’ interactions (or the no-GI class), which are defined as the complement of501

seeing either synergy or suppression are only included in Extended Data Figures 4, 5.502

Norman et al. [8] defined metrics (GI scores) for identifying GIs using a linear model of the503

combinatorial perturbation effect. Let gi 2 RK be the post-perturbation gene expression vector504

of a cell i with K genes. Let Ck be the set of cells under perturbation k, where |Ck| = Tk. The505

first step is to compute the average post-perturbation gene expression (ḡk) for each of the two506

combining genes a, b perturbed singly as well as in combination (a+ b):507

ḡk =
1

Tk

X

i2Ck

gi
, where k 2 {a, b, (a+ b)}

Then the change over mean expression in unperturbed control cells (ḡctrl) is computed as:

�ḡk = ḡk � ḡctrl

And it is used to fit the following linear model:

�ḡ(a+b) = ca�ḡ
a + cb�ḡ

b + ✏ (2)

Here ✏ captures the error in the model fit. Following the procedure in Norman et al [8], the508

model was fit using robust regression with a Theil-Sen estimator (fit on 10,000 random subsamples509
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of 1,000 genes at a time) Using the values of the coefficients, the following metrics (or GI scores)510

were defined shown below. To simplify the notation we write �ḡ(a+b) as ab, �ḡa as a and �ḡb as b.511

Metric (GI score) Definition Relevant GI

1 Magnitude
p
c2a + c

2
b Synergy, Suppression, Additivity

2 Similarity of (single/double) corr([a, b], ab) Redundancy

transcriptional profiles

3 Model fit corr(caa + cbb, ab) Neomorphism

4 Equality of contribution min(dcor(a,ab),dcor(b,ab))
max(dcor(a,ab),dcor(b,ab))) Epistasis

512

Here, corr refers to a distance correlation and the square brackets represent the concatenation513

operation. When predicting a GI score, first the mean post perturbation expression vectors are pre-514

dicted for both the combination perturbation and the single-gene perturbations (�¯̂g(a+b)
, �¯̂ga

, �¯̂gb).515

These are then used to estimate the relevant parameters such as in (2). When calculating the true516

value for the GI score, the same procedure is performed with true post perturbation gene expression517

vectors (�ḡ(a+b)
, �ḡa

, �ḡb).518

Identifying genetic interaction subtypes. For each defined GI subtype q, the authors in [8] de-519

fined a set of 2-gene combinatorial perturbations Sq as expressing that type of interaction. How-520

ever, they did not explicitly state the GI score thresholds used to define these sets. To estimate521

these thresholds, we first computed the relevant GI score for every element belonging to a given522

GI subtype set Sq using true post-perturbation gene expression. We then estimated the minimum523

score in case of a lower bounded condition and the maximum score in case of an upper bounded524

condition and used this as the score threshold ⌧q for each GI subtype q. These thresholds are also525
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visualized as colored horizontal lines in Extended Data Fig 5. The result was the following condi-526

tions for labeling an interaction as belonging to a specific GI subtype. Overall, no GI subtype set527

accounted for more than 50% of all 131 combinations being tested.528

Genetic Interaction (GI) Defintion

Synergy Magnitude > 1.15

Suppressive Magnitude < 1.0

Neomorphism Model fit < 0.88

Redunant Similarity of (single/double) transcriptional profiles > 0.85

Epistasis Equality of Contribution > 0.28

529

Model evaluation for predicting genetic interaction. We evaluated GEARS’s ability to correctly530

predict different GI subtypes. A leave-one-out testing procedure was followed for this analysis. For531

every combinatorial perturbation experimentally tested in Norman et al. [8], we trained GEARS532

from scratch while only holding out that specific interaction in the test set. Thus, we trained 131533

different models. We performed the same procedure with the deep learning-based baseline model534

CPA [26].535

Once each model was trained, we computed all the GI scores (Table 1) for the perturbation536

that was held out in the test set. Using thresholds from Table 2, we identified whether a specific GI537

was predicted to exhibit a specific GI subtype. The same procedure was also performed using true538

post perturbation gene expression. The performance of GEARS in predicting each GI subtype was539

evaluated using the following metrics540

• Precision: The fraction of combinatorial perturbations predicted to show a specific GI sub-
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type that were also identified to do so based on true post-perturbation expression (Extended

Data Figure 5,6). Let Ŝq be the set of perturbations predicted to show a specific GI subtype

and Sq be the perturbations that truly show that GI subtype.

Precision =
|Ŝq

T
Sq|

|Ŝq|

• Recall: The fraction of combinatorial perturbations that were identified as showing a specific

GI subtype based on true post perturbation gene expression that were also predicted to do so

by the model being evaluated (Extended Data Figure 5,6).

Recall =
|Ŝq

T
Sq|

|Sq|

• Precision@10: Of the 10 combinatorial perturbations predicted to have the highest GI score

for a given GI subtype, precision@10 refers to the fraction that were truly identified as be-

longing to that GI subtype using true post-perturbation expression. For example, the ten

combinatorial perturbations with the highest score for magnitude were used to evaluate pre-

cision@10 for synergistic interactions while those with the lowest were used to do the same

for suppressive interactions. Let Ŝ
10

q be the set of 10 combinatorial perturbations predicted

by a model to have the highest GI score for a given GI subtype. Here |Sq| � 10.

Precision@10 =
|Ŝ

10

q

T
Sq|

|Ŝ
10

q |

In practice, it is more common for scientists to choose a handful of promising combinations541

to test experimentally as opposed to exhaustively testing all likely combinations. Thus, by542
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focussing on the model’s ability to correctly rank the most likely genetic interactions, pre-543

cision@10 captures the success probability of follow-on experiments that aim to validate544

model predictions. We compared our performance to a random baseline by drawing 1000545

random sets of 10 combinations from this set and plotting their mean and standard deviation546

as a null model. This set of 131 combination perturbations was slightly biased towards the547

presence of an interaction, thus the random baseline helps to put our predictive performance548

in context. We did not use the naı̈ve baseline that assumed that the combination perturbation549

effect would be a simple sum of the single-gene perturbation effects, because this would550

trivially result in the same GI score for all combinations.551

• Top-10 Accuracy: Of the 10 combinatorial perturbations predicted to have the highest GI552

score for a given GI subtype, top 10 Accuracy refers to the fraction that were also identified553

as being part of the 10 combinatorial perturbations identified to have the highest GI score554

using true post-perturbation expression. Thus, top-10 accuracy is more robust to biases in the555

dataset towards oversampling genetic interactions but it is also a more conservative metric556

for measuring performance. Let S10
q be the set of 10 combinatorial perturbations identified557

to have the highest GI score for a given GI subtype as measured using true post-perturbation558

gene expression.559

Top-10 Accuracy=
|Ŝ

10

q

T
S10
q |

|S10
q |

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 15, 2022. ; https://doi.org/10.1101/2022.07.12.499735doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.12.499735
http://creativecommons.org/licenses/by-nc-nd/4.0/


Model evaluation for predicting non-additive effects. The GI scores defined above [8] consider

the expression values of all genes when calculating the score. Often, it is only the expression of

a few genes that manifests an interaction phenotype or a non-additive effect. To focus our analy-

sis on these interacting genes, we measured how many genes post-perturbation were expressed in

a manner that was very different from a simple additive effect. We first defined a naı̈ve additive

model that simply added together the effects of the individual single gene perturbations. As defined

previously, if �ḡ(x) represents the mean change in expression over unperturbed control when per-

turbing gene x, then the naive additive model predicts that the effect of perturbing the combination

of genes (a+ b) would result in the following effect:

�¯̂g(a+b)
nv = �ḡa + �ḡb

We used this naive sum to sort genes by how far their true post-perturbation expression under

a combination perturbation deviated from this naı̈ve prediction (Fig. 3a).

Deviation = |�ḡ(a+b) � �¯̂g(a+b)
nv |

We then measured the mean squared error in predicting the top 20 with the highest deviation560

across all combination perturbations. The final results were categorized by GI type (Figure 3b).561

Selecting predictions with low uncertainty. GEARS is able to predict an uncertainty value su =

log �2
u for each gene u. To generate a transcriptome-level uncertainty value, we simply took the

mean across all model-predicted uncertainty values for all genes. So, for some cell i, we estimated
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its uncertainty value as the following:

si = 1

K

KX

u=1

su

To allow comparison of this uncertainty value across different models, we performed z-score562

normalization using the mean and standard deviations of the predicted uncertainty values for all563

the data used to train that model. If Ctr are the cells in the training data, we first calculate the mean564

µtr and standard deviation �tr of the set of uncertainty values {si : 8i 2 Ctr}.565

We can then z-score normalize the uncertainty values for any cell j across different trained

models as follows:

z
j =

s
j � µtr

�tr

566
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Extended Data567

• Extended Data Fig. 1: Comprehensive evaluation establishes robustness of GEARS ’s568

prediction of post-perturbation expression569

• Extended Data Fig. 2: Examples of predicted gene expression across differentially ex-570

pressed genes after combinatorial perturbation571

• Extended Data Fig. 3: Model performance relationship with network connectivity572

• Extended Data Fig. 4: Model ablation performance573

• Extended Data Fig. 5: Model performance at predicting GI scores574

• Extended Data Fig. 6: Model performance at predicting genetic interactions575

• Extended Data Fig. 7: Model performance at predicting GI scores when one of the com-576

bining genes is not seen at the time of training577

• Extended Data Fig. 8: Model performance at predicting genetic interactions when one of578

the combining genes is not seen at the time of training579

• Extended Data Fig. 9: GEARS predicts non-additive combinatorial effects across all GI580

sub-types581

• Extended Data Fig. 10: Model predicted genetic interactions for all combinations where at582

most one of the combining genes is not seen at the time of training.583
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a b
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e f

Dataset: Norman Dataset: Adamson Dataset: Dixit Dataset: Norman Dataset: Adamson Dataset: Dixit

Dataset: Norman Dataset: Adamson Dataset: Dixit Dataset: Norman Dataset: Adamson Dataset: Dixit

Dataset: Norman Dataset: Adamson Dataset: Dixit Dataset: Norman Dataset: Adamson Dataset: Dixit

Extended Data Fig. 1: Comprehensive evaluation establishes robustness of GEARS ’s prediction of post-perturbation expres-
sion. (a) Fraction of the top 20 differentially expressed genes for each perturbation that have predicted post-perturbation expression

within the 40th percentile and the 60th percentile of the true post-perturbation expression. (b) Fraction of the 20 most differentially

expressed genes for each perturbation that have predicted post-perturbation expression within +/- 25% of true post-perturbation ex-

pression variation. This corresponds to the interval between the 25th percentile and the 75th percentile of the true post-perturbation

expression. (c) Measuring variability in predictions using the average Z-Score across top 20 differentially expressed genes. Z-score

was computed using the mean and standard deviation of the true post-perturbation expression distribution for each gene after each

perturbation. (d) Fold change between predicted post-perturbation expression and true expression. (e) MSE in predicted post-

perturbation expression for top 100 differentially expressed genes. (f) MSE in predicted post-perturbation expression for top 200

differentially expressed genes.
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a

c

b

d

Change in gene expression after perturbing SAMD1 + ZBTB1 (0/2 genes unseen) 

Change in gene expression after perturbing FOXA3 + FOXL2 (1/2 genes unseen) 

Change in gene expression after perturbing CEBPB + MAPK1 (1/2 genes unseen) 

Change in gene expression after perturbing CEBPE + RUNX1T1 (0/2 genes unseen) 

Control GEARS Truth

Control GEARS Truth

Control GEARS Truth

Control GEARS Truth

Extended Data Fig. 2: Examples of predicted gene expression across 20 most differentially expressed genes after combinato-
rial perturbation. (a) Change in gene expression after perturbing FOXA3+FOXL2. (b) Change in gene expression after perturbing

CEBPB+MAPK1. (c) Change in gene expression after perturbing FEV+MAP7D1. (d) Change in gene expression after perturb-

ing SAMD1+ZBTB1.(e) Change in gene expression after perturbing ETS2+IKZF3.(f) Change in gene expression after perturbing

CEBPE+RUNX1T1.
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Extended Data Fig. 3: Model performance relationship with network connectivity. Each point in the scatter plot corresponds

to a prediction made for a novel single-gene perturbation not seen at the time of training. The y-axis plots the pearson correlation

between the true mean post-perturbation differential expression over unperturbed control and the same predicted by GEARS. The

x-axis measures the number of connections between the novel perturbed gene and other genes in the network that had been seen at

the time of training.
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Extended Data Fig. 4: Model Ablation performance. Evaluation of importance of each component of GEARS by testing the

performance after removing individual component. ”No Graph” removes both the gene ontology graph and co-expression graph; ”No

GO Graph” removes the gene ontology graph; ”No Co-Express Graph” removes the co-expression graph; ”No Cross-gene” removes

the cross-gene MLP layer; ”No Gene-specific Decoder” removes the gene specific decoder MLP and uses a shared MLP instead;

”MSE Loss” switches from the auto-focus loss to the regular L2 loss. (a) Model ablation in MSE of top 20 most differentially

expressed genes. (b) Model ablation in pearson correlation between the true mean post-perturbation differential expression over

control for across all genes and that which is predicted for the same. (c) Percentage of top 20 differentially expressed genes that

fall within one standard deviation of the true post-perturbation gene expression distribution. (d) Percentage of top 20 differentially

expressed genes that have the opposite direction as compared to the true post-perturbation gene expression direction.
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Extended Data Fig. 5: Model performance at predicting GI scores (a) Each plot in the panel corresponds to predicted or true GI

scores for set of combinatorial perturbations that were defined as expressing a specific GI sub-type phenotype in [8]. The gray dots

correspond to GI scores computed using true post-perturbation gene expression. The red dots correspond to GI scores computed

using predicted post-perturbation gene expression under three different models: GEARS, CPA and Naive models. The naive model

here corresponds to a simple additive model where the individual effects of perturbing each of the combining genes are simply added

together. The other two models were trained on all the data from [8] while only holding out one specific combinatorial perturbation

at a time. Single-gene perturbations for that combination were also seen at the time of training. The metrics on the y-axis correspond

to different GI scores and the dotted lines indicate the defined thresholds for determining if a combination is exhibiting a specific GI

sub-type phenotype. (b) Scatter plots of GI scores for all 131 2-gene combinatorial perturbations in [8]. The x-axis shows GI scores

computed using true post-perturbation gene expression and the y-axis shows scores predicted using predicted post-perturbation gene

expression. The top row shows predictions made by GEARS and the bottom row shows predictions made by CPA [26] R2 refers to

the coefficient of determination.
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Extended Data Fig. 6: Model performance in predicting genetic interactions. (a) Mean Square Error (MSE) in predicting

non-additive combinatorial effects between the additive model which assumes that the effect of the combination is just the sum of

the two known single-gene perturbation outcomes and GEARS predictions. MSE was measured on the 20 genes with the largest

difference between true post-perturbation expression following 2-gene combinatorial perturbation and the additive prediction for that

combination. Combinations are categorized on the x-axis by genetic interaction (GI) sub-types defined in [8]. (b) Top 10 accuracy

in predicting GIs: Model accuracy in predicting the set of 10 strongest interactions for each GI sub-type as determined using true

expression. (c) Precision and recall in predicting GIs. GIs were identified across all combatorial perturbations using GI sub-type

specific thresholds (Methods) applied to model predicted GI scores as well as true GI scores.
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Extended Data Fig. 7: Model performance at predicting GI scores when one of the combining genes is not seen at the time
of training All measurements were performed only on that half of the 262 predicted combinations that had lower uncertainty. Each

combination is predicted by the model twice, each time holding out one of the combining genes in the test set. These are treated

as distinct predictions. (a) Each plot in the panel corresponds to predicted or true GI scores for set of combinatorial perturbations

that were defined as expressing a specific GI sub-type phenotype in [8]. The gray dots correspond to GI scores computed using

true post-perturbation gene expression. The red dots correspond to GI scores computed using predicted post-perturbation gene

expression from GEARS. GEARS was trained on all the data from [8] while only holding out all combinations that contained one

specific gene, making it a novel unseen gene at the time of prediction. The metrics on the y-axis correspond to different GI scores

and the dotted lines indicate the defined thresholds for determining if a combination is exhibiting a specific GI sub-type phenotype.

(b) Scatter plots of GI scores for all 131 2-gene combinatorial perturbations in [8]. The x-axis shows GI scores computed using true

post-perturbation gene expression and the y-axis shows scores predicted using predicted post-perturbation gene expression. The top

row shows predictions made by GEARS and the bottom row shows predictions made by CPA [26] R2 refers to the coefficient of

determination.
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Extended Data Fig. 8: Model performance in predicting genetic interactions when one of the interacting genes is not seen
perturbed at the time of training. All measurements were performed only on that half of the 262 predicted combinations that

had lower uncertainty. Each combination is predicted by the model twice, each time holding out one of the combining genes in the

test set. These are treated as distinct predictions. (a) Precision@10: Model precision in predicting genetic interactions from 110

(possibly non-unique) 2-gene combinations. The combinations were ranked using the corresponding genetic interaction (GI) scores

for each GI sub-type (Methods). Precision@10 was calculated as the fraction of the top 10 combinations predicted by GEARS

for each GI sub-type that also showed that GI phenotype based on true post-perturbation expression. (b) Top 10 Accuracy: For

each GI sub-type, this metric is the size of the intersection between the set of 10 strongest interactions predicted by the model and

the 10 strongest interactions determined using true expression. Precision and Recall: GIs were identified across all combatorial

perturbations using GI sub-type specific thresholds (Methods) applied to model predicted GI scores as well as true GI scores.
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Extended Data Fig. 9: GEARS predicts non-additive combinatorial effects across all GI sub-types Each panels shows a change

in gene expression over unperturbed control after perturbing a combination of genes corresponding to a specific GI sub-type. The

gray bars show the true post-perturbation gene expression change over unperturbed control for a particular gene. The hatched yellow

bars show the true post-perturbation gene expression for each of the two single-gene perturbations performed individually. The

naive additive model assumes that the effect of the combination is just the sum of the two known single-gene perturbation outcomes.

The red bar indicates the prediction made by GEARS. The genes on the x-axis are those with the largest difference between true

post-perturbation expression following combinatorial perturbation and the additive prediction for that combination. The different GI

sub-types considered are: (a) Redundancy (b) Synergy (c) Epistasis (d) Neomorphism (e) Suppression
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Extended Data Fig. 10: Model predicted genetic interactions for all combinations where at most one of the combining genes
is not seen at the time of training. (a) Workflow for predicting all pairwise genetic interactions for a set of genes where a subset of

those genes are not seen perturbed individually at the time of training. (1) Given a set of seen and unseen genes, (2) the first step is

to experimentally perturb all single seen genes and measure the post-perturbation gene expression. The same experiment can also be

performed on a selection of combinations depending upon time and cost. (3) GEARS is then trained using this data to predict post-

perturbation gene expression. (4) After training, GEARS predicts post-perturbation gene expression for all pairwise combinations

of seen and unseen genes where at least one gene has been seen perturbed individually at the time of training. (5) Synergy GI

score for each combination can then be calculated using post-perturbation gene expression. (b) GEARS predicted genetic interaction

scores for synergy for all combinations of genes in the seen and unseen gene sets where at least one gene has been seen perturbed

individually at the time of training.
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