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Abstract 

Robust, generalizable approaches to identify compounds efficiently with undesirable 

mechanisms of action in complex cellular assays remain elusive. Such a process would be 

useful for hit triage during high-throughput screening and, ultimately, predictive toxicology during 

drug development. We generated cell painting and cellular health profiles for 218 prototypical 

cytotoxic and nuisance compounds in U-2 OS cells in a concentration-response format. A 

diversity of compounds causing cellular damage produced bioactive cell painting morphologies, 

including cytoskeletal poisons, genotoxins, nonspecific electrophiles, and redox-active 

compounds. Further, we show that lower quality lysine acetyltransferase inhibitors and 

nonspecific electrophiles can be distinguished from more selective counterparts. We propose 

that the purposeful inclusion of cytotoxic and nuisance reference compounds such as those 

profiled in this Resource will help with assay optimization and compound prioritization in 

complex cellular assays like cell painting. 

  

Introduction 
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Cellular “nuisance” compounds are a significant burden in high-throughput screening (HTS), 

high-content screening (HCS), and chemical biology. These compounds can appear to be 

bioactive yet act through nonspecific and poorly optimizable mechanisms of action (MoA) such 

as redox cycling, reversible covalent bond formation, nonselective reactivity, and cytotoxicity1,2. 

Compounds causing cellular damage by more specific MoAs (e.g., tubulin and electron-

transport chain poisons) can also be undesirable in certain contexts. Thus, cell-active 

compound prioritization can be difficult due to the uncertainty regarding the mechanism(s) 

producing phenotypic readouts3. Cell-free assays for compound-dependent interferences are 

helpful, but they may not model the ideal conditions for compound-mediated interference, such 

as xenobiotic metabolism or specific cellular microenvironments4,5. Instead, investigating cell-

active compound MoA usually requires resource-intensive cellular assays that may also need 

extensive customization. Therefore, simple tools and resources, applicable to many areas of 

biology, which would help prioritize chemical matter in cell-based assays without requiring 

extensive counter-screening are needed.  

 

We previously participated in the development of an unbiased, multiplexed high-content cellular 

morphology assay (“Cell Painting”, CP) which labels DNA, ER, nucleoli, cytoplasmic RNA, F-

actin, Golgi apparatus, plasma membrane, and mitochondria6-8. The CP assay has been used 

for its strong information content while being higher in throughput and lower in cost relative to 

other profiling techniques like transcriptomics9. Mechanistic hypotheses can be inferred from CP 

data when compounds share similar phenotypic profiles10-13. Many groups have used CP to 

biologically annotate novel synthetic and other chemical libraries14-18. 

 

An acknowledged and challenging aspect of HTS is that many cell-active compounds that 

emerge as hits result from undesirable MoAs19. Effective triage of such chemical matter typically 

involves an extensive post-screening cascade of secondary and tertiary assays. Despite 
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widespread use of HCS, there are still many unanswered questions about the best practices 

and limitations of these assays, including CP, as it pertains to addressing undesirable as well as 

cytotoxic/cytostatic chemical matter. The US Environmental Protection Agency used image-

based profiles from the cell painting assay to characterize selected environmental chemicals’ 

bioactivity and toxicity, compared to more expensive chemical safety assessments20 and 

PROTACs have been tested for mitotoxicity using cell painting21. Groups have developed 

customized assays to detect nephrotoxicity, pulmonotoxicity, and other toxicities using 

specialized cell models and stains for each22,23. We previously developed two cell health assays 

using specific stains and antibodies and found, using CRISPR reagents targeting various 

cancer-related genes, that many of their outcomes can be predicted using the information in cell 

painting images24. None of these assays have been tested in the context of a broad set of 

cytotoxic and nuisance compounds. 

 

 

We therefore profiled a series of prototypical cytotoxic and nuisance compounds by the 

established CP assay to characterize systematically outcomes associated with compound-

dependent cellular injury. These results demonstrate the utility of this approach in distinguishing 

low- from high-quality chemical matter, and provide a blueprint for routinely detecting nuisance 

compounds in triage activities during HTS. 

 
 

Results 

Characterization of cellular injury using cell painting 

Retrospective analysis of public data from 30,616 compounds profiled by cell painting (CP) at 

10 μM concentrations as part of the NIH Molecular Libraries Initiative (MLI) showed that wells 

with low cell counts tend to have strong phenotypes in the CP assay (Figure 1a)25. Similar 
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trends have also been described previously17. Given this relationship between cellular health 

and bioactive morphology, we independently performed CP on 218 cytotoxins and prototypical 

nuisance compounds in quantitative HTS (qHTS, or concentration-response) format with a 

typical concentration range of 0.6 to 20 μM26. The extracted morphological features were 

subjected to feature reduction, unsupervised hierarchical clustering, and principal component 

analysis (PCA). Notably, cell features directly and indirectly based on cell numbers were 

excluded from these analyses. Compounds associated with several cellular injury mechanisms 

produced distinct morphological clusters (e.g., tubulin poisons [cluster 8], genotoxins [cluster 6]; 

Figure 1b, c; Supplementary Figure 1). Other classes were less active, possibly because 

nonspecific binding may occur only at concentrations higher than the 20 μM maximum 

concentration profiled here (i.e., tannins, saponins). The cluster with the most variance and 

occupying the largest area in the PCA plot was associated with a diversity of compounds 

causing gross cellular injury such as nonspecific electrophiles (“NSEs”), proteasome inhibitors, 

and miscellaneous cytotoxins (cluster 9, “gross injury”; Figure 1b, c). As expected, CP activity 

score and clustering were inversely correlated with cell number in this panel of cytotoxic 

compounds (Figure 1d), even more so than in the diverse panels of small molecules previously 

studied. 

 

To estimate generalizability, we analyzed the existing MLI dataset for correlation to clusters 1-9 

from our independent profiling of cytotoxins and nuisance compounds, using the shared 

extracted features between the two datasets (Figure 1e). We then prospectively re-tested 285 

compounds from the MLI dataset with either high (MLI-HC) or no correlation (MLI-NC) to the 

gross injury phenotype (cluster 9; Supplementary Figure 2)25. We found that 98/119 (82%) and 

21/166 (13%) of MLI-HC and MLI-NC compounds, respectively, were called bioactive upon 

retesting (Figure 1e). These results suggest that characterizing the phenotypic signatures of 
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nuisance and cellular injury compounds could be used to alert scientists about potential 

compound liabilities of HCS-bioactive compounds. 

 

Analysis of select compounds suggested these CP phenotypes are robust across independent 

experiments (mean correlation = 0.87 ± 0.06; Supplementary Figure 3). Closer inspection of 

individual compound profiles corroborated these general observations (Figure 1f). These data 

demonstrate that prototypical cytotoxic compounds produce significant and diverse CP-defined 

phenotypes.  

 

Electrophiles and cell painting phenotypes 

Given the growing interest in targeted electrophiles (TEs) in drug discovery and chemical 

biology27, we then profiled a series of NSEs, inactive analogs (NSE-IAs), and 13 high-quality 

TEs targeting a variety of proteins (e.g., BTK, EGFR, FGFR, KRAS ΔG12C)27. Amongst this 

electrophile-focused subset, CP activity was also inversely correlated with cell number after 

compound treatment (Figure 2a). PCA revealed that most of the NSEs and some TEs occupied 

the gross cell injury feature spaces, but only at compound concentrations ≥ 10 μM, whereas 

most NSE-IAs were inactive (Figure 2b). Notably, some of the TE targets are absent (KRAS 

G12C) or not highly expressed (BTK) in the profiled U-2 OS cells. Many NSEs (13/18, 72%), a 

subset of TEs (3/13, 23%), and only one NSE-IA (1/14, 7%) occupied the gross injury cluster 9 

at 20 μM compound concentrations (Figure 2b). Inspection of individual electrophile profiles 

demonstrated corroboration with these overall trends, where electrophile clustering tended to 

migrate towards the gross injury cluster 9 at higher compound concentrations (Figure 2c). Most 

TEs did not produce the gross injury phenotype until concentrations in great excess of their 

expected EC50 values. These data show that both NSEs and TEs can produce CP phenotypes 
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associated with cellular injury, and that cellular injury phenotypes may help to identify highly 

reactive compounds including TEs with off-target toxicities. 

 

Quality of KAT inhibitors are distinguishable by cell painting 

The utility of certain compound classes, including lysine acetyltransferases (KATs), has recently 

been questioned28-31. KATs are crucial components of eukaryotic DNA repair and nucleosome 

assembly, and aberrancies in histone acetylation and KAT function have been implicated in 

human pathologies including many cancers32,33. Numerous small-molecule KAT inhibitors have 

been reported34, but many of these “historical” KAT inhibitors (hKATIs) are enriched for 

nonspecific electrophilicity, aggregation, suboptimal potency and selectivity, and cytotoxicity31. 

However, highly potent and specific “next-generation” KAT inhibitors (ngKATIs) have now been 

reported, including the KAT3 inhibitor A-485 (468) and the KAT6 inhibitors WM-8014 (470) and 

WM-1119 (471)35-37. Given our previous experiences characterizing hKATIs for assay 

interference and their association with nonspecific activity, we sought to determine if differences 

in probe quality could be distinguished by profiling the ngKATIs 468-472 and hKATIs 473-501 

using CP. 

 

We first profiled the ngKATIs 468-472 for the cell-free liabilities characteristic of many hKATIs. 

In contrast to hKATIs, 468-472 showed acceptable profiles for potency, selectivity, 

reproducibility, colloidal aggregation, redox cycling, nonspecific thiol reactivity, chemical 

instability, light absorption, fluorescence, and quenching (Supplementary Figures 4, 5; 

Supplementary Notes). Furthermore, 468-472 were nontoxic and decreased cellular H3K27ac 

levels as expected in MCF7 and HEK293T cells (Supplementary Figure 3). By contrast, the 

interference compounds rottlerin (478) and plumbagin (486) also decreased cellular H3K27ac 

levels, but in addition reduced total cellular KAT3B (p300) levels. These data confirm the 

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.12.499781doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.12.499781


 8

reported on-target activities of 468-472 and indicate that they are unlikely to exhibit common 

assay interference modes. 

 

The two KAT inhibitor categories produced distinct CP morphologies. Whereas the ngKATIs 

468-472 were CP-inactive and had no effect on cell number, many hKATIs were active and 

strongly reduced cell numbers in CP (Figure 3a). More specifically, most hKATIs resulted in 

significantly increased activity (19/26, 73%) and decreased cell numbers (14/26, 54%) at 20 μM. 

The ngKATIs occupied different PCA feature-space from most hKATIs, with the summary 

morphological fingerprints being essentially null for ngKATIs while the hKATIs mirrored cluster 9 

(Figure 3b). Many hKATIs (6/26, 23%) produced the gross injury phenotype (cluster 9) at 20 

μM, and even more so at 80 μM (10/17, 59%); a notable subset of hKATIs (9/26, 35%) 

produced the genotoxic phenotype (cluster 6) at 20 μM. Inspection of individual KAT inhibitor 

profiles agreed with these overall observations, with the NSEs L002 (481) and NU-9056 (490) 

producing gross injury phenotypes at concentrations similar to other NSEs (Figure 3c). The 

prototypical aggregators anacardic acid (487) and MG149 (493) showed abrupt and 

concomitant increases in CP activity and decreased cell numbers near their approximate critical 

aggregation concentrations (CACs). Notably, many hKATIs were profiled at higher compound 

concentrations based on their reported cellular potencies. 

 

Interestingly, histone acetylation status and CP morphologies were not correlated based on 

profiling cellular acetylated histones and KAT3B levels under conditions mimicking the CP 

assay (Supplementary Figure 6). These observations are consistent with previous reports that 

in certain prostate and hematologic cancer cell lines, cellular histone acetylation levels do not 

necessarily correlate with anti-proliferative effects35. These data illustrate the subtle but 

important point that quality, on-target probes do not necessarily produce detectable CP 
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phenotypes, whereas nonspecific compounds can generate significant CP phenotypes. Robust 

phenotypes for processes like chromatin remodeling may require longer compound treatment 

times not amenable to standard CP conditions. Overall, the CP and interference profiling data 

support the use of ngKATIs 468-472 as quality epigenetic probes. Other ngKATIs likely behave 

similarly, given some shared chemical scaffolds and the lack of red-flag interference 

chemotypes38,39. 

 

Cellular health and cell painting compound profiles 

We next sought to characterize the connection between CP-detected cellular injury-based 

phenotypes and more specific cellular health readouts by multiplexed live-cell imaging under 

CP-like conditions. The CP activities and relative cell numbers of 254 profiled compounds were 

correlated with culture confluence (phase contrast), caspase-3/7 activation (GFP channel, 

fluorogenic caspase 3/7 substrate), and cell viability (RFP channel, CytoTox dye which marks 

compromised membrane integrity) by live-cell imaging (Figure 4a). Compounds with the most 

pronounced changes in cell confluence, caspase 3/7 activation, and compromised membrane 

integrities were found in PCA clusters 7-9 (Figures 4a, 4b). Similar patterns occurred when 

analyzed by compound category, with hKATIs, MLI-HC, and NSEs exhibiting cellular damage 

profiles in live-cell imaging, whereas their respective ngKATI, MLI-NC, and NSE-IA counterparts 

were largely inert (Figure 4b). Individual compound profiles agreed with these overall 

observations, where adverse changes in cellular health biomarkers generally increased in 

magnitude and decreased in time-to-onset with higher compound concentrations (Figure 4c). 

 

Live-cell imaging does not include washing steps prior to image acquisition and can potentially 

enrich for compounds acting by technology-related interferences like compound auto-

fluorescence. Indeed, reagent-free counter-screens identified several auto-fluorescent 

compounds that were excluded from analyses (Supplementary Figure 7). 
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Given the importance of electrophilic and oxidative stress on cellular health, we profiled 99 

select compounds at several concentrations to characterize the relationships between 

intracellular glutathione levels under CP-like conditions. The ngKATIs did not grossly perturb 

glutathione homeostasis, whereas many hKATIs (10/26, 38%), TEs (10/13, 77%), NSEs (12/15, 

80%), and cellular injury compounds (14/26, 54%) lowered the GSH:GSSG ratio at 20 μM 

where most of these compounds were also active in CP (Figure 4d). Together, these data 

further demonstrate that CP activity is susceptible to various mechanisms of compound-

mediated cellular injury and can be used to refine our understanding of undesirable compounds. 

 

Time-dependence of cellular injury morphologies 

While most analyses focused on 24-h treatment times, we also profiled a subset of 397 

compounds after 48-h incubation. We found a strong correlation between compound treatments 

with strong CP signals (Figure 5a). The individual CP clusters deriving from 24- and 48-h 

compound treatments were also correlated (Figure 5b). Comparing the unsupervised clustering 

of compounds at 24 and 48 h evinced general agreement (entanglement = 0.76; Figure 5c). 

Inspection of individual compound profiles supported these trends, with most compounds 

exhibiting similar cell numbers and bioactivities at 24- and 48-h treatment times (Figure 5d). 

These data suggest that many grossly cytotoxic compounds can produce detectable CP 

morphological changes by 24 h of treatment. 

 

Proposed cellular nuisance control compounds 

While it may be tempting to discard compounds that result in low cell numbers, one may 

unnecessarily eliminate potentially useful bioactive compounds from consideration (e.g., novel 

and potent anti-neoplastics). In cellular assays, the causative factors for phenotypes are not 

known a priori and require follow-up experiments3,40. Focused chemical libraries composed of 
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bioactive reference compounds can be highly useful for characterizing cellular readouts41. 

Interference characterization is standard in clinical assay validation, and some industrial 

screening centers even utilize “informer sets” composed of nuisance and cytotoxic chemical 

matter42,43. 

 

Based on our data and cumulative experience with HTS, we propose an informer set of control 

compounds to model cell injury phenotypes in HCS and other phenotypic assays including 

mechanism-based and nonspecific modes of gross cellular injury (Figure 6). This set would 

ideally include multiple concentrations of each compound (i.e., nM to μM), focused active and 

inactive chemical analogs (if available), and multiple chemotypes for each cell injury cluster 

(especially for cluster 9). Such focused redundancy can mitigate compound-specific effects and 

assess experimental imprecision44,45. Such a proposed set could be adapted to a single 384-

well microplate in qHTS format and should only represent an incremental cost in the context of 

larger-scale campaigns, especially if repeatedly used. This set would ideally be used in parallel 

with an informer set composed of FDA-approved drugs and high-quality chemical probes to 

assess for overlapping phenotypes41. 

 

Discussion  

Here we provide a set of nuisance and cytotoxic compounds of various mechanisms, a dataset 

documenting their morphological impacts, and a strategy for using them as landmarks alongside 

novel compounds of interest, or even for assessing an entire compound library. There is a 

growing interest in phenotypic assays for drug discovery and chemical biology due to their 

purported potential for improved in vivo and clinical translation40,46. Phenotypic and high-content 

assays such as CP are attractive, target-agnostic approaches for biological annotation of 

compounds. However, active compounds in cellular assays can act by on- or off-target effects, 

meaning that without detailed follow-up experiments, readouts are essentially “black boxes”47. 
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As a result, a significant obstacle in cellular assays are bioactive compounds that act via 

undesirable MoAs like cellular injury. Since complex phenotypes are difficult to predict a priori, 

one practical solution is to include known reference compounds. 

 

To test this solution, we profiled 218 prototypical cytotoxic and nuisance compounds in qHTS 

format, using CP and companion cellular health assays, to characterize the relationships more 

systematically between morphology and cellular injury. Targeted and nonspecific electrophiles, 

along with historical and next-generation KAT inhibitors, served as important case studies. 

Several important trends emerged: (1) there is a clear relationship between many types of 

cellular injury and CP activity, (2) nonspecific and suboptimal probes such as hKATIs can 

produce profound CP phenotypes, (3) compound-mediated cellular damage (e.g., tubulin 

poisons, genotoxins) can produce robust CP phenotypes, and (4) compound concentration is a 

key modifier of cellular injury phenotypes such as NSEs, aggregators, and surfactants. The 

diversity of compounds in cluster 9 (often at high concentrations) may be partially explained by 

the proposed “cytotoxicity burst” phenomenon whereby compounds are thought to activate 

multiple stress responses rather than a singular molecular target48,49. The clear association 

between CP activity and cellular damage suggests active compounds should be subjected to 

cellular health profiling. 

 

This Resource expands upon existing open-source CP datasets due to its concentration-

response format, time-course data, accompanying cellular health profiling data, and the 

intentional profiling of prototypical cellular injury compounds. The large volumes of data 

generated by high-content assays is a practical barrier that hinders reproducibility and scientific 

exchange in the field50. To address this barrier, the entire 11 TB of raw images from this study 

(including all solvent controls), representing 1.04 million images in total, and the associated 

metadata are available via the open-source Image Data Resource (idr.openmicroscopy.org)51. 
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This Resource should enhance compound prioritization in complex cellular assays. Potential 

uses for this dataset include HCS and image-processing method development, MoA studies, 

informer set design, and compound triage52,53. These data can be re-analyzed by alternative 

methods such as focusing on individual features or more complex analyses such as the point-

of-departure metric20,54. 

 

Compounds may induce cell line-dependent phenotypes, as well as dependency on other 

experimental factors including treatment time, compound concentration, and culture media 

composition55,56. Although we only profiled one cell line, this approach is likely generalizable to 

other biological systems. Supporting evidence includes: (1) the similar behaviors of hKATIs and 

prototypical interference compounds in MCF7, HEK293, and U-2 OS cells; (2) the profiled 

compounds were chosen based on activities unrelated to U-2 OS cells; and (3) the biological 

targets of these cellular injury compounds tend to be common amongst human cell lines. Our 

findings are complementary to but consistent with previous reports, including the robust 

phenotypes of cytoskeletal poisons, genotoxins, and other classes of cellular injury 

compounds13,45,55-58. Furthermore, reference compounds can show similar phenotypes across 

different cell lines in HCS assays20,59-61. Notably, our findings also mirror a profiling effort that 

combined gene expression and cell death profiles, which found compound clusters consisting of 

microtubule modulators, electrophiles, and genotoxins62. 

 

Lastly, we propose a framework for constructing cellular injury informer sets applicable beyond 

CP, from alternative high-content morphology assays to orthogonal cellular assay technologies 

like gene-expression profiling and metabolomics. This set could have several applications in 

cellular assays. During the assay development and optimization phase, such a set could guide 

the choice of experimental conditions to minimize the selection of unwanted MoAs such as 

NSEs. During the screening phase, such a set could guide compound triage and follow-up 
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experiments, especially if new compounds share phenotypes with unwanted MoAs. Used in 

parallel with screening, such a set could facilitate real-time compound evaluation of high-risk 

chemical matter, and potentially reduce the necessity of certain follow-up counter-screens. In 

terms of practical use, compounds that produce similar phenotypes as cellular injury 

compounds can be prioritized (i.e., if assaying for novel or mechanism-based cytotoxins) or 

triaged (i.e., de-prioritizing tubulin or mitochondrial poisons). In one study, compounds profiled 

with the L1000 transcriptome profiling assay and CP, cytotoxic compounds produced robust 

signatures in both techniques45. Nuisance and cellular injury compounds will likely show some 

assay-dependent effects, which further supports the value of repeatedly using an informer set. 

Future iterations focused on cellular injury could include MoAs not profiled, such as chelation, 

metal poisoning, and lysosomotropic agents. Future work could also characterize the effects of 

compound technology-related interferences (“artifacts”) such as auto-fluorescent or quenching 

compounds63,64. We envision that collaboration between academic, industry, and government 

groups performing phenotypic screening can enhance our proposed informer set by nominating 

additional compounds and performing additional validation in orthogonal phenotyping assays 

and biological systems65. 
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Online materials and methods 

Compounds and reagents 

Sources of KAT inhibitors are listed (Supplementary Table 1). Additional compounds were 

obtained from commercial vendors and the Broad Institute chemical screening library. Test 

compounds were typically prepared as 10�mM stock solutions dissolved in neat DMSO and 

stored under vacuum seals in either -20 °C or a light-shielded desiccation chamber at RT. All 

were subjected to internal quality control66; most demonstrated > 90% purity and detection of an 

expected parent ion by UPLC-MS (Supplementary Data 1). 

 

Cell lines 

HEK293T cells were gifted from Dr. Sam Benchimol (York University); MCF7 and U-2 OS cells 

were obtained directly from ATTC (cat # HTB-22 and HTB-96, respectively). HEK293T and 

MCF7 cells were used to remain consistent with our previous report31. U-2 OS cells were used 

for CP because they form monolayers highly amenable to single-plane high-content imaging 

and have been profiled extensively at several institutions7,14. U-2 OS cells do not contain 

significant genetic perturbations in KAT3 (Supplementary Notes). Cell-line identities were 

confirmed by short tandem repeat profiling (ATCC Cell Line Authentication Service), and 

Mycoplasma contamination was assessed with the MycoAlert PLUS Mycoplasma Detection Kit 

(Lonza, cat # LT07-701). 

 

Cell painting 

Cell painting (CP) was adapted from previous reports6,7. New U-2 OS cells were purchased 

directly from ATCC for each CP experiment and used within the first ten passage numbers. U-2 

OS cells were cultured in DMEM (high glucose, GlutaMAX, HEPES; Thermo Fisher, cat # 

10564011) supplemented with 10% fetal bovine serum (FBS, v/v; Gibco, cat # 26140079), 

penicillin (100�U mL-1), and streptomycin (100�µg mL-1), and maintained in a 37 °C, 5% CO2 
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humidified incubator. Cells were dispensed by Thermo Multidrop into 384-well clear-bottom 

imaging plates (CellCarrier-384 Ultra; PerkinElmer, cat # 6057300). Each well contained 

approximately 750 (48 h treatment) or 1,500 (24 h treatment) cells in 50 μL complete media. 

Cell counts were determined by Countess II automated cell counter (Thermo Fisher) using 0.4% 

trypan blue solution (Thermo Fisher, cat # T10282). Seeded microplates were incubated for 24 

h at 37 °C, then treated with compounds or vehicle controls dispensed by pin tool transfer via 

CyBi-Well robot. Compounds were typically tested at six concentrations with 2-fold serial 

dilutions, ranging from 20 μM to 625 nM final compound concentrations. Each plate contained 

four positive control compounds (1-4; colchicine, nocodazole, radicicol, wortmannin) at six 

concentrations each and 116 vehicle control wells (Supplementary Notes). Following the 

addition of compounds, cells were incubated at 37 °C for either 24 or 48 h. 

 

A 1 mM DMSO solution of MitoTracker Deep Red FM (Invitrogen, cat # M22426) was added to 

pre-warmed complete media to make staining solution 1 (SS1) with final concentrations 500 nM 

MitoTracker. A 1 mg mL-1 solution in 0.1 M aqueous sodium bicarbonate of concanavalin A-

Alexa Fluor 488 conjugate (Invitrogen, cat # C11252), a 200 U mL-1 methanol solution of 

phalloidin-Alexa Fluor 568 conjugate (Invitrogen, cat # A12380), a 1 mg mL-1 dH2O solution of 

wheat germ agglutinin (WGA)-Alexa Fluor 555 conjugate (Invitrogen, cat # W32464), a 16.2 mM 

aqueous solution of Hoechst 33342 (Invitrogen, cat # H3570), and a 5 mM DMSO solution of 

SYTO 14 green fluorescent nucleic acid stain (Invitrogen, cat # S7576) were combined in 1X 

HBSS (prepared from 10X solution, Thermo Fisher, cat # 14065-056; filtered) supplemented 

with 1% bovine serum albumin (BSA; m/v) to make staining solution 2 (SS2) with final 

concentrations 100 μg mL-1 concanavalin A, 0.5 U mL-1 phalloidin, 60 μg mL-1 WGA, 8.1 μM 

Hoechst, and 3 μM SYTO 14. 
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Compound-treated cells were prepared for fixation and staining by first removing 40 μL of media 

from each microplate well using a BioTek ELK405 automated plate washer. To each well, 30 μL 

of SS1 were dispensed by Multidrop, followed by incubation for 30 min at 37 °C. Cells were then 

fixed by dispensing 10 μL per well of 16% aqueous paraformaldehyde via Multidrop, followed by 

incubation for 20 min at RT. Next, wells were washed with 70 μL 1X HBSS. Cells were then 

permeabilized by adding 30 μL per well of 0.1% Triton X-100 (v/v) in 1X HBSS and incubated 

for 15 min at RT. Wells were then washed with 70 μL 1X HBSS. Permeabilized cells were then 

stained by dispensing 30 μL SS2 per well via Multidrop followed by incubation at RT for 30 min. 

Wells were washed with 70 μL 1X HBSS without a final aspiration, then the plates were 

manually sealed with adhesive foil for subsequent imaging. 

 

Cells were imaged using an Opera Phenix High-Content Screening System (PerkinElmer) in 

wide-field mode with a water-immersion 20X objective and five excitation/emission laser 

wavelengths: 405/435-480 (Hoechst), 488/500-550 (concanavalin A), 488/570-630 (SYTO 14), 

561/570-630 (phalloidin and WGA), and 640/650-760 (Mito-Tracker) nm. Photobleaching of low-

intensity dyes was mitigated by imaging in the following channel order: MitoTracker, WGA, 

phalloidin, SYTO 14, concanavalin A, and Hoechst 33342. Nine sites were imaged per well in a 

3 x 3 array with laser-based autofocus on the first site per well. Concentration-response data 

are mean ± SD from four intra-run technical replicates each performed on separate microplates. 

 

Cell painting analyses 

Morphological features were extracted from the raw CP images using a freely available 

CellProfiler software pipeline provided by the Broad Institute Imaging Platform7,67. Images were 

corrected for uneven illumination, then CellProfiler (version 2.1.1) was used to locate and 

segment cells into nuclei and cytoplasm, after which the size, shape, texture, intensity, local 

density, and radial distributions were measured for nuclei, cytoplasm, and entire cells. To obtain 
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profiles for each compound, the morphological features of compound-treated cells were 

calculated for each well field, then averaged per well, and then normalized by calculating robust 

z-score-like values based on the population of individual DMSO-treated cells found on the same 

plate.  

 

To determine the compound activities (“activity scores”), Mahalanobis distances of each 

compound profile were calculated from vehicle-treated well profiles68. The profiles for all 

replicates of a compound were first combined with the corresponding DMSO-control wells into a 

matrix of dimensions m x n, where the rows m represent the individual wells and the columns n 

represent the profiling features. PCA was performed on this matrix to obtain a new matrix P with 

the principal components as the columns. For each of these matrices, the first q principal 

components were taken that could explain ≥ 90% of the variance. This matrix P was separated 

into treatment and control matrices and for each part a covariance matrix was calculated. Each 

of the two covariance matrices (treatment and control) was weighted by the number of samples 

in each matrix, and the sum of the resulting matrices was used to calculate the Mahalanobis 

distance. The R cytominer package was used to reduce the number of redundant features by 

removing those which were highly correlated. After processing, 372 non-redundant cellular 

features were used in the subsequent analyses.  

 

The principal component analyses were performed using the R stats package (version 3.6.1) 

using non-aggregated treatment profiles (i.e., compounds, concentrations, and replicates 

separate) with scaling and without centering. These principal components were used for all PCA 

plots; for PCA plots containing only a subset of the data or using aggregated data, points were 

transformed into this space using the loadings of these principal components. Unsupervised 

hierarchical clustering was performed using the R stats package (version 3.6.1), using the 

values [1 - Pearson correlation] as the pairwise distances between each treatment condition and 
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Ward’s method (minimal increase of sum-of-squares). Entanglement was analyzed by 

comparing hierarchical clustering of the 24 and 48 h compound treatment duration CP data by 

Ward’s method using the R dendextend package (version 1.13.2). To generate "dot plots," the 

values for the activity scores were averaged across all categories falling under a particular 

cluster (obtained from hierarchical clustering). To calculate the similarity of historical MLI CP 

data to the observed cellular injury phenotypes obtained from hierarchical clustering, only 

features belonging to the reduced feature set and shared between the historical data and this 

study were considered. Phenotypes are calculated as the average signature of each cluster, 

where the average value for each feature across all cluster members are taken, and the vector 

comprising these average values is used as the cluster phenotype (see also Supplementary 

Figure 2). 

 

Live-cell imaging 

U-2 OS cells were cultured similarly to the CP protocol but were modified for seeding density 

(750 cells in 25 μL media per well), microplate (384-well, tissue culture-treated, black 

polystyrene, clear flat-bottom microplates; Corning, cat # 3764BC), and media (F-12K, ATCC, 

cat # 30-2004; supplemented with 10% FBS, 100�U mL-1 penicillin, and 100�µg mL-1 

streptomycin). This media was selected because it reduced background fluorescence in the 

GFP channel due to riboflavin69. Seeded microplates were then incubated for 24 h at 37 °C, 

followed by the addition of sterile-filtered 25 μL media to each well containing live-cell imaging 

reagents (Incucyte Cytotox Red Reagent, final concentration 250 nM, cat # 4632; Incucyte 

Caspase 3/7 Green Reagent, final concentration 5 μM, cat # 4440). Cells were then immediately 

treated with 100 nL of compounds or vehicle controls dispensed by pin tool transfer via CyBi-

Well Vario with a constant DMSO concentration of 0.2% (v/v). Most compounds were tested at 

three concentrations (20, 10, and 5 μM final concentrations). Each microplate contained 

reagent-free control wells to correct for cellular auto-fluorescence. Following compound 
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addition, cells were incubated at 37 °C for 60 h and imaged every 4 h with an Incucyte S3 Live-

Cell Analysis System (Essen Biosciences) utilizing 10X objective and 300 and 400 ms GFP and 

RFP channel acquisition times, respectively. Live-cell images were processed in Incucyte 

Analysis Software (Essen Biosciences) using top-hat background correction. Data are mean ± 

SD from three intra-run technical replicates each performed on separate microplates. To 

analyze compounds tested in concentration-response format, area under the curve (AUC) was 

calculated as described previously70. 

 

Intracellular glutathione quantification 

U-2 OS cells were cultured similarly to the aforementioned CP protocol, except for seeding 

density (750 cells in 25 μL media per well) and microplate (384-well, tissue culture-treated, low-

volume, white polystyrene, flat-bottom microplates; Corning, cat # 8867BC). Seeded 

microplates were then incubated for 24 h at 37 °C, then treated with 100 nL compounds or 

vehicle controls dispensed by pin tool transfer via CyBi-Well Vario with a constant DMSO 

concentration of 0.4% (v/v). Most compounds were tested at three concentrations (20, 10, and 5 

μM final concentrations). Following the addition of compounds, cells were incubated at 37 °C for 

24 h. Each microplate contained triplicate 10-point GSH standards (6.4 μM to 13 nM by 2-fold 

serial dilutions) for quantifying GSH. After compound treatment, total intracellular glutathione 

(reduced, GSH and oxidized, GSSG) concentrations and oxidized glutathione (GSSG) were 

quantified in parallel on separate microplates with the GSH/GSSG-Glo kit (Promega, cat # 

V6611) per manufacturer protocol, except that all reagents were diluted three-fold in PBS. Cell 

viability was quantified in parallel on separate microplates by Cell Titer Glo (Promega, cat # 

G7570) per manufacturer protocol. Luminescence was measured on an Envision 2105 plate 

reader (PerkinElmer) with 400 ms acquisition times. Data were corrected for background 

luminescence using cell-free control wells and for row/column effects by uniformity plates. Data 

are from five intra-run technical replicates each performed on separate microplates. 
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Interference profiling of next-generation KAT inhibitors 

Biochemical KAT selectivity. ngKATIs were tested for biochemical selectivity versus six KATs. 

Assay conditions were as follows: KAT2A (hGCN5, 497-662 aa), 1 nM enzyme, 10 μM biotin-H3 

1-25, 2.5 μM [3H]-acetyl-CoA; KAT3B (P300, 1195-1662 aa), 2 nM enzyme, 5 μM biotin-H3 1-

25, 2.5 μM [3H]-acetyl-CoA; KAT1 (HAT1, 20-341 aa), 1 nM enzyme, 1 μM biotin-H4 1-24, 5 μM 

[3H]-acetyl-CoA; KAT6A (MOZ/MYST3, 472-793 aa), 10 nM enzyme, 10 μM biotin-H4 1-24, 5 

μM [3H]-acetyl-CoA; KAT5 (TIP60, 1-513 aa), 10 nM enzyme, 1 μM biotin-H4 1-24, 0.25 μM 

[3H]-acetyl-CoA; KAT8 (HMOF/MYST1, 2-458 aa), 20 nM enzyme, 10 μM biotin-H4 1-24, 1 μM 

[3H]-acetyl-CoA. For KAT3B testing, buffer conditions were 100 mM HEPES, pH 8.0, 2 mM DTT, 

100 mM KCl, 80 μM EDTA, 40 μg mL-1 BSA (m/v), 0.01% Triton X-100 (v/v). For 

KAT1/3B/5/6A/8 testing, buffer conditions were 20 mM tris, pH 8.0, 5 mM DTT, 0.01% Triton X-

100 (v/v). Reactions were performed at 23 °C for 20 min. Final DMSO concentration was 

constant at 2.0% (v/v). Percent activity represents acetylation relative to vehicle control 

reactions. Concentration responses were analyzed by nonlinear least-squares regression fits to 

a four-parameter logistic (“4PL”) equation. KAT profiling data are mean of two intra-run technical 

replicates. Concentration-response KAT6A data are mean ± SD from three intra-run technical 

replicates. 

 

Biochemical KAT3B activity. Inhibition of KAT3B acetyltransferase activity by ngKATIs was 

assessed by a separation-based assay71. Reactions consisted of buffer (50 mM HEPES, pH 

7.5, 50 mM NaCl, 2 mM EDTA, 2 mM DTT, 0.05% Triton-X-100) with KAT3B (P300, 150 nM) 

and FITC-Ahx-RGKGGKGLGKGG [Ahx = 6-aminohexanoic acid] substrate (2 μM) were plated 

in 384-well microplates and equilibrated at RT for 10 min in the presence or absence of inhibitor. 

Reactions were initiated by addition of acetyl-CoA (1 μM final concentration) with 30 μL final 

assay volume and quenched during steady-state kinetics (< 15% product accumulation) by 
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addition of 5 μL of 0.5 M neutral hydroxylamine. Quenched reaction aliquots were then 

transferred to a PerkinElmer Lab-Chip EZ-Reader instrument for microfluidic electrophoresis 

and fluorometric analysis. Optimized separation conditions were downstream voltage -500 V, 

upstream voltage -2500 V, and pressure -1.5 psi. Percent conversion is calculated by 

ratiometric measurement of substrate/product peak heights, corrected for nonenzymatic 

background acetylation. Percent activity KAT3B represents acetylation relative to vehicle 

control. Concentration responses were analyzed by nonlinear least-squares regression fits to a 

4PL equation. Data are mean ± SD from three technical replicates. 

  

ALARM NMR. ngKATIs were tested by ALARM NMR for protein thiol reactivity as previously 

described72. The human La antigen (aa 100–324, ΔT302N) was expressed in Escherichia 

coli Rosetta cells (Novagen) and cultured in M9 minimal media. The La antigen was labeled by 

adding 13C-labeled amino acid precursors ([3-13C]-α-ketobutyrate and [3,3′-13C]-α-

ketoisovalerate sodium salts; Cambridge Isotope Laboratories) to culture medium 30�min 

before IPTG induction. Bacteria were harvested after induction at 25�°C for 8�h, followed by 

lysis via French press. Labelled La antigen was purified by standard Ni-NTA bead purification. 

The La antigen product was dialyzed (25�mM sodium phosphate, pH 7.0, 5�mM DTT) in three 

16�h cycles at 4�°C with gentle stirring. Aliquots were flash-frozen in liquid N2 and stored at 

−80�°C until further use. Before use, hLa protein was reduced by incubating with 20�mM DTT 

at 37�°C for 1�h, then dialyzed (25�mM sodium phosphate buffer, pH 7.0, no DTT) in three 

16�h cycles at 4�°C with constant nitrogen bubbling and with gentle stirring. The [1H-13C]-

HMQC spectra were acquired in 25�mM sodium phosphate buffer, pH 7.0, 10% D2O (v/v; 

CIL)�±�200�μM test compounds ±�20�mM non-deuterated DTT. Final concentration of 

DMSO was 4.0% (v/v). Reaction solutions were incubated at 37�°C for 1�h and then 30�°C for 

15�h before obtaining spectra. Data were recorded at 310�K on a Bruker UltraShield 
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700�MHz NMR spectrometer equipped with a Bruker 1.7�mm TCI Cryoprobe and Bruker 

SampleJet autosampler. Samples were tested at 50�μM protein concentrations using 16 scans, 

2048 complex points in F2, and 80 points in F1 using standard protein [1H-13C]-HMQC and 

water suppression pulse sequences. Sample tubes were inspected for gross compound 

precipitation. NMR data were analyzed in Bruker TopSpin (version 4.0.7). Reactions were 

normalized to DMSO controls. Nonreactive compounds were identified by the absence of 

chemical shifts or changes in peak intensities (13C-methyl)�±�20�mM DTT. Reactive 

compounds induced chemical shifts and decreases in peak intensities in certain diagnostic 

peaks in the absence of DTT. 

 

Chemical stability and GSH adducts by UPLC-MS. Gross compound stability of ngKATIs was 

assessed by incubating parent compound (20 μM final concentrations) in PBS, pH 7.4 at 37�°C 

for 4 and 24�h. Samples were spiked with fluconazole internal standard (10 μM final 

concentration, Cerilliant), then diluted with equivolumetric amounts of MeOH to mitigate ion 

suppression by PBS, then passed through 0.2 μm pore size syringe filters. Samples were also 

compared to otherwise identical samples containing parent compounds incubated in neat MeOH 

instead of buffer. Samples were analyzed using a Waters ACQUITY UPLC system using a BEH 

C18 2.1�×�50 mm column. Samples were injected by an autosampler in 5�μL sample 

volumes. The flow rate was 0.250�mL�min−1 with a standard gradient starting at 95% Solution 

A (950�mL H2O, 50�mL MeCN, 1�mL formic acid) and ending with 100% Solution B 

(1000�mL MeCN plus 1�mL formic acid) over 2.0�min. The samples were monitored 

simultaneously by a PDA detector and a ZQ mass spectrometer (electrospray, positive and 

negative modes). Chromatograms and mass spectra were qualitatively analyzed for the 

formation of new peaks and/or loss of parent signal relative to internal standard. To detect GSH 

adducts, test compounds (20�μM final concentrations; 1�eq) and reduced L-glutathione 

(20�eq) were incubated in PBS, pH 7.4 at 37�°C for 4 h. Samples were prepared identically to 
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the chemical stability studies, but the internal standard was omitted to avoid possible 

interference with detecting potential compound-GSH adducts. Chromatograms and mass 

spectra were qualitatively analyzed for characteristic compound-GSH adduct ions by examining 

the PDA chromatograms for new peaks and the ion chromatograms for loss of the GSH ion 

(e.g., 307 m/z). CPM (Sigma, catalog # C1484) was used as a positive GSH-reactive control 

compound. UPLC-MS data were analyzed in MestReNova (version 14.1.0-24037). 

 

Fluorescence intensity thiol reactivity counter-screen. The ngKATIs were tested for non-

proteinaceous thiol reactivity using adaptions of previous procedures2,73. Thiol-free buffer (25 

mM sodium phosphate, pH 7.0, 0.01% Tween-20 v/v) was dispensed in 10 μL volumes into 

black polypropylene 384-well round-bottom microplates (Agilent, cat # 201290-100) via 

Multidrop. DMSO, 10�μM N-ethyl maleimide (NEM, Sigma, cat # E1271), and 250 μM BHQ-10 

(carboxylic acid, Biosearch) were used as negative, positive reactivity, and positive light 

interference controls, respectively. Compounds and positive controls (NEM) were transferred to 

assay plates in 100 nL volumes by pin-tool via CyBi-Well Vario 384/60 (CyBio). Final DMSO 

concentration was constant at 2.5% (v/v). GSH, CoA, and NAC were freshly prepared as 2 μM 

solutions in buffer (25 mM sodium phosphate, pH 7.0, 0.01% Tween-20 v/v) and dispensed to 

the aforementioned microplates in 10 μL volumes via Multidrop (1 μM thiol, final concentration). 

After thermal sealing (Agilent PlateLoc), microplates were incubated for 90 min at 37 °C in an 

incubator oven, followed by the addition via Multidrop of 10�μL solution containing 12 μM thiol-

reactive probe CPM (Sigma, cat # C1484) prepared in 1:1 DMSO:water. After incubation at RT 

for 5 min, thiol reactivity was quantified by measuring fluorescence intensity (λex 405 nm, λem 

530 nm) on a SpectraMax M3 plate reader (Molecular Devices; PMT automatic gain, 10 flashes 

per well). Compounds signals were background-corrected by subtracting the mean negative-
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control plate control signals. Data are mean ± SD from three intra-run technical replicates 

performed on the same microplate. 

 

AmpC aggregation counter-screen. KAT inhibitors were assessed for aggregation using a 

modified AmpC β-lactamase counter-screen74. Recombinant E. coli AmpC was obtained from 

Rosetta cells using a published protocol75. The purified protein product was > 95% pure by 

SDS-PAGE analyses and migrated identically to an AmpC standard (Shoichet lab). The 

enzymatic assay was performed in 50�mM sodium phosphate, pH 7.0 in clear cyclic olefin 

copolymer 384-well microplates (Aurora, cat # 3030-00330) in 75�μL reaction volumes. 

Compounds were tested in triplicate at 4, 11, 33,�and 100 μM final concentrations in buffer ± 

freshly-added 0.01% Triton X-100 (v/v). Final concentration of DMSO was 1.0% (v/v). 

Compounds were incubated with 5�nM AmpC in 73.5�μL reaction buffer for 5�min at RT, 

followed by the addition of 1.5�μL of nitrocefin substrate (Cayman, cat # 15424) dissolved in 

DMSO (100�μM initial substrate concentration). Reaction solutions were gently mixed by 

multichannel pipette. Reaction progress was continuously monitored by absorbance at 482�nm 

for 5�min at RT on a SpectraMax M3 plate reader, and percent activity was calculated from 

reaction rates (slope). Percent activity was normalized to DMSO-only controls after background 

subtraction with an enzyme-free reaction. Avibactam (Cayman, cat # 22825), non-aggregation 

AmpC positive control. Statistical significance (p < 0.05) was evaluated without assuming 

consistent SD using two-tailed Student’s t-test and the Holm-Sidak method to control for 

multiple comparisons. Data are mean ± SD from four intra-run technical replicates. 

 

MDH aggregation counter-screen. KAT inhibitors were also assessed for aggregation using a 

modified malate dehydrogenase counter-screen76. The enzymatic assay was performed in 

50�mM sodium phosphate, pH 7.0 in clear cyclic olefin copolymer 384-well microplates 
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(Aurora, cat # 3030-00330) in 75�μL reaction volumes. Compounds were tested in triplicate at 

100�μM final concentrations in buffer ± freshly added 0.01% Triton X-100 (v/v). Final 

concentration of DMSO was 1.0% (v/v). Compounds were incubated with 1�nM porcine heart 

MDH (EMD Millipore, cat # 442610) in 73.5�μL reaction buffer for 5�min at RT, followed by the 

addition of 1.5�μL of substrate (200 μM oxaloacetate and 200 μM NADH final concentrations; 

derived from fresh 20 mM stocks in 50 mM sodium phosphate, pH 7.0) and then gentle mixing 

with multichannel pipette. Reaction progress was continuously monitored by absorbance at 

340�nm for 5�min at RT on a SpectraMax M3 plate reader, and percent activity was calculated 

from reaction rates (slope) and normalized to DMSO-only controls. Statistical significance (p < 

0.05) was evaluated without assuming consistent standard deviation using two-tailed Student’s 

t-test and the Holm-Sidak method to control for multiple comparisons. Data are mean ± SD from 

four to eight intra-run technical replicates. 

 

DLS aggregation counter-screen. Dynamic light scattering was performed as previously 

described76. DMSO stocks of KAT inhibitors were diluted in filtered 50 mM potassium 

phosphate, pH 7.0, final concentration 1% DMSO (v/v). Light scattering was recorded using a 

DynaPro Plate Reader II system (Wyatt Technology) with a 60-mW laser at 830 nm, 158° 

detection angle, and automatically adjusted laser power. Notably this instrument is configured 

with a larger-width laser beam width optimized for detecting large colloidal particles (BK 

Shoichet lab, USCF). Data were acquired and processed by Dynamics software (Wyatt). Cut-off 

for colloidal aggregation is 106 counts sec-1. Data are mean ± SD from two or three intra-run 

technical replicates performed on the same microplate. 

 

Redox activity counter-screen. ngKATIs were assessed for hydrogen peroxide production 

using a horseradish peroxidase-phenol red counter-screen77. Testing was performed in buffer 
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(50�mM tris, pH 7.0) plus 0.01% Triton X-100 (v/v) in clear cyclic olefin copolymer 384-well 

microplates (Aurora, cat # 3030-00330) in 60�μL reaction volumes. Compounds were tested at 

250 μM final concentrations. Final concentration of DMSO was constant at 2.5% (v/v). 

Compounds were incubated in 40�μL reaction buffer (± 1 mM DTT final concentration) for 

20�min, followed by the addition of 20�μL solution containing phenol red and horseradish 

peroxide (Sigma) dissolved in reaction buffer. Final concentrations of phenol red and 

horseradish peroxide were 280�μM and 60�μg�mL−1, respectively. The reaction solution was 

allowed to incubate for 20�min at RT, followed by the addition of 10�μL of 1�M sodium 

hydroxide via multichannel pipette to quench the reaction. After 10�min incubation at RT, 

hydrogen peroxide was quantified by measuring absorbance at 610�nm on a SpectraMax M3 

plate reader. DMSO and 100�μM hydrogen peroxide were used as negative and positive 

controls, respectively. NSC-663284 (479; Cayman, cat # 13303) and 4-amino-1-naphthol HCl 

(67; Oakwood Chemical, cat # 013411) were used as positive compound controls78,79. Data are 

mean ± SD from three intra-run technical replicates performed on the same microplate. 

 

Light absorbance counter-screen. ngKATIs were assessed for light absorption between 200 

and 750�nm at 100�μM final compound concentrations in filtered sodium phosphate buffer 

(50�mM sodium phosphate, pH 7.0). Final concentration of DMSO were constant at 1.0% (v/v). 

Compounds were allowed to incubate at RT in buffer for 10�min in UV-transparent half-area 

96-well microplates (Corning, cat # 3679). Absorbance spectra were then obtained using a 

SpectraMax M3 microplate reader at 25�°C using buffer plus DMSO as blank. 

 

Auto-fluorescence counter-screen. ngKATIs were assessed for auto-fluorescence using an 

adaption of published procedures80. Briefly, fluorophore standards consisted of AlexaFluor 350 

(carboxylic acid, Invitrogen, cat # A33076), AlexaFluor 488 (carboxylic acid, Invitrogen, cat # 
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A33077), AlexaFluor 647 (carboxylic acid, Invitrogen, cat # A33084), Texas Red (succinimidyl 

ester, Invitrogen, cat # T6134), fluorescein (Sigma, cat # F2456), and resorufin (Sigma, cat # 

424455). Test compounds were tested in triplicate at six final concentrations (32�nM to 

100�μM via five-fold serial dilutions). Fluorophores were tested in triplicate at five to seven final 

concentrations (0.5�nM to 3�μM). Final concentration of DMSO was constant at 2.0% (v/v). 

Compounds and fluorophore standards were prepared as serial dilutions from 10�mM DMSO 

stock solutions, then transferred to 384-well non-binding surface black polystyrene microplates 

(Corning, cat # 3575) via multichannel pipette. Plate arrangements were purposefully designed 

to minimize optical crosstalk by the various fluorophores and test compounds. All 

measurements were performed at 25�°C in 60 μL of 50 mM tris, pH 8.0, dispensed into 

microplates via multichannel pipette. Compounds were shaken for 2�min on a plate shaker, 

centrifuged briefly for 1�min at 500×g, then allowed to incubate at RT in light-reduced 

conditions for 10�min before measuring fluorescence intensity on a SpectraMax i3x plate 

reader under reduced lighting. Instrument settings: excitation filter wavelength (nm), emission 

filter wavelength (nm) with bandwidth filter widths in nm denoted in parentheses: AlexaFluor 

350, 340 (15), 450 (15); fluorescein, 480 (15), 540 (25); AlexaFluor 488, 480 (15), 540 (25); 

Resorufin, 525 (15), 598 (25); Texas Red, 547 (9), 618 (15); and AlexaFluor 647, 570 (9), 671 

(15). Compound fluorescence intensity for fluorophores and test compounds was measured at 

each of the six fluorophore standard settings. Fluorophore standards present on each 

microplate were then used to construct normalized fluorescence concentration-responses 

(“fluorophore-equivalent concentrations”, FEC) by nonlinear regression with 1/Y weighting. 

Lower limits of quantification (LLOQ) had > 3:1 signal:noise ratio. Fluorescence intensities for 

each test compound were then converted to FECs. Calculated concentrations below the lower 

limits of quantification were scored as zero. Fluorophores prepared from independent dilutions 

as the calibrators were used as positive controls. Data are mean ± SD from three intra-run 

technical replicates performed on the same microplate. 
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Quenching counter-screen. ngKATIs were assessed for fluorescence quenching using 

adaptions of previously published procedures80. Test compounds and individual fluorophore 

standards prepared separately in assay buffer were incubated together, and the fluorescence 

intensity of these compound-fluorophore mixtures was compared to vehicle controls. 

Compounds were tested in triplicate at six final concentrations (32�nM to 100�μM via five-fold 

serial dilutions) at a fixed 250�nM fluorophore final concentration. All measurements were 

performed in 50�mM tris, pH 8.0 at 25�°C in 384-well black polystyrene microplates (Corning, 

cat # 3575) with 60 μL assay volumes. Compounds and fluorophore solutions were dispensed 

into microplates via multichannel pipette. Final concentration of DMSO was constant at 4.0% 

(v/v). Solutions were shaken for 2�min on a plate shaker, centrifuged briefly for 1�min at 

500×g, then incubated at RT in light-reduced conditions for 10�min before measuring 

fluorescence intensity on a SpectraMax i3x plate reader using the filter settings for each 

fluorophore. BHQ-10 carboxylic acid (LGC Biosearch Technologies, cat # BHQ-10-5) was used 

as a positive fluorescence quenching control compound. Significant fluorescence quenching 

was defined as signal reduction > 25% of the corresponding fluorophore signal at any test 

compound concentration. Data are mean ± SD from three intra-run technical replicates 

performed on the same microplate. 

 

Immortalized cell line histone acetylation assays. Select historical and next-generation KAT 

inhibitors were tested for their effects on cellular proliferation and H3K27ac levels in HEK293T 

and MCF7 cells as previously reported31. Cells were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM) supplemented with 10% FBS (v/v; Winsent), penicillin (100�U mL-1), and 

streptomycin (100�µg mL-1). For cell growth analyses, cells were seeded in 96-well microplates, 

treated with the indicated compounds, and continuously monitored for 24 h using a live-cell 

Incucyte ZOOM imager (Essen Biosciences). Nuclei counts were determined using Vybrant 
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DyeCycle Green (Invitrogen, cat # V35004, dilution 1:5000). Data are mean ± SD from three 

technical replicates performed on the same microplate. 

 

For western blot analysis of H3K27ac, cells were treated for 24 h with compounds and lysed in 

ice-cold lysis buffer (20�mM tris-HCl, pH 8, 150�mM NaCl, 1�mM EDTA, 10�mM MgCl2, 0.5% 

Triton X-100 (v/v), 12.5�U mL-1 benzonase (Sigma, cat # E8263), complete EDTA-free 

protease inhibitor cocktail (Roche). After 3�min incubation, SDS was added to final 1% 

concentration (w/v). Total cell lysates were resolved using 4-12% bis-tris protein gels 

(Invitrogen) with MOPS buffer (Invitrogen) and transferred onto PVDF membranes (Millipore) in 

tris-glycine transfer buffer containing 10% MeOH (v/v) and 0.05% SDS (w/v). Membranes were 

blocked for 1�h in blocking buffer (5% milk in 0.1% Tween-20/PBS) and probed with the 

indicated primary antibodies overnight at 4�°C: H3K27ac (Cell Signaling Technologies, cat # 

8173, dilution 1:1,000), H3 (Abcam, cat # 10799, dilution 1:1,000), and KAT3B (Bethyl, cat # 

A300-358A, dilution 1:2,000). The following secondary antibodies were used according to 

manufacturer instructions: goat anti-rabbit IgG (IRDye 800-conjugated, LI-COR, cat # 926-

32211, dilution 1:5,000) and donkey anti-mouse IgG (IRDye 680-conjugated, LI-COR, cat # 926-

68072, dilution 1:5,000). The signal was acquired on an Odyssey scanner (LI-COR) at 800�and 

700�nm. 

 

Western blots in U-2 OS cells were performed similarly as above. Cells were cultured in DMEM 

(Thermo Fisher, cat # 10564011) supplemented with 10% FBS (v/v; Sigma, cat # F6178), 

penicillin (100�U mL-1), and streptomycin (100�µg mL-1), and maintained in a 37 °C, 5% CO2 

humidified incubator. Prior to compound treatment, 240,000 U-2 OS cells were plated per well in 

the above media in 6-well plates. The subsequent day, select compounds dissolved in neat 

DMSO were added to each well to the listed final concentration. The final DMSO concentration 

was maintained constant at 0.2% (v/v). After 24 h treatment, cells were harvested in 4X SDS-
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PAGE lysis buffer and boiled to denature. Cell lysates were separated on 16% tris-glycine gels 

(Thermo Fisher, cat # XP00165) for smaller proteins. For larger proteins, lysates were 

separated on 3-8% tris-acetate gels (Thermo Fisher, cat # EA03785). All proteins were 

transferred to membranes via iBlot (Thermo Fisher). For KAT3B, membranes were blocked in 

5% milk-TBS for 1 h, and then probed for KAT3B (Bethyl, cat # A300-358A, dilution 1:10,000) 

overnight in 2.5% milk-TBST (2.5% milk in 0.05% Tween-20/TBS). GAPDH (CST, cat # 2118S, 

dilution 1:2,000) was also probed in 2.5% milk-TBST overnight at 4 °C. All other proteins were 

probed in 2.5% BSA-TBST (2.5% BSA in 0.1% Tween-20/TBS) overnight at 4 °C with the 

following dilutions: total H3 (Abcam, cat # AB1791, dilution 1:5,000); H3K14ac (Millipore, cat # 

07-353, dilution 1:2,000); and H3K27ac (CST, cat # 8173, dilution 1:2,000). All blots were 

probed with an anti-rabbit HRP conjugated secondary antibody (CST, cat # 7074S, dilution 

1:5,000) and washed with TBST (0.1% Tween-20/TBS) before visualization with enhanced 

chemiluminescence substrate. 

 

Data analyses and figure preparation 

All graphical data are expressed as mean�±�standard deviation (SD) unless stated otherwise. 

Graphing and statistical analyses were performed using Prism (GraphPad, version 8.4.2) or R 

(version 3.6.1). Final figures were prepared in Adobe Illustrator (version 25.0). 

 

Data availability 

The following data are deposited at Figshare (10.6084/m9.figshare.20293992) and are available 

without restriction: (1) CP extracted features, (2) processed live-cell imaging data, (3) processed 

intracellular glutathione data, and (4) ALARM NMR spectra and UPLC-MS chromatograms for 

KAT inhibitors. The multi-terabyte collection of CP images, metadata, and associated 

CellProfiler object-level files are deposited at the Image Data Resource 
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(idr.openmicroscopy.org, accession number idr0133). All other relevant data are available from 

the authors without restriction. 
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Supplementary Information: File containing Supplementary Figures 1-6, Supplementary Notes, 

and Supplementary References (PDF). Supplementary Data 1: Key compound descriptors 

(SMILES, purity, annotations) for study compounds (XLSX). 
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 Figure 1. Characterization of cell injury compounds using cell painting. 205 compounds 
associated with cell injury were each profiled by CP after 24 h of compound exposure in U-2 OS 
cells. (a) Active (Mahalanobis distance) CP compounds are enriched for decreased cell number 
in a historical dataset25. (b) Left: PCA plots showing unsupervised hierarchical clustering of CP 
phenotypes into nine clusters; some annotated when grossly associated with a compound 
category. Right: reduced feature summaries for each cluster (all compound concentrations). (c) 
“Dot plot” summary of cell injury compound categories by each CP cluster. (d) Clusters of cell 
injury compounds correlate with cell number. (e) Compounds from historical dataset with high 
correlation (MLI-HC) to gross injury signature (cluster 9) are active upon re-testing. Inset: 
heatmap and dendrogram shows pairwise correlation coefficients between each MLI CP 
compound profile and each of the 9 clusters (red arrowhead, enrichment of cluster 9) (f) Select 
CP profiles of cellular injury compounds; rainbow plots denote assigned cluster at each 
compound concentration; arrow indicates compound concentration of representative image. 
Image scales: 50 μm.  
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Figure 2. Nonspecific electrophiles and select targeted electrophiles produce cellular 
injury phenotypes in cell painting. (a) Nonspecific electrophiles (NSEs) and select targeted 
electrophiles (TEs) perturb cell number, are scored as bioactive in CP, and occupy gross injury 
feature-spaces. (b) Reduced CP feature summaries for NSEs and TEs. (c) Select CP profiles of 
NSEs and TEs. Note the tested electrophiles demonstrate gross cell injury at micromolar, but 
not nanomolar, compound concentrations. Image scales: 50 μm. 
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Figure 3. Historical but not next-generation KAT inhibitors produce gross injury 
phenotypes in cell painting. Compared to ngKATIs, many hKATIs are associated with assay 
interferences, suboptimal specificity, and cytotoxicity. (a) Most hKATIs but not ngKATIs perturb 
cell number and are scored as bioactive in CP and occupy different feature-spaces by PCA. (b) 
Reduced CP feature summaries for hKATIs and ngKATIs. (c) Select CP profiles of KAT 
inhibitors. Image scales: 50 μm. 

 
 
  

and is also made available for use under a CC0 license. 
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 

The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.12.499781doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.12.499781


 41

Figure 4. Cellular health and cell painting phenotypes are correlated. Compounds tested in 
CP were profiled for cellular health biomarkers under CP-like conditions. (a) CP activities and 
relative cell numbers correlate with cellular confluence, caspase 3/7 activation, and cell viability 
after 24 h compound treatment as measured by live-cell imaging. AUCs were calculated from 
the live-cell imaging assay concentration-response curves for each compound. (b) Breakdown 
of live-cell imaging cellular health profiles (AUC) by CP phenotypic clusters and cell injury 
compound groups. Object count indicates the number of cells (“objects”) above the signal 
threshold for each biomarker. (c) Select live-cell imaging profiles for cellular health. (d) Cell 
injury compounds, most notably electrophiles, decrease the intracellular GSH:GSSG ratio. 
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Figure 5. Additional analysis of cell injury compounds in cell painting. (a) CP phenotypes 
after 24- and 48-h compound treatments are correlated. (b) Replicates of active CP compounds 
are correlated at 24- and 48-h compound treatment times. The replicate correlation is defined by 
the average correlation between each replicate pair (6 comparisons total). There are generally a 
strong correlations between compound treatments with strong signals. (c) CP clusters from 24- 
and 48-h compound treatments are correlated. The horizontal- and vertical-axis correspond to 
the correlation of the 9 clusters to the 24- and 48-h treatment profiles, respectively. (d) CP 
profiles from 24- and 48-h compound treatments are correlated. Tanglegram shows connections 
between compound treatments from 24- and 48-treatment dendrograms. (e) Cellular health 
biomarkers (AUC) are grossly correlated at 24- and 48-h treatment times. N.B., while many 
points lie along the parity line, some have larger values at 48 h. (f) Select CP profiles comparing 
24- and 48-h compound treatments. 
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Figure 6. Proposed nuisance compound informer set for use in HCS assays. Left: an 
informer set can be assembled using representative compounds from key cellular injury and 
nuisance MoAs. Right: When an informer set is used during the assay optimization phase, more 
optimal experimental conditions can be selected to reduce the incidence of unwanted MoAs 
such as nonspecific electrophiles. When an informer set is used compound prioritization phase 
(“hit picking”, “HTS triage”), compounds sharing phenotypes with unwanted MoAs can be 
prioritized according to the desired compound characteristics. 
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