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Abstract 25 

Acylsugars, specialized metabolites with defense activities, are secreted by trichomes of many 26 

solanaceous plants. Several acylsugar metabolic genes (AMGs) remain unknown. We previously 27 

reported multiple candidate AMGs. Here, using multiple approaches, we characterized additional 28 

AMGs. First, we identified differentially expressed genes between high- and low-acylsugar-29 

producing F2 plants derived from a cross between Solanum lycopersicum and S. pennellii, which 30 

produce acylsugars ~1% and ~20% of leaf dry weight, respectively. Expression levels of many 31 

known and candidate AMGs positively correlated with acylsugar amounts in F2 individuals. 32 

Next, we identified lycopersicum-pennellii putative orthologs with higher nonsynonymous to 33 

synonymous substitutions. These analyses identified four candidate genes, three of which 34 

showed enriched expression in stem trichomes compared to underlying tissues (shaved stems). 35 

Virus-induced gene silencing confirmed two candidates, Sopen05g009610 [beta-ketoacyl-(acyl-36 

carrier-protein) reductase; fatty acid synthase component] and Sopen07g006810 (Rubisco small 37 

subunit), as AMGs. Phylogenetic analysis indicated that Sopen05g009610 is distinct from 38 

specialized metabolic cytosolic reductases, but closely related to two capsaicinoid biosynthetic 39 

reductases, suggesting evolutionary relationship between acylsugar and capsaicinoid 40 

biosynthesis. Additionally, data mining revealed that orthologs of Sopen05g009610 are 41 

preferentially expressed in trichomes of several acylsugar-producing solanaceous species. 42 

Similarly, orthologs of Sopen07g006810 were identified as trichome-preferentially-expressed 43 

members, which form a phylogenetic clade distinct from those of mesophyll-expressed “regular” 44 

Rubisco small subunits. Furthermore, δ13C analyses indicated recycling of metabolic CO2 into 45 

acylsugars by Sopen07g006810 and shed light on how trichomes support high levels of 46 

specialized metabolite production. These findings have implications for genetic manipulation of 47 

trichome specialized metabolism in solanaceous crops, including tomato, potato, and tobacco. 48 

 49 

 50 

 51 

 52 

 53 
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Introduction 54 

Plant metabolites are traditionally classified into primary or central metabolites and secondary or 55 

specialized metabolites. In contrast to evolutionarily conserved primary metabolites, specialized 56 

metabolites are found in specific taxonomic groups and exhibit greater structural diversity. The 57 

building blocks of specialized metabolites are derived from products of primary metabolism; for 58 

example, alkaloids are derived from amino acids, whereas acylsugars are derived from sugar and 59 

fatty acids. The evolution of a specialized metabolic pathway requires evolution of new gene 60 

functions, which can be achieved through a variety of mechanisms, including duplication of 61 

primary metabolic genes followed by neo- or sub-functionalization and/or changes in spatio-62 

temporal gene expression (Moghe and Last, 2015).  63 

 Specialized metabolites have important roles in plant-environment interactions. For 64 

example, acylsugars, which are nonvolatile and viscous metabolites secreted through glandular 65 

trichomes of many species in the Solanaceae (Slocombe et al., 2008; Moghe et al., 2017), 66 

provide protection against biotic and abiotic stress. These compounds contribute directly and 67 

indirectly to plant defense by providing resistance against insect herbivores (Alba et al., 2009; 68 

Leckie et al., 2016), by mediating multitrophic defense by attracting predators of herbivores 69 

through volatile short-chain aliphatic acids produced from acylsugar breakdown (Weinhold and 70 

Baldwin, 2011), and by protecting plants from microbial pathogens (Luu et al., 2017). 71 

Acylsugars also protect plants from desiccation (Fobes et al., 1985; Feng et al., 2021). These 72 

beneficial properties have led to interests in understanding acylsugar metabolism and identifying 73 

factors that control their production for breeding agronomically important crops with better 74 

resistance against insect herbivores (Bonierbale et al., 1994; Lawson et al., 1997; Leckie et al., 75 

2012).  76 

 Acylsugars exhibit tremendous structural variation in the Solanaceae. Both branched- and 77 

straight-chain fatty acids are esterified to the sugar moiety (glucose or sucrose) to form 78 

acylsugars, and major acyl chains vary in length (C2 to C12) in different species (Kroumova et 79 

al., 2016; Moghe et al., 2017). Predominant branched-chain fatty acids include 2-80 

methylpropanoate, 3-methylbutanoate, and 2-methylbutanoate, which are derived from 81 

branched-chain amino acids (valine, leucine, and isoleucine, respectively) (Walters and Steffens, 82 

1990). Branched medium-chain acyl groups, such as 6-methyheptanoate and 8-methylnonanoate, 83 
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are derived from branched short-chain precursors through elongation reactions mediated by 84 

either α-ketoacid (one-carbon elongation) or fatty acid synthase (FAS; two-carbon elongation) 85 

(Kroumova and Wagner, 2003). Predominant straight-chain fatty acids, such as n-decanoate and 86 

n-dodecanoate, are presumably derived from acetyl-CoA via FAS-mediated de novo biosynthesis 87 

(Walters and Steffens, 1990; Mandal et al., 2020). Once acyl chains are produced, specific sets of 88 

acylsugar acyltransferases (ASATs) in different species of the Solanaceae attach these aliphatic 89 

groups to different carbon positions of the sugar moiety, leading to remarkable metabolic 90 

diversity (Schilmiller et al., 2015; Fan et al., 2016; Moghe et al., 2017; Nadakuduti et al., 2017; 91 

Feng et al., 2021). Although many acylsugar metabolic genes (AMGs) have been identified in 92 

recent years, several remain unidentified and the regulation of acylsugar biosynthesis has not 93 

been well characterized, especially with regard to how solanaceous trichomes can support 94 

production of high levels of specialized metabolites. 95 

  Solanum pennellii, a wild relative of the cultivated tomato Solanum lycopersicum, is 96 

endemic to arid western slopes of the Peruvian Andes and is known for its ability to withstand 97 

extreme drought conditions. Acylsugars secreted from glandular trichomes of S. pennellii 98 

represent a remarkably large fraction, up to 20%, of the leaf dry weight; in contrast, S. 99 

lycopersicum produces only ~1% of its leaf dry weight as acylsugars. (Fobes et al., 1985). Here, 100 

in order to identify AMGs, we first created a S. lycopersicum x S. pennellii F2 population and 101 

conducted transcriptomic comparisons between high- and low-acylsugar-producing F2 102 

individuals to identify candidate AMGs. Next, we compared this list with our previously 103 

published list of candidate AMGs (Mandal et al., 2020). Additionally, genome-wide 104 

nonsynonymous to synonymous substitution rates (dN/dS ratio) estimation of S. pennellii and S. 105 

lycopersicum putative orthologs refined the list of candidate genes, and analysis of trichome-106 

preferential expression identified three candidates- Sopen05g009610, encoding a beta-ketoacyl-107 

(acyl-carrier-protein) reductase (SpKAR1 hereafter; a component of the FAS complex), 108 

Sopen07g006810, encoding a small subunit of Rubisco (SpRBCS1 hereafter), and 109 

Sopen05g032580, encoding an induced stolon-tip protein like member (SpSTPL hereafter). 110 

Virus-induced gene silencing (VIGS) indicated roles for both SpKAR1 and SpRBCS1 in 111 

acylsugar metabolism, while silencing of SpSTPL had no effect. The role of SpRBCS1 was 112 

further supported by δ13C analyses of acylsugars. Additionally, phylogenetic analyses and data 113 
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mining revealed interesting evolutionary aspects which suggested that orthologs of SpKAR1 and 114 

SpRBCS1 are involved in specialized metabolism in other plants. 115 

 Results:  116 

Transcriptomic comparison between high- and low-acylsugar-producing F2 individuals of 117 

S. lycopersicum x S. pennellii 118 

S. pennellii accession LA0716 produces copious amount of acylsugars (~20% of leaf dry 119 

weight), whereas S. lycopersicum cv. VF36  accumulates considerably lower amount (~1% of 120 

leaf dry weight) (Fobes et al., 1985). The interspecific F1 hybrid (LA4135) accumulates low 121 

levels of acylsugars (<3% of leaf dry weight). To identify candidate AMGs, we first analyzed 122 

acylsugar accumulation in an F2 population derived from the cross between VF36 and LA0716. 123 

Of the 114 F2 plants, 24 accumulated acylsugars >10% of their leaf dry weight, whereas 62 124 

accumulated acylsugars <3% of their leaf dry weight (Figure 1A). Next, using RNA-seq, we 125 

identified genes that were differentially expressed between 10 high- and 10 low-acylsugar-126 

producing F2 individuals (hereafter referred to as HIGH-F2 and LOW-F2, respectively). A total of 127 

20,160 S. pennellii genes were selected after minimum-expression-level filtering, and 331 128 

differentially expressed genes (DEGs) were identified; of these, 134 and 197 DEGs showed 129 

higher and lower expression levels, respectively, in the HIGH-F2 group compared to the LOW-F2 130 

group (Supplemental Data Set 1). Enrichment analysis indicated that gene ontology (GO) terms 131 

such as “acyltransferase activity” (GO:0016747), “fatty acid metabolic process” (GO:0006631), 132 

and “active transmembrane transporter activity” (GO:0022804) were over-represented in the list 133 

of 331 DEGs (Supplemental Figure S1). 134 

Of the 331 DEGs, 73 were also differentially expressed between high- and low-135 

acylsugar-producing accessions of S. pennellii (Mandal et al., 2020). Many genes with known 136 

and putative roles in acylsugar metabolism showed higher expression levels in the HIGH-F2 137 

group compared to the LOW-F2 group (Figure 1B), which validated our RNA-seq approach. 138 

These genes encode branched-chain fatty acid metabolic proteins, FAS components, acyl-139 

activating enzymes (also known as acyl-CoA synthetases), a mitochondrial/peroxisomal 140 

membrane protein (Sopen11g007710), three ATP-binding cassette transporters, three ASATs, 141 

transcription factors, and a Rubisco small subunit. Additionally, known and putative flavonoid 142 

metabolic genes, such as Sopen11g003320 (UDP-glucose:catechin glucosyltransferase) and three 143 
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sequential genes on chromosome 6 (Sopen06g034810, Sopen06g034820, and Sopen06g034830; 144 

myricetin O-methyltransferase; (Kim et al., 2014)), which are strongly co-expressed with AMGs 145 

(Mandal et al., 2020), were also found in the list of DEGs (Supplemental Data Set 1). 146 

 147 

Genome-wide dN/dS ratio estimation of S. pennellii and S. lycopersicum putative orthologs 148 

and refinement of candidate AMG list 149 

In addition to difference in gene expression levels, difference in protein-coding sequence may 150 

also contribute to difference in acylsugar accumulation capabilities between S. pennellii and S. 151 

lycopersicum. Compared to primary metabolic genes, specialized metabolic genes evolve faster 152 

and exhibit higher ratio of nonsynonymous to synonymous substitution rates (dN/dS ratio) 153 

(Moore et al., 2019). Therefore, as an additional approach for identifying candidate AMGs, we 154 

performed a genome-wide dN/dS ratio analysis (Yang and Nielsen, 2000) of S. pennellii and S. 155 

lycopersicum putative orthologs to identify genes that are under positive selection. Using 156 

reciprocal BLAST, 19,984 putative ortholog pairs were selected (Supplemental Data Set 2), and 157 

the yn00 maximum-likelihood method (Yang, 1997) yielded a genome-wide mean dN/dS ratio of 158 

0.3273 (Figure 2A). A total of 732 genes with dN/dS >1.0 were considered to be under positive 159 

selection (Supplemental Data Set 3). 160 

To narrow our focus further, we next compared lists of candidate AMGs obtained from 161 

three approaches: (A) 331 DEGs identified in our analysis of the F2 population, (B) 1,087 DEGs 162 

we previously reported from transcriptomic analysis between high- and low-acylsugar-producing 163 

S. pennellii accessions (Mandal et al., 2020), and (C) 732 genes with dN/dS >1.0. Four genes 164 

(Sopen07g006810, Sopen05g009610, Sopen05g032580, and Sopen05g034770) occurred in all 165 

three sets (Figure 2B, Table 1). Next, we measured trichome-enriched expression of these four 166 

candidates, since many AMGs are expressed in trichome tip-cells (Ning et al., 2015; Schilmiller 167 

et al., 2015; Fan et al., 2016; Fan et al., 2020). Transcript levels of Sopen07g006810 (SpRBCS1), 168 

Sopen05g009610 (SpKAR1), and Sopen05g032580 (SpSTPL) were 220-, 110- and 13-fold, 169 

respectively, higher in isolated stem trichomes than in underlying tissues of shaved stems in S. 170 

pennellii accession LA0716. On the other hand, expression of Sopen05g034770 was lower in 171 

trichomes than in shaved stems (Figure 2C). Because of this, and the fact that expression of 172 
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Sopen05g034770 is inversely correlated with acylsugar amount (Table 1), this gene was not 173 

analyzed further. 174 

 175 

In vivo functional validation of candidate AMGs 176 

To determine whether SpRBCS1, SpKAR1 and SpSTPL are involved in acylsugar biosynthesis, 177 

these three candidate genes were targeted in S. pennellii LA0716 for VIGS using tobacco rattle 178 

virus (TRV)-based silencing vectors (Dong et al., 2007). VIGS resulted in significant 179 

downregulation of target genes (82%, 54%, and 94% reduction in transcript levels for SpRBCS1, 180 

SpKAR1, and SpSTPL, respectively; Supplemental Figure S2, A and B), and leaf surface 181 

metabolites were analyzed by liquid chromatography-mass spectrometry (LC-MS). Compared to 182 

a group of control plants (empty TRV vectors), total acylsugar levels decreased by 23% (P < 183 

0.05) in VIGS-SpRBCS1 plants (Figure 3, A and B; Supplemental Data Set 4). In contrast, we 184 

did not observe any statistically significant changes in total acylsugar amount upon suppression 185 

of SpKAR1 or SpSTPL (Figure 3A). 186 

Despite the lack of influence on total acylsugar amount, silencing of SpKAR1 led to 187 

significant reductions in acylsugar medium-chain fatty acids (18%, 23%, and 20% reductions for 188 

8-methylnonanoate, n-decanoate, and n-dodecanoate, respectively), which is consistent with its 189 

predicted role in medium-chain fatty acid biosynthesis (Figure 3C). Silencing of SpRBCS1 190 

resulted in 20% reductions in C5 acyl chains (2- and 3-methylbutanoate). No noticeable 191 

morphological differences were observed between control and silenced plants (Supplemental 192 

Figure S2C), which indicates that these effects on acylsugar phenotypes were not indirect 193 

consequences of abnormal plant growth and development caused by VIGS. Transcript 194 

enrichment in trichomes and VIGS results together indicate roles of SpRBCS1 and SpKAR1 in 195 

acylsugar metabolism. On the other hand, no statistically significant changes in acyl chain profile 196 

were observed upon silencing of SpSTPL. 197 

 198 

Phylogenetic analysis of SpKAR1 199 
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Short-chain dehydrogenases/reductases (SDRs) constitute a large protein superfamily of 200 

NAD(P)(H)-dependent oxidoreductases; members exhibit low levels of sequence identity, but 201 

they share a Rossmann-fold motif for nucleotide binding (Kavanagh et al., 2008). Many SDRs 202 

are involved in biosynthesis of specialized metabolites, such as sesquiterpene zerumbone in 203 

Zingiber zerumbet (Okamoto et al., 2011), diterpene momilactone in Oryza sativa (Shimura et 204 

al., 2007), monoterpenoids in glandular trichomes of Artemisia annua (Polichuk et al., 2010), 205 

monoterpenoid constituents of essential oils in peppermint and spearmint (Ringer et al., 2005), 206 

phenolic monoterpenes in the Lamiaceae (Krause et al., 2021), and steroidal glycoalkaloids and 207 

saponins in Solanum species (Sonawane et al., 2018). SpKAR1 (322-aa) belongs to the SDR 208 

family and shares several common motifs, such as the N-terminal cofactor binding motif 209 

TGxxxGxG, a downstream structural motif (C/N)NAG, the active site motif YxxxK, and the 210 

catalytic tetrad N-S-Y-K, with members of the SDR “classical” subfamily (Kavanagh et al., 211 

2008) (Supplemental Figure S3). However, phylogenetic analysis suggested that SpKAR1 is 212 

closer to Escherichia and Synechocystis FabG [beta-ketoacyl-(acyl-carrier-protein) reductase] 213 

than other specialized metabolic SDRs mentioned earlier (Figure 4A; Supplemental Figure S4). 214 

Additionally, these plant SDRs are predicted to have a cytosolic location, whereas SpKAR1 is 215 

predicted to be localized to the chloroplast [TargetP 216 

(https://services.healthtech.dtu.dk/service.php?TargetP-2.0), WoLF PSORT 217 

(https://www.genscript.com/wolf-psort.html), and MultiLoc2 (https://abi-services.informatik.uni-218 

tuebingen.de/multiloc2/webloc.cgi)]. Furthermore, cytochrome P450 monooxygenase (CYP) 219 

activities are closely associated with these specialized metabolic SDRs, whereas SpKAR1 220 

activity presumably is not associated with CYP products. These results together indicate that 221 

SpKAR1 is a component of the FAS complex in the chloroplast, and it is phylogenetically distant 222 

from other specialized metabolic SDRs mentioned earlier. 223 

 Capsicum annuum is a solanaceous species that produces capsaicinoid specialized 224 

metabolites, but not acylsugars. Two SDRs from Capsicum annuum showed close phylogenetic 225 

relationships with SpKAR1, and we investigated the similarity between capsaicinoid and 226 

acylsugar biosynthetic pathways. In both pathways, valine is converted to 2-methylpropanoyl-227 

CoA, which is then elongated to C10 acyl molecules via FAS-mediated reactions (Figure 4B). 228 

This suggests a common evolutionary origin for acyl chain elongation steps in both acylsugar 229 

and capsaicinoid biosynthesis.  230 
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Ning et al. (2015) reported trichome-enriched expression data for S. lycopersicum genes, 231 

and Moghe et al. (2017) reported similar data in four additional acylsugar-producing solanaceous 232 

species- S. nigrum, S. quitoense, Hyoscyamus niger, and Salpiglossis sinuata. We mined these 233 

publicly available datasets and investigated if SpKAR1 orthologs exhibit trichome-enriched 234 

expression. Phylogenetic analysis identified two distinct clades, and members of one clade are 235 

preferentially expressed in trichomes (Figure 4C; Supplemental Figures S5 and S6). This 236 

suggests that SpKAR1 orthologs have a role in trichome acylsugar biosynthesis in other 237 

solanaceous species. 238 

 239 

Phylogenetic analysis of SpRBCS1  240 

Rubisco is composed of eight large subunits (encoded by a single RBCL gene on the plastid 241 

genome) and eight small subunits (encoded by a multigene family RBCS on the nuclear genome). 242 

Among the five annotated RBCS genes in S. pennellii (three on chromosome 2 and one on each 243 

of chromosome 3 and 7), only Sopen07g006810 (SpRBCS1) exhibited noticeable trichome-244 

enriched expression based on reverse transcription- quantitative PCR (Supplemental Figure 245 

S7A). In shaved stems, SpRBCS1 had extremely low, if any, level of expression (if SpRBCS1 is 246 

trichome-specific, residual expression could be due to incomplete shaving of stem trichomes). 247 

On the other hand, other RBCS members showed high expression levels in shaved stems (~1000-248 

fold higher than SpRBCS1). Additionally, protein sequence analysis revealed that other RBCS 249 

members, which share >90% sequence identity with each other, share low level of homology 250 

(<55% identity) with SpRBCS1 (Supplemental Figure S7, A and B). Furthermore, 251 

Sopen07g006810-Solyc07g017950 ortholog pair had dN/dS ratio of 2.91, whereas ortholog pairs 252 

of other RBCS members showed dN/dS ratios less than 0.32 (Supplemental Data Set 3), which is 253 

expected from highly conserved, mesophyll-expressed “regular” RBCS members (presumably 254 

involved in primary metabolism). These results indicated that SpRBCS1 is distinct from other 255 

RBCS members. This was supported by phylogenetic analysis, which in conjunction with data 256 

mining, showed that orthologs of SpRBCS1 are preferentially expressed in trichomes of 257 

solanaceous members (average 112-fold in six species where trichome-enriched expression data 258 

are available; Figure 5; Supplemental Figures S8 and S9). Interestingly, SpRBCS1 was placed in 259 

a monophyletic clade with Nicotiana tabacum RBCS-T, which is expressed in trichome tip cells 260 
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(Laterre et al., 2017). Orthologs of SpRBCS1 were found outside the Solanaceae (including 261 

Oryza sativa), but not in Arabidopsis, which lacks glandular trichomes. 262 

 263 

δ13C analyses of acylsugars 264 

Based on a previous metabolomics study (Balcke et al., 2017), it was hypothesized that Rubisco 265 

in trichomes mainly recycles CO2 released by the high metabolic rate in these cells. In S. 266 

pennellii trichomes, where production of acylsugars is high, three steps in this pathway release 267 

CO2: acetolactate synthase, isopropylmalate dehydrogenase, and branched-chain ketoacid 268 

dehydrogenase. If trichome Rubisco is responsible for recycling CO2, then acylsugars (and other 269 

metabolites in trichomes) will contain some carbon that has undergone at least two rounds of 270 

fixation, first in the bulk of the plant to provide primary metabolites, and again in the trichome to 271 

recover CO2 released during production of branched chain fatty acids. One consequence of this 272 

re-fixation would be that acylsugars contain even less 13C than the rest of the plant due to 273 

isotopic fractionation at each fixation (the lighter 12C isotope would be favored because of a 274 

lower activation energy). To test this hypothesis, we measured fractionation of carbon isotopes 275 

(δ13C; reported in parts per thousand ‰) in both secreted acylsugars and plant tissues 276 

presumably without acylsugars (shaved stems). Acylsugars and shaved stems showed δ13C of -277 

33.15‰ and -28.99‰, respectively (Figure 6A). The difference in δ13C between these two 278 

sample types indicates that acylsugars contain carbons that have undergone additional rounds of 279 

fixation compared to non-acylsugar metabolites. Additionally, δ13C values from S. pennellii 280 

samples (acylsugars and shaved stems) are comparable to δ13C value from another member of 281 

the Solanaceae that was reported previously (-30.7‰ in Nicotiana tabacum) (Smith and Epstein, 282 

1971). 283 

Next, we hypothesized that the trichome-preferentially-expressed SpRBCS1 is 284 

responsible for this re-fixation of carbons into acylsugars. To test our hypothesis, we determined 285 

the difference in δ13C between shaved stems and acylsugars (δδ13C) for two groups of plants- 286 

control and VIGS-SpRBCS1. Compared to a control group, VIGS led to a reduction in δδ13C 287 

(Figure 6B), which confirmed the role of SpRBCS1 in supplying re-fixed carbons for acylsugar 288 

biosynthesis.  289 
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 290 

Discussion 291 

Acylsugars are secreted by glandular trichomes of several plant families, including Martyniaceae 292 

(Asai et al., 2010), Caryophyllaceae (Asai et al., 2012), Geraniaceae (Sakai et al., 2013), and 293 

Solanaceae, where they have been best studied. A detailed knowledge about genes involved in 294 

regulating acylsugar amount and acyl chain profile (Ben-Mahmoud et al., 2018) is required for 295 

successful crop breeding programs and metabolic engineering of acylsugar production. Here, we 296 

report two trichome-preferentially-expressed genes involved in acylsugar biosynthesis. 297 

 298 

Multiple approaches to identify and validate candidate AMGs 299 

Many enzymes involved in acylsugar biosynthesis have been identified in recent years (Ning et 300 

al., 2015; Schilmiller et al., 2015; Fan et al., 2016; Schilmiller et al., 2016; Moghe et al., 2017; 301 

Nadakuduti et al., 2017; Fan et al., 2020; Mandal et al., 2020; Feng et al., 2021; Lou et al., 2021). 302 

To identify additional enzymes in this pathway, and hopefully regulatory proteins, we used a 303 

multipronged strategy to find genes whose expression and evolutionary patterns suggested they 304 

could be involved. To refine our previously reported list of candidate AMGs (Mandal et al., 305 

2020), we looked for genes that were differentially expressed between high- and low-acylsugar-306 

producing F2 individuals derived from S. lycopersicum x S. pennellii, and also genes that 307 

appeared to be rapidly evolving as determined by the dN/dS ratio. The intersection of three sets 308 

of candidate AMGs yielded four candidates (Figure 2B). One candidate, Sopen05g034770, had 309 

lower expression in high-acylsugar-producing F2 individuals than in low-acylsugar-producing F2 310 

individuals and also lower expression in trichomes relative to underlying tissue (Table 1; Figure 311 

2C). Both of these patterns are opposite to what we would expect for genes involved in acylsugar 312 

biosynthesis. Therefore, this gene was not studied further, but the hypothetical protein encoded 313 

by this gene may act as a negative regulator of the pathway. Putative roles of the remaining three 314 

trichome-preferentially-expressed candidates in acylsugar biosynthesis were tested using VIGS, 315 

which confirmed SpKAR1 and SpRBCS1 as AMGs (Figure 3). Phylogenetic analyses and data 316 

mining revealed that orthologs of both SpKAR1 (Figure 4C) and SpRBCS1 (Figure 5) are 317 

trichome-preferentially-expressed members in the Solanaceae, suggesting roles for these 318 
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orthologs in acylsugar biosynthesis. Additionally, SpKAR1 and SpRBCS1 exemplify duplication 319 

of highly-conserved primary metabolic genes followed by spatial regulation of gene expression 320 

as a driver of evolution of acylsugar metabolism. 321 

 322 

Function and phylogeny of SpKAR1 323 

In plants, de novo fatty acid biosynthesis takes place predominantly in plastids, which use a 324 

multicomponent type II FAS system that catalyzes the extension of the growing acyl chain. The 325 

plastidic FAS has four well-characterized enzymatic components: a beta-ketoacyl-(acyl-carrier-326 

protein) reductase (KAR), a beta-hydroxyacyl-(acyl-carrier-protein) dehydrase, an enoyl-(acyl-327 

carrier-protein) reductase, and three isozymes of beta-ketoacyl-(acyl-carrier-protein) synthases 328 

(KAS I, II, and III). KAR catalyzes one of the steps of the core four-reaction cycle of the FAS-329 

mediated chain elongation process. Close phylogenetic relationship with bacterial FabG (KAR) 330 

and its predicted chloroplast location indicate that SpKAR1 is a component of the plastid FAS, 331 

and it is distinct from other specialized metabolic cytosolic SDRs (Figure 4A). VIGS showed 332 

that SpKAR1 is required for acylsugar straight-chain fatty acid (SCFA) biosynthesis (Figure 3C), 333 

and we previously reported two trichome-preferentially-expressed KAS genes that are involved 334 

in SCFA biosynthesis (Mandal et al., 2020). These results corroborate the role of FAS in 335 

acylsugar SCFA biosynthesis. 336 

Elongation of acetyl-CoA to SCFAs by FAS complex presumably takes place in plastids; 337 

however, it is not clear if elongation of 2-methylpropanoyl-CoA (isobutyryl-CoA; produced in 338 

mitochondria from valine) to 8-methylnonanoyl-CoA (one of the major branched-chain acyl 339 

groups) occurs in mitochondria or chloroplast (Figure 4B). For both capsaicinoid (Mazourek et 340 

al., 2009) and acylsugar (Slocombe et al., 2008) biosynthesis, it has been proposed that 2-341 

methylpropanoyl-CoA is transported from mitochondria to chloroplast, where it is elongated by 342 

the plastid FAS complex. Recently, a dual-localized KAR (AT1G24360) was reported in 343 

Arabidopsis (Guan et al., 2020), and AT1G24360 is phylogenetically closely related to SpKAR1 344 

(Figure 4C; Supplemental Figure S5). This suggests the possibility that plastidic-SpKAR1 is 345 

involved in the biosynthesis of acylsugar SCFAs, whereas mitochondrial-SpKAR1 is involved in 346 

the elongation of 2-methylpropanoyl-CoA; this would allow 2-methylpropanoyl-CoA to be 347 

elongated without being transported to plastid. 348 
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 349 

Capsaicinoid and acylsugar biosynthetic pathways 350 

 In Capsicum, 8-methyl-6-nonenoyl-CoA (C10) and 8-methylnonanoyl-CoA (C10) are attached 351 

to an aromatic compound derived from phenylalanine to generate capsaicin and 352 

dihydrocapsaicin, respecetively, which are two of the most potent capsaicinoids (Mazourek et al., 353 

2009). These C10 acyl molecules are presumably derived from 2-methylpropanoyl-CoA via 354 

FAS-mediated reactions, and this segment of the capsaicinoid biosynthetic pathway is similar to 355 

the acylsugar biosynthetic pathway (Figure 4B). Attachment of acyl groups to an aromatic 356 

compound (in case of capsaicinoid biosynthesis) or sucrose (in case of acylsugar biosynthesis) is 357 

catalyzed by BAHD superfamily transferases: PUN1 in capsaicinoid biosynthesis (Stewart et al., 358 

2005) and ASATs in acylsugar biosynthesis (Schilmiller et al., 2015; Fan et al., 2016). Moghe et 359 

al. (2017) reported that PUN1 and ASATs share a common evolutionary ancestor, and our 360 

phylogenetic analysis revealed that SpKAR1 is closely related to two reductases involved in 361 

capsaicinoid biosynthesis (FAS-mediated acyl chain elongation steps) (Figure 4A). These results 362 

indicate close phylogenetic relationships between segments of capsaicinoid and acylsugar 363 

biosynthetic pathways. Additionally, acyl chain length is an important factor in determining both 364 

pungency of capsaicinoids and potential in defense activity of acylsugars (Ben-Mahmoud et al., 365 

2018). Taken together, these findings will be useful in future metabolic engineering of 366 

capsaicinoid and acylsugar production.  367 

 368 

Function and phylogeny of SpRBCS1 369 

Phylogenetic analysis clustered SpRBCS1 with other solanaceous trichome-preferentially-370 

expressed RBCS members (Figure 5), including Nicotiana tabacum tip-cell-expressed RBCS-T 371 

(Laterre et al., 2017), and also with rice OsRBCS1, which is expressed in several tissues other 372 

than leaf blade (major photosynthetic organ) (Morita et al., 2014). Additionally, based on 373 

enzymatic properties, both RBCS-T and OsRBCS1 were found to be distinct from “regular” 374 

RBCS members in respective species. These findings indicate specialized functions for 375 

SpRBCS1 and its orthologs in special cell/tissue types. 376 
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Trichome metabolites can accumulate at noticeably high levels; for example, acylsugars 377 

in S. pennellii and duvatrienediol in N. tabacum can accumulate up to 20% and 15%, 378 

respectively, of leaf dry weight (Fobes et al., 1985; Severson et al., 1985). This indicates high 379 

metabolic activities and CO2 release in trichome cells (for example, enzymatic steps catalyzed by 380 

acetolactate synthase, isopropylmalate dehydrogenase, and branched-chain ketoacid 381 

dehydrogenase complex generate CO2 during acylsugar production). However, due to thick cell 382 

walls and cuticle, it has been suggested that trichomes have limited gaseous exchange with the 383 

outside and fix little atmospheric CO2 (Balcke et al., 2017). In order to support continued high 384 

metabolic activities, trichomes may require re-fixation of metabolic CO2 with a Rubisco that is 385 

active in high CO2 and low pH conditions. Biochemical assays indicate that N. tabacum RBCS-T 386 

has been adapted to such conditions (Laterre et al., 2017). These results encouraged us to 387 

investigate, using δ13C analysis, if SpRBCS1 is involved in re-fixation of metabolic CO2 into 388 

acylsugars. 389 

Fractionation of carbon isotopes during photosynthesis occurs predominantly during the 390 

carboxylation reaction (carbon fixation) catalyzed by Rubisco, and it leads to a preferential 391 

enrichment of one stable isotope over another. Photosynthates contain less of the 13C than the 12C 392 

due to kinetic isotope effects- the lighter 12C isotope is preferentially incorporated into products 393 

because it has a higher energy state (a lower activation energy) (Smith and Epstein, 1971). We 394 

used this information about carbon isotope fractionation to analyze metabolites, and tested the 395 

hypothesis based on Balcke et al. (2017) that in trichomes, Rubisco mostly re-fixes metabolic 396 

CO2, which are incorporated into specialized metabolites (predominantly acylsugars in case of S. 397 

pennellii). Our δ13C examination of acylsugars and shaved stems showed recycling of metabolic 398 

CO2 into acylsugars (Figure 6A). Additionally, VIGS confirmed that the trichome-preferentially-399 

expressed SpRBCS1 is responsible for this re-fixation (Figure 6B). Tomato trichomes receive 400 

carbon mostly from leaf sucrose (Balcke et al., 2017); however, re-fixation of metabolic CO2 401 

would allow trichomes to maintain a pH homeostasis and also to improve carbon utilization for 402 

sustained high level production of specialized metabolites. 403 

 404 

Materials and methods 405 

Plant materials and growth conditions 406 
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Seeds of Solanum pennellii LA0716 and the F1 hybrid (LA4135) of S. lycopersicum VF36 x S. 407 

pennellii LA0716 were obtained from the C.M. Rick Tomato Genetics Resource Center 408 

(University of California, Davis). The LA4135 was self-pollinated for generating the F2 409 

population. Seeds were treated with 1.2% (w/v) sodium hypochlorite for 20 minutes and rinsed 410 

with deionized water three times before placing on moist filter paper in petri dishes. After 411 

germination, seedlings were transferred to soil and grown in a growth chamber (16-hour 412 

photoperiod; 24°C/20°C day/night temperature; 150 µMol m-2 s-1 photosynthetically active 413 

radiation; 75% relative humidity). 414 

 415 

Acylsugar collection from F2 individuals 416 

Secreted acylsugars were collected from three young leaves of 10-week-old F2 individuals as 417 

three replicates by dipping them in ethanol for 2-3 seconds. Ethanol was completely removed by 418 

evaporation until dryness in a fume hood. Acylsugar amount was determined as a proportion of 419 

leaf dry weight. Leaf dry weights were measured after drying in a 70°C oven for one week.  420 

 421 

RNA sequencing (RNA-seq) 422 

10 high-acylsugar-producing F2 individuals (acylsugar amounts >14% of leaf dry weight) and 10 423 

low-acylsugar-producing F2 individuals (acylsugar amounts <1% of leaf dry weight) were used 424 

in the HIGH-F2 versus LOW-F2 transcriptome comparison. After removing surface metabolites 425 

with ethanol for 2-3 seconds, young leaves were immediately frozen with liquid nitrogen, and 426 

stored at -80°C until further use. Total RNA was isolated from leaves using the RNAqueous 427 

Total RNA Isolation Kit (Thermo Fisher Scientific), and the genomic DNA was removed using 428 

the TURBO DNA-Free Kit (Thermo Fisher Scientific). RNA-seq libraries of polyA+-selected 429 

samples were prepared using TruSeq Stranded mRNA Library Preparation Kit LT (Illumina). 430 

After quality control, libraries were sequenced on the HiSeq 4000 (Illumina) 150x150-bp paired-431 

end sequencing platform according to the manufacturer’s specifications at the Texas A&M 432 

Genomics and Bioinformatics Service Center, College Station. 433 

 434 
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Differential gene expression analysis 435 

Approximately 31 to 48 million (average 36 million) paired-end reads were generated from 436 

RNA-seq libraries. Sequencing reads were processed using Trimmomatic v0.32 (Bolger et al., 437 

2014) with the following settings: ILLUMINACLIP:TruSeq3-PE-2.fa:2:30:10, LEADING = 20, 438 

TRAILING = 20, SLIDINGWINDOW = 4:20, MINLEN = 100. Approximately 68% of the 439 

reads in each library passed the trimming filter. The trimmed reads were then mapped to the S. 440 

pennellii LA0716 genome v2.0 (Bolger et al., 2014) using TopHat2 v2.1.0  (Kim et al., 2013) 441 

with the following parameters: -library-type = fr-firststrand, -mate-inner-dist = 0, -mate-std-dev 442 

= 50, -read-realign-edit-dist = 1000, -read-edit-dist = 2, -read-mismatches = 2, -min- anchor-len 443 

= 8, -splice-mismatches = 0, -min-intron-length = 50, -max- intron-length = 50,000, -max-444 

insertion-length = 3, -max-deletion-length = 3, -max-multihits = 20, -min-segment-intron = 50, -445 

max-segment-intron = 50,000, -segment-mismatches = 2, -segment-length = 25. 70-85% of the 446 

trimmed reads were mapped to the S. pennellii genome. Aligned reads from TopHat2 were 447 

counted for each gene using HTseq package version 0.6.1 (Anders et al., 2015) with the 448 

following parameters: -f bam, -r name, -s reverse, -m union, -a 20. The count files were used to 449 

identify differentially expressed genes (DEGs) using edgeR version 3.32.1 (Robinson et al., 450 

2010). Fragments per kilobase per million mapped reads (FPKM) value for each gene in each 451 

sample was called with rpkm command in edgeR program. Genes with more than one count per 452 

million (CPM) in at least two samples were used for differential gene expression analysis. DEGs 453 

were identified when P, corrected for multiple testing, was less than 0.05 (false discovery rate < 454 

0.05), and fold change was greater than 2. 455 

 456 

Identification of putative orthologs and dN/dS estimation 457 

To identify putative orthologs, we performed an all-versus-all reciprocal BLAST between 458 

annotated genes of S. pennellii v2.0 (Bolger et al., 2014) and S. lycopersicum ITAG2.3 (Tomato 459 

Genome, 2012) with the following settings: minimum percentage identity = 70, minimum 460 

percentage query coverage = 50. Putative orthologs were aligned with ClustalW, and the 461 

alignment information was converted into codon alignments using PAL2NAL (Suyama et al., 462 

2006). Genome-wide dN/dS ratios were calculated between putative ortholog pairs using the 463 

yn00 maximum likelihood method in the PAML package (Yang, 1997; Yang and Nielsen, 2000). 464 



 

17 
 

 465 

Determination of trichome-enriched expression 466 

Reverse transcription- quantitative PCR (RT-qPCR) was used to measure trichome-enriched 467 

expression of selected genes in S. pennellii LA0716, as described in Mandal et al. (2020). RT-468 

qPCR primers are given in Supplemental Table S1. 469 

 470 

Virus-induced gene silencing (VIGS) 471 

VIGS was performed using the tobacco rattle virus (TRV)-based vectors (Dong et al., 2007) in S. 472 

pennellii LA0716. VIGS constructs were designed using the Solanaceae Genomics Network 473 

VIGS tool (http://vigs.solgenomics.net/) and were cloned into the pTRV2-LIC vector, in the 474 

antisense orientation, to target selected genes. Agrobacterium tumefaciens strain GV3101 475 

harboring pTRV1, pTRV2 constructs, and empty pTRV2 were grown overnight with 50 mg/mL 476 

kanamycin and 10 mg/mL gentamicin at 28°C. Cultures were centrifuged at 8,000g for 5 min at 477 

4°C, and cells were washed and resuspended in infiltration buffer (10 mM MES pH 5.5, 10 mM 478 

MgCl2, and 200 μM of acetosyringone). Cell suspensions were incubated at room temperature 479 

for 3 hours, and different pTRV2 cultures were mixed with equal volumes of pTRV1 cultures to 480 

reach final OD600 = 1 before infiltration at the first true leaf stage with a needleless syringe. 481 

Plants were grown in a chamber with conditions mentioned earlier for approximately six weeks. 482 

Silencing of target genes were assessed with RT-qPCR using primers that were designed outside 483 

the VIGS-targeted regions. VIGS primers are listed in Supplemental Table S1. 484 

 485 

Chromatography–mass spectrometry analysis 486 

Secreted acylsugars from control and VIGS plants were quantified with liquid chromatography-487 

mass spectrometry (LC–MS). Acylsugars on leaf surface were collected from similar-sized 488 

young leaves by submerging them in 10 ml of extraction solvent [acetonitrile:isopropanol:water 489 

(3:3:2, v/v/v) with 0.1% formic acid; 100 μM propyl 4-hydroxybenzoate was used as the internal 490 

standard], followed by gentle mixing for 2 minutes. Extracted samples were analyzed using Q 491 

Exactive Focus coupled with Ultimate 3000 RS LC unit (Thermo Fisher Scientific) and Exactive 492 
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Series 2.8 SP1/Xcalibur 4.0 software. Acylsugars were separated by injecting 10 µL of sample 493 

into Acclaim 120 (2.1 x 150 mm; 3 µm) C18 column (Thermo Fisher Scientific) that was housed 494 

at 30°C. 0.1% formic acid was used as eluent A and acetonitrile with 0.1% formic acid was used 495 

as eluent B in the mobile phase. Flow rate was set at 300 µL/min with the following gradient: 0–496 

3 minutes, 40% B; 3-23 minutes, 40-100% B; 23-28 minutes, hold 100% B; 28.1-31 minutes, 497 

hold 40% B. The Q Exactive Focus HESI source was operated in full MS in negative 498 

electrospray ionization (ESI) mode. Other parameters were set as follows: sheath and auxiliary 499 

gas flow rates-35 and 10 arbitrary units, respectively; spray voltage- 3.3 kV; S-Lens RF level- 50 500 

v. The transfer capillary temperature and the auxiliary gas heater temperature were held at 320°C 501 

and 350°C, respectively. Parallel reaction monitoring (PRM) mode was used for targeted 502 

MS/MS of acylsugars. Relative abundances of acylsugars were determined by dividing total peak 503 

areas of all detected acylsugars with peak area of the internal standard and leaf dry weight. Dry 504 

weights of the extracted leaves were measured after one week of drying in a 70°C oven. 505 

Acylsugar acyl chain profiles were analyzed with gas chromatography-mass spectrometry 506 

(GC–MS) after performing transesterification reaction, as described in Mandal et al. (2020). 507 

 508 

Phylogenetic analysis 509 

Sequences were obtained from the Solanaceae Genomics Network, GenBank, and the NCBI 510 

website. For S. nigrum, S. quitoense, Hyoscyamus niger, and Salpiglossis sinuata, de novo 511 

assembled transcriptomes (Moghe et al., 2017) were used to collect sequences, which were 512 

translated in six possible frames (https://web.expasy.org/translate/) to obtain protein sequences 513 

with longest open reading frames. MAFFT (Katoh and Standley, 2013) was used for multiple 514 

sequence alignment with BLOSUM62 matrix, gap extend penalty value of 0.123, and gap 515 

opening penalty value of 1.53. ModelFinder (Kalyaanamoorthy et al., 2017) was used to 516 

compare substitution models, and the best model of protein evolution was selected based on 517 

lowest Bayesian Information Criterion scores (LG+I+G4 for Figure 4A, JTT+G4 for 518 

Supplemental Figure S5, and LG+G4 for Figure 5). IQ-TREE 2 (Minh et al., 2020) was used to 519 

construct maximum-likelihood based phylogenetic trees. MEGA X (Kumar et al., 2018) was 520 

used to construct neighbor-joining phylogenetic trees applying Jones-Taylor-Thornton (JTT) 521 



 

19 
 

model. Uniform rates among sites were used, and pairwise deletion was used for gaps/missing 522 

data. Bootstrap values were obtained from 1000 replicates. 523 

 524 

Stable isotope analysis 525 

δ13C analysis was performed at the Texas A&M Stable Isotope Geosciences Facility using 526 

methods described in McDermott et al. (2019). 527 

 528 

Accession numbers 529 

Sequence data from this article can be found in the GenBank data libraries under accession 530 

numbers ON920880 (SpRBCS1; Sopen07g006810), ON920881 (SpRBCS2; Sopen02g014220), 531 

ON920882 (SpRBCS3; Sopen02g030610), ON920883 (SpRBCS4; Sopen02g030630), 532 

ON920884 (SpRBCS5; Sopen03g007000), ON920885 (SpKAR1; Sopen05g009610), 533 

ON920886 (SpKAR2; Sopen06g028190), ON920887 (SpSTPL; Sopen05g032580), and 534 

ON920888 (hypothetical protein; Sopen05g034770). RNA-seq reads used in this study were 535 

submitted to the NCBI Sequence Read Archive under the accession number PRJNA818092 536 

(BioProject ID). 537 

 538 

Supplemental data 539 

Supplemental Figure S1. Enrichment analysis of gene ontology (GO) terms associated with 331 540 

differentially expressed genes (DEGs) between high- and low-acylsugar-producing F2 541 

individuals. 542 

Supplemental Figure S2. Virus-induced gene silencing (VIGS) of candidate genes in Solanum 543 

pennellii LA0716. 544 

Supplemental Figure S3. Multiple sequence alignment of SpKAR1 (Sopen05g009610) and its 545 

homologs, including specialized metabolic short-chain dehydrogenases/reductases (SDRs). 546 

Supplemental Figure S4. Maximum-likelihood phylogenetic tree of SpKAR1 547 

(Sopen05g009610) and related short-chain dehydrogenases/reductases (SDRs). 548 
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Supplemental Figure S5. Maximum-likelihood phylogenetic tree of SpKAR1 549 

(Sopen05g009610) and its homologs in the Solanaceae. 550 

Supplemental Figure S6. Multiple sequence alignment of SpKAR1 (Sopen05g009610) and its 551 

homologs in the Solanaceae. 552 

Supplemental Figure S7. Analyses of RBCS members in Solanum pennellii. 553 

Supplemental Figure S8. Neighbor-joining tree of SpRBCS1 (Sopen07g006810) and its 554 

homologs. 555 

Supplemental Figure S9. Multiple sequence alignment of SpRBCS1 (Sopen07g006810) and its 556 
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Supplemental Table S1. List of primers used in this study. 558 

Supplemental Data Set 1. Differentially expressed genes (DEGs) between HIGH-F2 and LOW-559 

F2 groups. 560 

Supplemental Data Set 2. Reciprocal Best Hits (RBH) between Solanum pennellii and S. 561 

lycopersicum annotated sequences. 562 
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Gene ID High vs. 
Low 
accessions 
log2FC 

HIGH-F2 
vs.  
LOW-F2 
log2FC 

dN/dS 
value 

dN/dS
rank 

Annotation 

Sopen07g006810 5.01 1.85 2.91 29 Rubisco small subunit 
Sopen05g009610 3.32 1.15 2.8 35 Beta-ketoacyl-(acyl-carrier-

protein) reductase 
Sopen05g032580 2.97 2.1 1.52 227 Induced stolon tip protein-like
Sopen05g034770 -3.48 -1.89 1.59 199 Uncharacterized protein

 745 
Log2FC indicates log2 (fold-change). Positive and negative log2FC values indicate higher and 746 

lower expression levels, respectively, in high-acylsugar-producing S. pennellii accessions 747 

(Mandal et al., 2020) or HIGH-F2 group. dN/dS rank represents the corresponding rank of 748 

selected gene in 732 putative orthologs with dN/dS > 1. 749 

 750 
Figure legends 751 
 752 
Figure 1 Acylsugar accumulation and expression of known and candidate acylsugar metabolic 753 

genes (AMGs) in a Solanum lycopersicum VF36 x S. pennellii LA0716 F2 population. A, 754 

Histogram showing acylsugar amount distribution among 114 F2 plants. For each plant, three 755 

replicates were used to measure acylsugar amount. B, Heatmap showing relative expression 756 

levels (set to one-fold in the LOW-F2 group) of genes with known and putative roles in acylsugar 757 

metabolism. S. pennellii gene identifier numbers (Sopen IDs) are given with annotations. 758 

BCAA= branched-chain amino acid; BCFA= branched-chain fatty acid; FAS= fatty acid 759 

synthase component; AAE= acyl-activating enzyme; ASAT= acylsugar acyltransferase; ASH= 760 

acylsugar acylhydrolase; TF= transcription factor; BCKDH= branched-chain keto acid 761 

dehydrogenase; AACS1= acylsugar acyl-CoA synthetase 1; AECH1= acylsugar enoyl-CoA 762 

hydratase 1; ASFF1= acylsucrose fructofuranosidase 1. 763 

 764 

Figure 2 Selection of candidate AMGs. A, Distribution of nonsynonymous to synonymous 765 

substitution rate ratios (dN/dS ratios) of putative ortholog pairs from S. pennellii and S. 766 

lycopersicum. B, Venn diagram showing the intersections of three sets of candidate AMGs: (1) 767 

differentially expressed genes (DEGs) between high- and low-acylsugar-producing S. pennellii 768 

accessions (Mandal et al., 2020; red circle), (2) DEGs between high- and low-acylsugar-769 

producing F2 plants (HIGH-F2 and LOW-F2, respectively; purple circle), and (3) genes with 770 
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dN/dS > 1 between S. pennellii and S. lycopersicum putative orthologs (green circle). Four genes 771 

were identified at the intersections of these three sets. C, Relative expression levels of the four 772 

candidate AMGs [SpRBCS1 (Sopen07g006810), SpKAR1 (Sopen05g009610), SpSTPL 773 

(Sopen05g032580) and Sopen05g034770] in isolated stem trichomes and underlying tissues of 774 

shaved stems (normalized to one-fold) in S. pennellii LA0716. SpASAT1 (Sopen12g002290), the 775 

ortholog of S. lycopersicum trichome tip-cell-expressed ASAT1 (Fan et al., 2016), was included 776 

for comparison. Error bars indicate SE (n = 5 individual plants). 777 

 778 

Figure 3 Virus-induced gene silencing (VIGS) of three trichome-preferentially-expressed 779 

candidate AMGs in S. pennellii LA0716. A, Acylsugar quantification by liquid chromatography–780 

mass spectrometry (LC-MS). To quantify acylsugar amounts, chromatogram peak areas were 781 

normalized by internal standard (IS) area and leaf dry weight (LDW). Error bars indicate SE (n = 782 

10, 12, 11, and 12 individual plants for control, VIGS-KAR1, VIGS-RBCS1 and VIGS-STPL 783 

groups, respectively; * P < 0.05; Dunnett’s test). B, Representative chromatograms (normalized 784 

by IS area and LDW) showing acylsugar peaks in control and VIGS-RBCS1 plants. Acylsugar 785 

peaks are listed in Supplemental Data Set 4. C, Acylsugar acyl chain composition analysis by gas 786 

chromatography-mass spectrometry (GC-MS). Predominant acyl chains are shown. Me= methyl; 787 

C3-C12 indicate acyl chain length (for example, 2-MeC3 and n-C10 indicate 2-methlpropanoate 788 

and n-decanoate, respectively). Error bars indicate SE (n = 10, 12, 11, and 12 individual plants 789 

for control, VIGS-KAR1, VIGS-RBCS1 and VIGS-STPL groups, respectively; * P < 0.05, ** P < 790 

0.01, *** P < 0.001; Dunnett’s test). 791 

 792 

Figure 4 Phylogenetic analyses of SpKAR1. A, Maximum-likelihood tree (topology) of 793 

SpKAR1 (Sopen05g009610; highlighted) and related short-chain dehydrogenases/reductases 794 

(SDRs). Red circles indicate plant specialized metabolic SDRs. Blue squares indicate bacterial 795 

sequences. "Sopen" numbers indicate sequences from Solanum pennellii. Sequences from other 796 

species are given with GenBank accession numbers. Black diamonds indicate more than one 797 

"Sopen" sequences, which were clustered to save space; complete tree is given in Supplemental 798 

Figure S4. Two sequences related to capsaicinoid biosynthesis are indicated by arrows. Bootstrap 799 

values from 1000 replicates are shown on the nodes. B, Similarity between capsaicinoid and 800 

acylsugar biosynthetic pathways. Metabolism of leucine, isoleucine, and straight-chain fatty 801 
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acids in acylsugar pathway are not shown here. Single arrows do not necessarily indicate single 802 

enzymatic steps. Enzymes are in red font. BCAT= branched-chain aminotransferase; BCKDH= 803 

branched-chain keto acid dehydrogenase; FAS= fatty acid synthase; PUN1= pungent gene 1; 804 

ASAT1= acylsugar acyltransferase 1. C, Neighbor-joining tree of SpKAR1 (highlighted) and its 805 

homologs in the Solanaceae. Sequences from four non-solanaceous plant species [Ipomoea 806 

triloba and I. nil (Convolvulaceae); Arabidopsis thaliana and Brassica napus (Brassicaceae)] 807 

and two bacteria (Synechocystis and Escherichia) are also included. Bootstrap values from 1000 808 

replicates are shown. Tree is drawn to scale, with branch lengths measured in the number of 809 

substitutions per site. Tri110x indicates 110-fold higher expression in isolated trichomes 810 

compared to underlying tissues (NF= not found in HN_c64839g1). RT-qPCR was used for 811 

"Sopen" sequences. Trichome-enriched expression data (based on RNA-seq) for sequences in 812 

five other species were obtained from Ning et al., 2015 (Solyc= S. lycopersicum) and Moghe et 813 

al., 2017 (SN= S. nigrum; SQ= S. quitoense; HN= Hyoscyamus niger; SS= Salpiglossis sinuata). 814 

Peaxi= Petunia axillaris. Sopen03g030230 (138-aa) and its putative orthologs were not included 815 

because they have long deletions and insertions. Maximum-likelihood tree is given in 816 

Supplemental Figure S5. 817 

 818 

Figure 5 Phylogenetic analysis of SpRBCS1 (Sopen07g006810; highlighted). A, Maximum-819 

likelihood tree of Rubisco small subunits. Solanaceous sequences were combined into two 820 

clusters (indicated by a red circle and a blue square) to save space. Neighbor-joining tree is given 821 

in Supplemental Figure S8. Bootstrap values from 1000 replicates are shown on the nodes. Tree 822 

is drawn to scale, with branch lengths measured in the number of substitutions per site. Os= 823 

Oryza sativa; AT= Arabidopsis thaliana. GenBank accession numbers are indicated for Ipomoea 824 

triloba and Microcystis aeruginosa. B and C, Expanded Solanaceae "trichome" cluster (B) and 825 

expanded Solanaceae "regular" cluster (C).  Tri220x indicates 220-fold higher expression in 826 

isolated trichomes compared to underlying tissues (NF= not found). RT-qPCR was used for 827 

Solanum pennellii (Sopen) sequences. Trichome-enriched expression data (based on RNA-seq) 828 

for sequences in five other species were obtained from Ning et al., 2015 (Solyc= S. 829 

lycopersicum) and Moghe et al., 2017 (SN= S. nigrum; SQ= S. quitoense; HN= Hyoscyamus 830 

niger; SS= Salpiglossis sinuata). Peaxi= Petunia axillaris; CA= Capsicum annuum; Nt= 831 

Nicotiana tabacum. 832 
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 833 

Figure 6 δ13C analyses. A, Difference in δ13C values between shaved stems and secreted 834 

acylsugars. Error bars indicate SE (n = 10 individual plants; **** P < 0.0001; Welch t-test). B, 835 

VIGS of SpRBCS1 reduces the difference in δ13C values between shaved stems and acylsugars. 836 

Error bars indicate SE (n = 5 and 10 individual plants for control and VIGS-RBCS1 groups, 837 

respectively; *** P < 0.001; Welch t-test). 838 



Figure 1 Acylsugar accumulation and expression of known and candidate acylsugar metabolic genes (AMGs) in a 
Solanum lycopersicum VF36 x S. pennellii LA0716 F2 population. A, Histogram showing acylsugar amount 
distribution among 114 F2 plants. For each plant, three replicates were used to measure acylsugar amount. 
B, Heatmap showing relative expression levels (set to one-fold in the LOW-F2 group) of genes with known and 
putative roles in acylsugar metabolism. S. pennellii gene identifier numbers (Sopen IDs) are given with 
annotations. BCAA= branched-chain amino acid; BCFA= branched-chain fatty acid; FAS= fatty acid synthase 
component; AAE= acyl-activating enzyme; ASAT= acylsugar acyltransferase; ASH= acylsugar acylhydrolase; TF= 
transcription factor; BCKDH= branched-chain keto acid dehydrogenase; AACS1= acylsugar acyl-CoA synthetase 1; 
AECH1= acylsugar enoyl-CoA hydratase 1;  ASFF1= acylsucrose fructofuranosidase 1.
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Figure 2 Selection of candidate AMGs. A, Distribution of nonsynonymous to synonymous substitution rate 
ratios (dN/dS ratios) of putative ortholog pairs from S. pennellii and S. lycopersicum. B, Venn diagram 
showing the intersections of three sets of candidate AMGs: (1) differentially expressed 
genes (DEGs) between high- and low-acylsugar-producing S. pennellii accessions (Mandal et al., 2020; red 
circle), (2) DEGs between high- and low-acylsugar-producing F2 plants (HIGH-F2 and LOW-F2, 
respectively; purple circle),  and (3) genes with dN/dS>1 between S. pennellii and S. lycopersicum 
putative orthologs (green circle). Four genes were identified at the intersections of these three 
sets. C, Relative expression levels of the four candidate AMGs [SpRBCS1 
(Sopen07g006810), SpKAR1 (Sopen05g009610), SpSTPL (Sopen05g032580) and Sopen05g034770] 
in isolated stem trichomes and underlying tissues of shaved stems (normalized to one-
fold) in S. pennellii LA0716. SpASAT1 (Sopen12g002290), the ortholog  of S. lycopersicum trichome tip-cell-
expressed ASAT1 (Fan et al., 2016), was included for comparison. Error bars indicate SE (n = 5 individual plants).



B 

Figure 3 Virus-induced gene silencing (VIGS) of three trichome-preferentially-expressed candidate AMGs in 
S. pennellii LA0716. A, Acylsugar quantification by liquid chromatography–mass spectrometry (LC-MS). 
To quantify acylsugar amounts, chromatogram peak areas were normalized by internal standard (IS) area and 
leaf dry weight (LDW). Error bars indicate SE (n = 10, 12, 11, and 12 individual plants for control, VIGS-
KAR1, VIGS-RBCS1 and VIGS-STPL groups, respectively; * P < 0.05; Dunnett’s test). B, Representative 
chromatograms (normalized by IS area and LDW) showing acylsugar peaks in control and VIGS-RBCS1 
plants. Acylsugar peaks are listed in Supplemental Data Set 4. C, Acylsugar acyl chain 
composition analysis by gas chromatography–mass spectrometry (GC-MS). Predominant acyl chains are 
shown. Me= methyl; C3-C12 indicate acyl chain length (for example, 2-MeC3 and n-C10 indicate 2-
methlpropanoate and n-decanoate, respectively). Error bars indicate SE (n = 10, 12, 11, and 12 
individual plants for control, VIGS-KAR1, VIGS-RBCS1, and VIGS-STPL groups, respectively; * P 
< 0.05, ** P < 0.01, *** P < 0.001; Dunnett’s test).
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Figure 4 Phylogenetic analyses of SpKAR1. A, Maximum-likelihood tree (topology) of SpKAR1 (Sopen05g009610; 
highlighted) and related short-chain dehydrogenases/reductases (SDRs). Red circles indicate plant specialized 
metabolic SDRs. Blue squares indicate bacterial sequences. "Sopen" numbers indicate sequences from Solanum 
pennellii. Sequences from other species are given with GenBank accession numbers. Black diamonds indicate more 
than one "Sopen" sequences, which were clustered to save space; complete tree is given in Supplemental Figure 
S4. Two sequences related to capsaicinoid biosynthesis are indicated by arrows. Bootstrap values from 1000 
replicates are shown on the nodes. B, Similarity between capsaicinoid and acylsugar biosynthetic pathways. 
Metabolism of leucine, isoleucine, and straight-chain fatty acids in acylsugar pathway are not shown here. Single 
arrows do not necessarily indicate single enzymatic steps. Enzymes are in red font. BCAT= 
branched-chain aminotransferase; BCKDH= branched-chain keto acid dehydrogenase; FAS= fatty acid 
synthase; PUN1= pungent gene 1; ASAT1= acylsugar acyltransferase 1. C, Neighbor-joining tree of SpKAR1 
(highlighted) and its homologs in the Solanaceae. Sequences from four non-solanaceous plant species 
[Ipomoea triloba and I. nil (Convolvulaceae); Arabidopsis thaliana and Brassica napus (Brassicaceae)] and two 
bacteria (Synechocystis and Escherichia) are also included. Bootstrap values from 1000 replicates are shown. 
Tree is drawn to scale, with branch lengths measured in the number of substitutions per site. Tri110x 
indicates 110-fold higher expression in isolated trichomes compared to underlying tissues (NF= not found in 
HN_c64839g1). RT-qPCR was used for "Sopen" sequences. Trichome-enriched expression data (based on 
RNA-seq) for sequences in five other species were obtained from Ning et al., 2015 (Solyc= S. 
lycopersicum) and Moghe et al., 2017 (SN= S. nigrum; SQ= S. quitoense; HN= Hyoscyamus niger; SS= 
Salpiglossis sinuata). Peaxi= Petunia axillaris. Sopen03g030230 (138-aa) and its putative orthologs were not 
included because they have long deletions and insertions. Maximum-likelihood tree is given in Supplemental Figure 
S5.
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Figure 5 Phylogenetic analysis of SpRBCS1 (Sopen07g006810; highlighted). A, Maximum-likelihood tree 
of Rubisco small subunits. Solanaceous sequences were combined into two clusters (indicated by a red circle 
and a blue square) to save space. Neighbor-joining tree is given in Supplemental Figure S8. Bootstrap values 
from 1000 replicates are shown on the nodes. Tree is drawn to scale, with branch lengths measured in the 
number of substitutions per site. Os= Oryza sativa; AT= Arabidopsis thaliana. GenBank accession numbers are 
indicated for Ipomoea triloba and Microcystis aeruginosa. B and C, Expanded Solanaceae "trichome" cluster 
(B) and expanded Solanaceae "regular" cluster (C).  Tri220x indicates 220-fold higher expression in 
isolated trichomes compared to underlying tissues (NF= not found). RT-qPCR was used for Solanum 
pennellii (Sopen) sequences. Trichome-enriched expression data (based on RNA-seq) for sequences in 
five other species were obtained from Ning et al., 2015 (Solyc= S. lycopersicum) and Moghe et al., 2017 (SN= 
S. nigrum; SQ= S. quitoense; HN= Hyoscyamus niger; SS= Salpiglossis sinuata). Peaxi= Petunia axillaris; CA= 
Capsicum annuum; Nt= Nicotiana tabacum.
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Figure 6 δ13C analyses. A, Difference in δ13C values between shaved stems and secreted acylsugars. Error 
bars indicate SE (n = 10 individual plants; **** P < 0.0001; Welch t-test). B, VIGS of SpRBCS1 reduces the 
difference in δ13C values between shaved stems and acylsugars. Error bars indicate SE (n = 5 and 10 
individual plants for control and VIGS-RBCS1 groups, respectively; *** P < 0.001; Welch t-test). 
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