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Abstract 

Disease-associated non-coding variants can modulate their target genes by disrupting 
multiple mechanisms, including regulating total gene expression level, splicing, 
alternative polyadenylation or promoter usage. Quantifying promoter usage from 
standard RNA sequencing data is challenging due to incomplete reference transcriptome 
annotations and low read coverage observed at the ends of transcripts. We previously 
developed the txrevise tool (https://github.com/kauralasoo/txrevise) to quantify promoter 
usage events from RNA-seq data using reference transcriptome annotations. Here, we 
augment the txrevise promoter event annotations with experimentally identified Cap 
Analysis of Gene Expression (CAGE) promoters from the FANTOM5 project. Applying 
the new annotations to RNA-seq data from 358 individuals, we found that augmented 
promoter event annotations increased the power to detect promoter usage quantitative 
trait loci (puQTLs) by ~30%. However, concordance between puQTLs inferred from RNA-
seq data and those directly measured using CAGE remained low, suggesting that 
additional experimental and computational improvements are needed to capture the full 
range of regulatory effects of non-coding variants. 

Introduction 

Genetic variants regulating promoter usage can play an important role in human complex 
traits (Alasoo et al., 2019; Garieri et al., 2017; Kubota and Suyama, 2022). Promoter 
usage can be directly quantified using experimental techniques that capture 5ʹ ends of 
transcripts such as Cap Analysis of Gene Expression (CAGE) (Shiraki et al., 2003), but 
currently only one such population-level human dataset exists (Garieri et al., 2017). 
Alternatively, promoter usage can be quantified from standard bulk RNA sequencing 
(RNA-seq) data (Figure 1a). The advantage of this approach is that bulk RNA-seq data 
is readily available from thousands of individuals and over a hundred different cell types 
or tissues (Kerimov et al., 2021; The GTEx Consortium, 2020).  
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However, quantification of promoter usage from standard RNA-seq data is complicated 
by multiple factors. First, read coverage is much lower at the ends of  transcripts (Love et 
al., 2016; Roberts et al., 2011), which makes it difficult to precisely detect the location of 
each transcription start site (TSS) (Pertea et al., 2015). Consequently, it is often hard to 
ascertain more than one TSS per gene from RNA-seq data (Adiconis et al., 2018). 
Secondly, transcripts contain overlapping exons which means that most reads cannot be 
uniquely assigned to a specific transcript (Figure 1a). Thus, methods for quantifying 
promoter usage from RNA-seq such as txrevise (Alasoo et al., 2019) and proActiv 
(Demircioğlu et al., 2019) rely heavily on pre-existing promoter annotations (Figure 1a) 
from databases such as Ensembl (Howe et al., 2021). This means that even if a genetic 
effect on promoter usage is clearly visible from RNA-seq read coverage track, it might not 
be detected by existing methods due to incomplete promoter annotations (Figure 1c). 

 

Figure 1. Comparison of RNA sequencing methods for promoter usage quantification. (a) 
Fictional gene with two alternative promoters. CAGE directly sequences the 5ʹ ends of 
expressed transcripts and thus detects two peaks corresponding to the two alternative 
promoters. Promoter usage is quantified by counting the reads overlapping the two peaks. 
RNA-seq captures reads across the full length of the expressed transcripts with a notable 
drop at the beginning. Most reads originating from this gene are compatible with both 
known transcripts. Promoter usage can be quantified by estimating the relative 
expression of the two transcripts that best explains the observed read coverage pattern 
across the gene. However, transcript annotations often couple alternative promoters with 
unrelated splicing or 3ʹ end events. Txrevise overcomes this by constructing new 
annotations corresponding to independent promoter usage events. (b) Promoter usage 
QTL affecting ADAM17 (ENSG00000151694). The CAGE read coverage stratified by the 
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genotype of the lead puQTL variant (rs12692386) shows strong genotype-dependent shift 
in promoter usage. (c) RNA-seq read coverage signal captures similar change, but this 
does not correspond to any annotated ADAM17 promoters.  

Previous research has demonstrated that detection of alternative polyadenylation events 
can be significantly improved by incorporating experimental annotations such as data 
from 3ʹ RNA-seq experiments (Ha et al., 2018; Shah et al., 2021). Here, we augment 
txrevise promoter annotations using experimental CAGE (Shiraki et al., 2003) data from 
the FANTOM5 project (FANTOM Consortium and the RIKEN PMI and CLST et al., 2014). 
We demonstrate that incorporating experimentally detected promoter annotations 
improves concordance between CAGE and RNA-seq data and increases the number of 
detected promoter usage quantitative trait loci (puQTLs) by around 30%. Nevertheless, 
overall concordance between puQTLs detected by CAGE and RNA-seq remains low, 
suggesting that the two approaches have distinct strengths and weaknesses.  

Results 

Concordance of puQTLs detected by CAGE and RNA-seq 

To assess the concordance between the puQTLs detected by CAGE and RNA-seq, we 
re-analysed two transcriptomic datasets generated from lymphoblastoid cell lines. The 
Garieri_2017 (Garieri et al., 2017) dataset contained CAGE data from 154 individuals 
from the 1000 Genomes (1000 Genomes Project Consortium et al., 2015) and 
GENCORD (Gutierrez-Arcelus et al., 2013) cohorts. The GEUVADIS (Lappalainen et al., 
2013) datasets contained RNA-seq data from 358 individuals from the 1000 Genomes 
cohort. All individuals were of European ancestries and 78 individuals were shared 
between the two datasets. 

We first compared CAGE against RNA-seq using Ensembl reference promoter 
annotations. Alternative promoter annotations were extracted from reference 
transcriptome with txrevise (Alasoo et al., 2019). We found that using the same +/- 200 
kb cis window and 5% false discovery rate (FDR) sigificance threshold, CAGE detected 
at least one significant puQTL for more genes than txrevise (1145 vs 979 genes), even 
though the RNA-seq dataset was more than two times larger (154 vs 358 samples) (Table 
1). When varying the gene expression threshold, we found that CAGE was more sensitive 
for lowly expressed genes whereas txrevise found more associations at higher gene 
expression thresholds (Table 1, Supplementary Figure 1). Nevertheless, the agreement 
between the two datasets was small with only 307 genes having a significant puQTL in 
both datasets (Figure 2a). An example puQTL for ADAM17 detected by CAGE and 
missed by txrevise is illustrated on Figure 2b. Close inspection of the corresponding read 
coverage plots (Figure 1b-c) revealed that while the puQTL signal was clearly visible from 
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the RNA-seq data, the association was missed because neither of the two annotated 
promoters (corresponding to transcripts ENST00000648857 and ENST00000310823) 
overlapped the downstream alternative promoter captured by CAGE. 

 

Figure 2. Concordance of promoter usage QTLs detected by CAGE and txrevise. (a) 
Scatterplot of the lead variant p-values of each gene from CAGE and reference-based 
txrevise analysis. The identity line (black) diverges from the regression line (blue), 
indicating low concordance between the two methods. The blue dot corresponds to the 
lead puQTL variant of ADAM17, rs12692386. The variant was significantly associated 
with ADAM17 promoter usage in CAGE analysis but not in txrevise analysis. (b) 
Normalised usage of the ADAM17 CAGE promoter hg_26835.1 stratified by the genotype 
of the puQTL lead variant (rs12692386). (c) Normalised usage of the ADAM17 
ENST0000031082 txrevise reference promoter stratified by the genotype of the puQTL 
lead variant (rs12692386). 
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Augmenting promoter annotations using CAGE data 

  Number of puQTLs detected  

Min TPM 
threshold 

% of genes 
above  
threshold 

CAGE txrevise 
(reference 
only) 

txrevise 
(augmented) 

puQTL % 
increase 

None 100% 1208 1073 1393 29.8% 

0.1 79.4% 1235 1051 1359 29.3% 

1 62.9% 1145 979 1287 31.5% 

10 31.5% 564 663 868 30.9% 

100 4.8% 87 152 201 32.2% 

Table 1. Number of puQTLs (FDR < 0.05) detected at various gene expression thresholds 
by CAGE, reference-based txrevise and augmented txrevise. As transcripts per million 
(TPM) > 1 allowed filtering out many lowly expressed genes without a major drop in the 
number of puQTLs detected, it was chosen as the threshold.  

To overcome the limitation of incomplete promoter annotations in txrevise analysis, we 
obtained a list of experimentally detected promoters from the FANTOM5 project 
(Abugessaisa et al., 2017) and used a simple heuristic approach to construct novel 
transcript annotations based on these promoters (Figure 3) (see Methods). Briefly, we 
used the FANTOM5 promoters to construct new alternative first exons if the novel 
promoters were in an existing exon or 1000 bp upstream of one and if the newly 
constructed promoter was at least 20 nucleotides away from any existing promoter. This 
process increased the number of txrevise alternative promoter annotations from 72,292 
to 114,768 (37%). Furthermore, 1650 genes that previously had only one annotated 
promoter now had more than one, thus enabling promoter usage quantification for those 
genes. 
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Figure 3. Constructing new transcript annotations based on CAGE peaks. (a) Fictional 
gene with two alternative promoters (black) corresponding to two transcripts (blue) 
starting from those promoters, but also an additional promoter (red) that has no existing 
transcript annotation but for which a hypothetical transcript (green) could be constructed 
based on existing transcripts. (b). Two new txrevise promoter annotations (light blue) 
constructed for ADAM17 by augmenting existing txrevise promoter annotations (dark 
blue, bottom) with CAGE promoters (dark blue, top) from FANTOM5. 

Impact of augmented promoter annotations on puQTL detection 

Next, we re-analysed the GEUVADIS dataset using the augmented txrevise promoter 
annotations. We found that augmented annotations increased puQTL yield by ~30% at 
all gene expression level thresholds (Table 1, Figure 4a). Similarly, the number of shared 
puQTLs genes detected by both CAGE and txrevise increased from 307 to 397 (Figure 
4b). One such example was the previously missed ADAM17 gene, but even with 
augmented annotations, the association detected from RNA-seq data (Figure 4c-d) was 
much weaker compared to the CAGE signal (Figure 2b). Similarly, the overall 
concordance between CAGE and txrevise still remained relatively low (Figure 4b).   
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Figure 4. Impact of augmented promoter annotations on puQTL detection. (a) Number of 
genes with at least one significant puQTL (y-axis) as a function of gene expression level 
threshold (x-axis) (TPM - transcripts per million). (b) The lead variant p-values of each 
gene for CAGE and txrevise with an identity line (black) and a regression line (blue). 
Green dots represent genes for which a significant puQTL was detected only after 
promoter augmentation, red dots represent genes that lost a significant puQTL after 
augmentation. The blue dot corresponds to the lead variant of ADAM17, rs12692386. (c) 
Normalised usage of the newly added ENSG00000151694.new.upstream.10573 
(CAGE_10573) txrevise promoter stratified by the genotype of the puQTL lead variant 
(rs12692386) (d) RNA-seq read coverage at the ADAM17 promoter stratified by the 
genotype of the puQTL lead variant (rs12692386). The GG genotype (red line) is 
associated with a shift towards an upstream promoter relative to the AA genotype (blue 
line). The newly added promoter annotation (ENSG00000151694.new.upstream.10573, 
light blue) can better capture this shift compared to the two existing reference-based 
promoters (dark blue).  

Discussion 

We performed puQTL analysis in lymphoblastoid cell lines using two complementary 
technologies: CAGE that directly sequences 5ʹ ends of transcripts and txrevise that can 
leverage reference transcript annotations to capture promoter usage events from full-
length RNA-seq data. We found that the concordance in the puQTLs detected with the 
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two approaches was generally low. Augmenting reference transcript annotations with 
novel FANTOM5 promoters increased the ability of txrevise to detect puQTLs by 30%, 
but concordance with CAGE puQTLs still remained low. We believe that the discordance 
is primarily due to differences in technology with CAGE being able to better distinguish 
promoters of lowly expressed genes and having higher signal-to-noise ratio due to more 
direct measurement. However, since the CAGE and RNA-seq data were generated by 
two independent studies, we cannot rule out that other technical factors might contribute 
to the observed differences. 

Our results indicate that a significant proportion of alternative promoter annotations are 
still missing from the Ensembl database. Consequently, we found that augmenting 
reference transcripts with experimentally determined promoters from the FANTOM5 
project significantly increased the number of puQTLs detectable from RNA-seq data. As 
a result, using augmented promoter annotation to re-process publicly available RNA-seq 
eQTL datasets by projects such as the eQTL Catalogue (Kerimov et al., 2021) has a great 
potential to increase the number of puQTLs detected. Future studies can explore if 
incorporating additional experimentally derived promoter annotations such as those 
generated by the RAMPAGE project (Moore et al., 2021) or transcriptome assembly 
methods (Kubota and Suyama, 2022) can further improve the ability to detect puQTLs 
from RNA-seq data.  
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Methods 

FANTOM5 promoter annotations 

We downloaded annotations of 210,250 human promoters from the FANTOM5 database 
(Abugessaisa et al., 2017; FANTOM Consortium and the RIKEN PMI and CLST et al., 
2014), which was constructed based on CAGE peaks. Of these, 96,562 promoter 
annotations associated with an autosomal gene were kept. The name of the associated 
gene was mapped to an Ensembl id using the eQTL Catalogue gene metadata files 
(https://doi.org/10.5281/zenodo.3366011). Of the remaining annotations, 93,663 
promoters from 20,201 genes had a gene name which mapped to exactly one Ensembl 
id. Of these, 93,554 promoters from 20,193 genes were mapped to a unique chromosome 
and were thus used in further analysis.  

GAGE data processing 

We downloaded the raw CAGE sequencing data from the Garieri_2017 (Garieri et al., 
2017) study from ArrayExpress (E-MTAB-5835). CAGE reads were mapped to the 
GRCh38 human reference genome using Burrows-Wheeler Aligner v0.7.12 (Li and 
Durbin, 2009) and multi-mapping reads were discarded. The number of CAGE reads 
corresponding to each promoter was counted using featureCounts (Liao et al., 2014). On 
average, 46.0% of all CAGE reads overlapped with the TSS of some FANTOM5 
promoter. 

Based on these read counts, we omitted from further analysis all CAGE promoters with 
zero total mapped reads across all samples. After this, 90,003 promoters from 18,546 
genes remained.  

To quantify promoter usage and not general gene expression in CAGE data, the number 
of reads assigned to each promoter was divided by the total number of reads assigned to 
all promoters of the same gene. Missing promoter usage values were replaced by the 
mean calculated across all individuals. Finally, rank-based inverse normal transformation 
was used to enable more robust use of linear models (McCaw et al., 2019). 

Genotype data processing 

We re-analyzed genotype data from 154 individuals of European descent from the 
Garieri_2017 study, 86 of which were from the 1000 Genomes Project (1000 Genomes 
Project Consortium et al., 2015) and 68 from the GENCORD project (Gutierrez-Arcelus 
et al., 2013). Genotypes from the GENCORD project were imputed to the 1000 Genomes 
reference panel as described previously (Kerimov et al., 2021). Whole genome 
sequencing genotypes for the 1000 Genomes Project samples were downloaded from 
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the 1000 Genomes Project FTP server (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/). The 
9.2 million genetic variants shared by these two datasets were used in the rest of the 
analysis. 

RNA-seq data processing 

Txrevise promoter usage events (both original and augmented) were quantified with the 
eQTL-Catalogue/rnaseq workflow and normalised with the eQTL-Catalogue/qcnorm 
workflow as described previously (Kerimov et al., 2021). Only the 15,275 genes present 
in both txrevise transcript annotations and the filtered FANTOM5 annotations were used 
for downstream analysis.  

Genes with very low expression levels are likely to be biologically insignificant and their 
expression estimates are vulnerable to noise. Gene expression levels were calculated 
based on the output of featureCounts generated during the execution of the eQTL-
Catalogue/rnaseq pipeline on the RNA-seq data. For various TPM values, only genes 
with at least 5% of individuals exhibiting at least that much expression were considered. 

Promoter usage QTL analysis 

To map puQTLs, we used the eQTL-Cataloge/qtlmap Nextflow workflow built on top of 
fastQTL (Ongen et al., 2016) and QTLtools (Delaneau et al., 2017) by the eQTL 
Catalogue project (Kerimov et al., 2021). For every gene, only genetic variants within the 
+/- 200kb cis window centred around the canonical Ensembl promoter of the gene were 
considered. The coordinates of genes were obtained from the eQTL Catalogue gene 
metadata files (https://doi.org/10.5281/zenodo.3366011). Multiple testing correction was 
performed as described previously (Kerimov et al., 2021). 

Creating new transcript annotations 

All FANTOM5 promoters meeting the following criteria for different values of N were 
chosen: 

● The promoter is not within N bp of the start of the exon of any existing txrevise 
transcript (taking into account the strand of the transcript) 

● The promoter is not within N bp of any already added promoter 
● The promoter overlaps with an exon of an existing txrevise transcript or is within 

1000 bp upstream of one (94.4% of all promoters corresponding to a gene 
possessing a txrevise transcript match this criterion) 

The chosen promoters and the txrevise transcripts whose exon the promoters overlapped 
or were near upstream to were used to construct a new set of artificial transcript 
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annotations. The first exon of these new transcripts was an artificial exon from the 
promoter’s start coordinate to the end coordinate of the nearest (overlapping) first exon 
and the remaining exons were all the remaining exons of the existing txrevise transcript 
(Figure 3). 

The created transcripts were added to txrevise transcripts, given as input to another run 
of txrevise and put through the eQTL-Cataloge/qtlmap workflow. Supplementary Figure 
2 shows that the smaller the N gets, the more statistically significant puQTL genes were 
found, especially at values of N of 20 and smaller. For values of N larger than 100, the 
effect of adding annotations was negative, likely because re-running txrevise with N 
values larger than 25 causes some original txrevise transcripts to be removed. The 
biggest fraction of new genes that were also significant with CAGE occurred at N values 
of 5-25 and the least originally found genes were lost when N was 25. For these reasons, 
we chose 20 as the optimal N value based on our tests. This resulted in 77,869 new 
transcripts across 11,877 genes.  
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Supplementary Figures 

 

Supplementary Figure 1. The distribution of transcripts per million (TPM) values across 
all significant puQTL genes grouped by whether the gene was found to be significant in 
CAGE or txrevise. Vertical lines show the median TPM of the corresponding group. The 
genes detected by CAGE have significantly lower mean TPM values than the genes 
detected by txrevise (Mann-Whitney U test p-value < 2.2e-16). 
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Supplementary Figure 2. Effect of different values of N on detecting genes with at least 
one puQTL. (a) The effect of N on the number of additional puQTL genes detected. (b) 
The effect of N on the number of puQTL genes lost. (c) The effect of N on the agreement 
between reference and augmented and promoters.  
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Data availability 

The CAGE sequencing data from Garieri_2017 is available from ArrayExpress (E-MTAB-
5835). The genotype data from the GENCORD study is available from EGA 
(EGAD00001000428). The RNA-seq data from the GEUVADIS study is available from 
ArrayExpress (E-GEUV-1). The GEUVADIS genotype data was downloaded from the 
1000 Genomes Project FTP server (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/). The 
CAGE and txrevise promoter usage QTL summary statistics have been deposited to 
Zenodo (https://doi.org/10.5281/zenodo.5831090). The pre-computed txrevise 
annotations using Ensembl 105 transcriptome annotations and FANTOM5 promoters with 
N=25 parameter have been deposited to Zenodo 
(https://doi.org/10.5281/zenodo.6499127). 

Code availability 

Source code of all the analyses presented in the paper is available from GitHub 
(https://github.com/andreasvija/cage). The updated version of the txrevise software 
supporting augmenting annotations with FANTOM5 CAGE promoters is available from 
GitHub (https://github.com/kauralasoo/txrevise). The txrevise promoter usage 
quantification was performed with the eQTL-Catalogue/rnaseq workflow and puQTL 
mapping was performed with the eQTL-Catalogue/qtlmap workflow.  
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