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Abstract

Motivation: Maximum Likelihood (ML) is a widely used model for inferring phylogenies. The
respective ML implementations heavily rely on numerical optimization routines that use internal
numerical thresholds to determine convergence. We systematically analyze the impact of these thresh-
old settings on the log-likelihood (LnL scores) and runtimes for ML tree inferences with RAxML-NG,
IQ-TREE, and FastTree on empirical datasets.
Results: We provide empirical evidence that we can substantially accelerate tree inferences with
RAxML-NG and IQ-TREE by changing the default values of two such numerical thresholds. At the
same time, changing these settings does not significantly influence the quality of the inferred trees
according to statistical significance tests. For RAxML-NG, increasing the likelihood thresholds ϵLnL

and ϵbrlen to 10 and 103 respectively results in an average speedup of 1.9 ± 0.6 on Data collection 1
and 1.8± 1.3 on Data collection 2. Increasing the likelihood threshold ϵLnL to 10 in IQ-TREE results
in an average speedup of 1.3± 0.4 on Data collection 1 and 1.3± 0.9 on Data collection 2.
Availability and Implementation: All MSAs and results our analyses are based on are available
for download at https://cme.h-its.org/exelixis/material/freeLunch˙data.tar.gz. Our data generation
scripts are available at https://github.com/tschuelia/ml-numerical-analysis.
Contact: julia.haag@h-its.org
Supplementary information: Supplementary data are available online.

1 Introduction

Phylogenetic trees have many important appli-
cations in biology and medicine, for example,
in drug development [7], forensics [13], or the
analysis of SARS-CoV-2 genomes [15]. A widely
used approach for reconstructing phylogenetic
trees from a multiple sequence alignment (MSA)
is the maximum likelihood (ML) method [24].
Popular ML-based tools are RAxML-NG [10],
IQ-TREE [14], and FastTree [16]. Finding the

most likely tree is NP-hard [3] due to the super-
exponential number of possible tree topologies.
ML tree inference tools therefore implement tree
search heuristics that attempt to iteratively opti-
mize the log-likelihood (LnL score) by improving
the tree topology, branch lengths, and substitution
model parameters. These heuristics heavily rely
on a plethora of numerical optimization routines
(e.g., the Brent method [1] and the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method [6])
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2 2 METHODS

that use specific internal numerical convergence
thresholds. To the best of our knowledge, the
impact of these threshold settings on inference
times and LnL scores has never been systemat-
ically assessed, while anecdotal observations do
exist. For instance, when analyzing SARS-CoV-
2 data, Morel et al. [15] observed that one of
these numerical thresholds, the minimum allowed
branch length (minBranchLen), impacts the LnL
scores of trees inferred with RAxML-NG and IQ-
TREE. Here, we systematically investigate if we
can reproduce this effect on other MSAs as well
as for distinct numerical thresholds. In addition
to RAxML-NG and IQ-TREE, we also investigate
the behavior of FastTree. We explore the influ-
ence of up to seven distinct numerical thresholds
on LnL scores and runtimes for these three ML
inference tools. RAxML-NG and IQ-TREE offer
two basic execution modes: tree evaluation and
tree inference. In tree evaluation mode, the given
(user-defined) tree topology remains fixed while
the branch lengths and substitution model param-
eters are being optimized. In tree inference mode,
the tools attempt to optimize the tree topology,
the branch lengths, and the substitution model
parameters. In our analyses, we investigate the
influence of the numerical thresholds on both:
tree inference and tree evaluation. Our analyses
comprise two main studies:

Study 1: We analyzed the influence of up to 7
numerical thresholds on the LnL scores and run-
times of RAxML-NG, IQ-TREE, and FastTree.
For RAxML-NG, IQ-TREE, and FastTree we ana-
lyzed the influence of the numerical thresholds
when varied for tree inferences. For RAxML-NG
and IQ-TREE, we also analyzed their influence
when varied for tree evaluations. In study 1, we
exclusively analyzed unpartitioned DNA MSAs
(Data collection 1 ). To verify our findings for the
likelihood epsilons ϵLnL and ϵbrlen in RAxML-NG,
and ϵLnL in IQ-TREE, we subsequently analyzed
a more comprehensive as well as representative
MSA collection including DNA, amino-acid (AA),
and partitioned MSAs (Data collection 2 ).

Study 2: In our second study, we conducted
a more detailed analysis of the likelihood epsilons
in RAxML-NG as it is being actively developed in
our lab. Since RAxML-NG uses the same thresh-
old ϵLnL for four distinct tree search operations,
we separated this threshold into four distinct fine-
grained likelihood epsilons. The goal was to assess

if appropriate fine-grained threshold settings could
further improve the runtime.

The remainder of this paper is organized as
follows: In Section 2, we outline the numerical
thresholds we analyze and their usage in ML
inference tools, our experimental setup, and the
metrics we used to assess the influence of the
numerical thresholds on tree quality and runtime.
In Section 3 we present our key findings and in
Section 4 we discuss the results of our analyses
with a focus on the ϵLnL and ϵbrlen thresholds
in RAxML-NG and IQ-TREE. We conclude in
Section 5.

All MSAs we used for our analyses, as
well as all results, are available for down-
load at https://cme.h-its.org/exelixis/material/
freeLunch˙data.tar.gz. Our data generation scripts
are available at https://github.com/tschuelia/
ml-numerical-analysis.

2 Methods

2.1 Numerical Thresholds

Due to the extremely large tree space, an exhaus-
tive search to identify the most likely tree is simply
not feasible. ML-based tree inference tools there-
fore typically implement iterative tree improve-
ment techniques, which they apply to an initial
tree. Such an initial topology is obtained via
heuristic tree inference methods, such as ran-
domized stepwise addition order [2] or maximum
parsimony [4, 5]. In our analyses, we focus on the
three widely used ML inference tools RAxML-NG,
IQ-TREE, and FastTree. Each tool iteratively
optimizes the tree topology, the branch lengths,
and the substitution model parameters starting
from an initial tree. For example, RAxML-NG
iteratively applies Subtree Pruning and Regrafting
(SPR) moves followed by branch length and sub-
stitution model parameter optimizations. A more
detailed description of the tree search heuristics is
provided in Section 1 of the supplementary infor-
mation. We analyze the influence of the following
seven numerical thresholds:

• Likelihood epsilon ϵLnL: Threshold for LnL
score improvement after one complete itera-
tion (tree topology, branch lengths, and model
parameters). The optimization only continues if
the likelihood improvement is higher than this
threshold.
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2.2 Data Collections 3

• Branch length likelihood epsilon ϵbrlen: RAxML-
NG specific threshold for LnL score improve-
ment. This epsilon is used during a so-called fast
branch length optimization to rapidly approxi-
mate the LnL score of potential SPR moves.

• Minimum branch length (minBranchLen):
Lower limit for branch length values.

• Maximum branch length (maxBranchLen):
Upper limit for branch length values.

• Model likelihood epsilon ϵmodel: Threshold for
substitution model parameter improvement.
The substitution model parameters are only fur-
ther optimized if the LnL score improvement
exceeds this threshold.

• num iters: Threshold to control the maximum
number of iterations during Newton-Raphson
based branch length optimization in RAxML-
NG.

• bfgs factor : This RAxML-NG specific thresh-
old controls the convergence of the L-BFGS-B
method used for optimizing substitution rates
and stationary frequencies. The L-BFGS-B is
a variant of the standard BFGS method, opti-
mized for limited memory, and is extended to
incorporate bound constraints in variables [25].

For RAxML-NG we analyze the influence of
all seven thresholds, for IQ-TREE we analyze the
influence of ϵLnL, minBranchLen, maxBranchLen,
and ϵmodel. For FastTree we analyze the influence
of ϵLnL and minBranchLen. As stated above, we
mainly focus on the thresholds ϵLnL and ϵbrlen. In
Study 1 we find that decreasing the default setting
does not substantially improve the LnL scores. To
economize on computational resources and run-
time, we thus only compare the current default
setting to settings larger than the current default.
For IQ-TREE, the current default setting for ϵLnL
is 10−3. We analyze the potential more liber-
al/superficial settings {10−3, 10−2, . . . , 103}. For
RAxML-NG the current default setting for both,
ϵLnL and ϵbrlen, is 10

−1. We analyze potential new
and more superficial settings of {10−1, 1, . . . , 103}

2.2 Data Collections

In Study 1 we analyze 22 empirical unpartitioned
DNA MSAs (Data collection 1 ). To verify these
results, we analyze an additional collection of 19
empirical MSAs, including AA and partitioned
MSAs (Data collection 2 ). For one additional
AA dataset with excessive memory and runtime

requirements, we only compare the results of the
default threshold settings to the suggested new
default settings. We exclusively analyze empirical
datasets, because it was shown that reconstructing
the best tree is more difficult on empirical datasets
than it is on simulated datasets [8]. Section 2 in
the supplementary information provides a detailed
overview of all MSAs used.

2.3 Experimental Setup

We analyze each threshold and each ML inference
tool separately. For each threshold and for each
possible threshold setting, we infer 50 trees using
the standard/default tree inference mode of the
respective tool. Subsequently, we re-evaluate each
inferred tree using the tree evaluation mode. For
tree evaluation, we set the numerical thresholds
to their corresponding default values. In the set
comprising all inferred trees under all analyzed
threshold settings, we determine the tree with the
best LnL score (further referred to as best-known
tree) and compare it to all other trees using sev-
eral distinct phylogenetic statistical significance
tests. For reasons, we detail further below, we do
not compare all trees at once, but always con-
duct a pairwise comparison of each tree with the
best-known tree. We collect trees that pass all sig-
nificance tests in a so-called plausible tree set (see
[15] for the introduction of the term). All trees
in such a plausible tree set are not significantly
worse than the best-known tree under all statisti-
cal significance tests. For the unpartitioned DNA
MSAs we use the general time reversible (GTR)
model [22] of nucleotide substitution as it is the
most flexible and general model of nucleotide
substitution. To account for among site rate het-
erogeneity, we additionally use four discrete Γ rate
categories. The AA equivalent of the GTR model
is the GTR20 (or PROTGTR) model. However,
this model for AA data is very parameter rich.
In particular, on datasets with weak phylogenetic
signal (see below) the corresponding parameter
estimates might thus be unstable. Instead, we use
the LG substitution model [11] with four discrete
Γ rate categories for unpartitioned AA MSAs.

2.4 Evaluation Metrics

In the following, we compare LnL scores in per-
cent rather than via absolute LnL unit difference,
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since the datasets yield a broad range of abso-
lute likelihood values (LnL scores range between
approximately −90 (D4) and −13 000 000 (D37)).
Thus, as LnL scores are reported on a log scale, the
observed effects are greater than the percentages
might suggest. Therefore, we use two additional
quality metrics: statistical significance tests and
Robinson-Foulds distances (RF-Distances) [17]
which we describe in the following. For evaluating
the runtimes of the tree inferences, we compare
the runtime of each tree inference in relation to
the average runtime under the respective default
setting. We report all speedups as mean ± stan-
dard deviation. Note that in our analyses we do
not compare inferred trees, LnL scores, runtimes,
or evaluation metrics across ML inference tools.
All described analyses and evaluations metrics
are applied separately and independently for each
tool.

2.4.1 Significance Tests

In order to compare the trees inferred under
different threshold settings, we use the statisti-
cal significance tests implemented in IQ-TREE.
IQ-TREE implements the following significance
tests: the Kishino-Hasegawa (KH) test [9] and
the Shimodaira-Hasegawa (SH) test [18], both
in their weighted and unweighted variants, the
Approximately Unbiased (AU) test [19], as well
as the Expected Likelihood Weight (ELW) test
[21]. We use the default IQ-TREE settings for the
number of resampling of estimated log-likelihoods
(RELL) replicates (10 000) and significance level
(α = 0.05). Since the significance tests can be
biased by the number of trees in the candidate set
[21], we remove identical tree topologies from the
set of inferred trees prior to applying the tests.
Despite this tree set cleaning, we observed some
unexpected behavior by the significance tests.
First, the ELW test computes a c-ELW score
(posterior weight) for each tree, sorts the trees
according to this score and accepts trees as being
not significantly different until the sum of c-ELW
scores exceeds a predefined threshold. In our case,
numerous trees in the inferred tree set have highly
similar LnL scores despite their topologies being
different. Yet, the c-ELW score for such trees
is identical. Therefore, for trees that have a c-
ELW that is close to exceeding the predefined
significance threshold, only some trees with the

exact same c-ELW score are accepted while the
remaining ones are rejected. This leads to trees
being rejected despite having the same LnL score
as some accepted trees. Further, re-running the
significance tests with the same trees but in a dif-
ferent order leads to a different subset of trees
being accepted. Instead of re-estimating the sub-
stitution model parameters of each candidate tree,
IQ-TREE uses a given best tree to optimize these
parameters. As stated above, numerous trees have
identical LnL scores, and therefore choosing the
best tree according to the LnL score is ambigu-
ous. We observe that the results of the significance
tests vary largely depending on what tree is passed
as the best tree despite identical LnL scores. We
provide an example for both scenarios in the sup-
plementary information. For the above reasons,
instead of comparing all trees in the inferred tree
set to each other at once, we only compare each
inferred tree separately via all significance tests in
a pairwise manner to the best-known tree. How-
ever, the c-ELW test is not intended for pairwise
comparisons and only rejects one of the trees if
the LnL scores deviate largely. Therefore, we addi-
tionally use the RF-Distance metric, which we
describe in the following section.

2.4.2 RF-Distances

For the tree inference experiments, we fix the ran-
dom seed to ensure that tree inferences always
initiate their search on the same starting tree,
despite using different numerical threshold set-
tings. Therefore, we can directly compare trees
inferred under different numerical threshold set-
tings that started on the same starting tree. We
compare these trees in a pairwise manner via the
relative RF-Distance. If the RF-Distance between
two trees, for example, one inferred under ϵLnL
= 10−1 and one inferred under ϵLnL = 103 is
0.0, then the tree inference converged to the same
topology despite the different ϵLnL setting. How-
ever, an RF-Distance > 0 does not necessarily
indicate that the tree is worse. For example, in
general, the plausible tree set comprises multiple
distinct tree topologies. Yet, they are not distin-
guishable via statistical significance tests. There-
fore, when using this metric, we further compare
these RF-Distances to the average pairwise RF-
Distance between all plausible trees inferred under
the default numerical threshold setting per tool
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(default plausible trees). We further refer to this
RF-Distance as default RF-Distance. This default
RF-Distance provides a notion of how topologi-
cally scattered the plausible trees are under the
default numerical threshold settings. The higher
the default RF-Distance is, the more rugged the
tree space will be. If the default RF-Distance is
greater or equal to the RF-Distance between trees
inferred under different numerical threshold set-
tings, we assume that these differences are due to
the ruggedness of the tree space rather than the
trees being worse.

2.4.3 Phylogenetic Signal

The properties of the MSA influence the phylo-
genetic inference [20]. The stronger the so-called
phylogenetic signal in the data is, the easier the
phylogenetic analysis will be. This phylogenetic
signal provides a notion of how informative the
data is about the underlying evolutionary process
[12]. In our study, we use the sites-per-taxa ratio
as a proxy for the phylogenetic signal. In general,
the higher the sites-per-taxa ratio of the MSA, the
better is the phylogenetic signal of the data. In
the following analyses, we will refer to MSAs with
a sites-per-taxa ratio ≥ 80 as good phylogenetic
signal. We refer to MSAs with a lower sites-per-
taxa ratio as MSA with an intermediate or weak
phylogenetic signal.

3 Results

In study 1, we observe a substantial runtime
impact on tree inferences for two likelihood
epsilons in RAxML-NG (ϵLnL and ϵbrlen). We
find that we can increase the settings of both
thresholds without compromising the quality of
the inferred trees, while obtaining a speedup of
1.9 ± 0.6. We make a similar observation for
one numerical threshold (ϵLnL) in IQ-TREE that
yields a speedup of 1.3± 0.4. All other thresholds
we analyzed for RAxML-NG and IQ-TREE, as
well as all thresholds analyzed for FastTree show
no substantial influence neither on runtime nor on
LnL scores as long as the settings remain within
a reasonable range. For all analyzed ML infer-
ence tools, their current default settings fall within
this reasonable range. We further observe that the
runtime of the evaluation phase, as expected, is

small compared to the corresponding tree infer-
ence time. Despite the impact of some numerical
thresholds on tree evaluation runtimes, we there-
fore recommend using a conservative numerical
threshold setting for tree evaluation. Our analy-
ses on the more comprehensive collection of MSAs
confirm our observations regarding tree inferences:
the speedup in Data collection 2 for RAxML-NG
is 1.8 ± 1.1 and 1.3 ± 0.9 for IQ-TREE. Analo-
gous to our results on Data collection 1, we do not
observe a significant impact on the quality of the
inferred trees according to our evaluation metrics.
Study 2 shows that separating the ϵLnL into four
distinctx thresholds does not further improve the
runtime. Our analyses show a similar behavior for
all four thresholds. We hence conclude that such
a fine-grained distinction of threshold settings is
neither necessary nor beneficial.

In the following discussion, we focus on the
analysis of ϵLnL and ϵbrlen in RAxML-NG and
IQ-TREE on Data collection 2. In the supplemen-
tary information, we discuss the less interesting
analysis results of all numerical thresholds on
Data collection 1, the tree evaluation phase, the
FastTree results, and the results of Study 2.

4 Discussion

The threshold with the highest impact on the run-
time is the likelihood epsilon ϵLnL. We observe an
impact for all three analyzed ML inference tools.
Further, the branch length likelihood epsilon ϵbrlen
influences the runtime of RAxML-NG. For both
thresholds, higher settings improve the runtime.
We observe that increasing these likelihood epsilon
settings for RAxML-NG and IQ-TREE leads to
equally good results while requiring lower run-
times. All figures in the following section show the
results summarized over all MSAs of Data collec-
tion 2. For better visualization of the speedup, we
removed outliers using Tukey’s fences [23] with
k = 3 for all figures depicting a speedup. For
the sake of completeness, we provide all speedup
figures including all outliers in Section 4.3 in the
supplementary information. In all box plots, the
dashed vertical line indicates the mean, and the
solid vertical line the median value.
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Fig. 1 Influence of the ϵLnL setting on the LnL
scores of RAxML-NG. The highlighted box indicates the
default setting. The y-axis shows the LnL score degra-
dation per inferred tree in percent relative to the LnL
score of the best-known tree. Higher percentages indi-
cate worse LnL scores.
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Fig. 2 Influence of the ϵLnL setting on the runtime of
RAxML-NG tree inferences. The highlighted box indi-
cates the default setting. The y-axis shows the speedup
relative to the average runtime under the default set-
ting.
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Fig. 3 Influence of the ϵbrlen setting on the LnL
scores of RAxML-NG. The highlighted box indicates the
default setting. The y-axis shows the LnL score degra-
dation per inferred tree in percent relative to the LnL
score of the best-known tree. Higher percentages indi-
cate worse LnL scores.
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Fig. 4 Influence of the ϵbrlen setting on the run-
time of the RAxML-NG tree inference. The highlighted
box indicates the default setting. The y-axis shows
the speedup relative to the average runtime under the
default setting.

4.1 RAxML-NG

With increasing ϵLnL threshold in RAxML-NG,
we observe an expected decrease in LnL scores for
higher settings. Especially for ϵLnL settings ≥ 102

the LnL scores deteriorate noticeably (Figure 1).
This is reflected by the proportion of tree infer-
ences yielding a tree that is included in the
plausible tree set (henceforth called a plausible
tree) as well. For the RAxML-NG default setting
ϵLnL = 10−1 on average 85% of tree inferences
yield a plausible tree, for 103 on average only 83%
yield a plausible tree. For all datasets (except D15)
the RF-Distances between trees inferred under

ϵLnL ≤ 10 compared to the default setting ϵLnL =
10−1 are smaller or equal to the default RF-
Distance. However, for settings of 102 and 103 this
is not the case. The average RF-Distances between
trees inferred under these settings compared to
the default setting are higher than the default RF-
Distance. The topological differences among trees
inferred under settings of 102 and 103 to trees
inferred under the current default setting 10−1 can
therefore not only be explained by the rugged tree
space alone. This observation holds true even for
datasets with a good phylogenetic signal. We con-
clude that for ϵLnL settings ≥ 102 RAxML-NG
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4.2 IQ-TREE 7

infers worse trees than for settings below 102. The
runtimes of RAxML-NG tree inferences decrease
with higher ϵLnL settings (Figure 2). On average,
tree inferences under ϵLnL = 103 run approx-
imately twice as fast as tree inferences under
ϵLnL = 10−1.

Given these observations, we conclude that the
ϵLnL setting can be increased to 10. The quality
of the trees is not affected by this more superfi-
cial optimization, but the tree inferences run on
average 1.4± 0.6 times faster.

With RAxML-NG, we also analyze the influ-
ence of the ϵbrlen threshold. Similar to the ϵLnL
threshold, the runtimes for ϵbrlen improve with
increasing settings (Figure 4). According to our
analyses, the LnL score is unaffected by the ϵbrlen
setting (variations between settings ≤ 0.007%;
Figure 3). Across all MSAs the number of tree
inferences yielding a plausible tree is identical
for all ϵbrlen settings we analyze. For MSAs with
a good phylogenetic signal, we observe that the
ϵbrlen setting does not affect the final tree topol-
ogy: for all tested settings the inferred tree topolo-
gies are identical (RF-Distance = 0.0). For all
other MSAs, the average RF-Distance between
trees inferred under different settings is below
the default RF-Distance. We conclude that the
ϵbrlen threshold does not substantially influence
the tree inference in RAxML-NG and the ϵbrlen
setting can be increased to 103. In our analyses
this observation holds true for all analyzed MSAs
independently of the magnitude of the LnL scores.
RAxML-NG uses the ϵbrlen to optimize the three
branch lengths that are adjacent to the node at
which a subtree is regrafted via an SPR move. We
suspect that since all branch lengths are optimized
at a later step during the tree inference, conduct-
ing a thorough optimization of these three branch
lengths does not substantially improve the LnL
score and can thus be terminated early.

Since we suggest changing two likelihood
epsilons in RAxML-NG, we further analyze the
influence of simultaneously changing both settings
on the quality and the runtimes of tree infer-
ences. To limit the computational effort, we only
compare the default combination (ϵLnL, ϵbrlen) =
(10−1, 10−1) with the suggested new combina-
tion (ϵLnL, ϵbrlen) = (10, 103). As expected, the
LnL scores are worse under the new setting com-
pared to the old setting (Figure 5), but the tree

inferences are faster (Figure 6). Averaged across
all MSAs, the LnL scores between the current
default and the suggested new combination vary
by less than 0.004%. The percentage of tree infer-
ences yielding a plausible tree is identical under
both setting combinations (87%). For all MSAs
the RF-Distances between trees inferred under
the current default combination versus the new
combination are smaller or equal to the default
RF-Distance. We conclude that increasing both
threshold settings does not substantially decrease
the LnL scores of the inferred trees and does there-
fore not affect the quality of the inferred trees.
With the MSAs of Dataset collection 1 we observe
a speedup of 1.9 ± 0.6, on Data collection 2 we
observe a speedup of 1.8± 1.1.

4.2 IQ-TREE

Analogous to RAxML-NG, the runtime of the tree
inference improves with higher ϵLnL settings for
IQ-Tree as well. Tree searches under the default
setting of ϵLnL = 10−3 run on average approxi-
mately twice as long as tree searches with ϵLnL =
103 (Figure 8). However, IQ-TREE appears to be
more sensitive to the ϵLnL setting than RAxML-
NG in terms of LnL scores. Under higher ϵLnL
settings, the LnL score degradation is an order
of magnitude worse than for RAxML-NG (on
average ≤ 0.2% for IQ-TREE vs. ≤ 0.03% for
RAxML-NG; Figure 7). For ϵLnL values ≤ 10 the
LnL scores are on average approximately equal.
Based on the plausible tree set size under vari-
ous settings, we observe that IQ-TREE is more
sensitive to the ϵLnL setting. We observe that for
ϵLnL = 103 averaged over all MSAs, noticeably
fewer tree inferences yield a plausible tree than
for any other setting (58% vs. 76% for ϵLnL =
10−3). This effect is less pronounced for MSAs
with a good phylogenetic signal. For MSAs with
a sites-per-taxa ratio ≥ 80 we observe that the
ϵLnL setting does not affect the final tree topol-
ogy: under all tested settings the inferred tree
topologies are identical (RF-Distance = 0.0). For
MSAs with a worse phylogenetic signal, the RF-
Distance between trees inferred under the default
setting 10−3 and settings of 102 and 103 exceed
the average RF-Distance in the plausible tree set.
We conclude that for MSAs with an intermedi-
ate or weak phylogenetic signal, the trees inferred
under ϵLnL settings ≥ 102 are worse than under
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Fig. 5 Influence of simultaneously changing both likeli-
hood epsilon settings on the LnL scores of RAxML-NG.
The highlighted box indicates the default combination.
The y-axis shows the LnL score degradation per inferred
tree in percent relative to the LnL score of the best-
known tree. Higher percentages indicate worse LnL
scores.
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Fig. 6 Influence of simultaneously changing both likeli-
hood epsilon settings on the runtime of the RAxML-NG
tree inference. The highlighted box indicates the default
combination. The y-axis shows the speedup relative to
the average runtime under the default combination.
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Fig. 7 Influence of the ϵLnL setting on the LnL scores
of IQ-TREE. The highlighted box indicates the default
setting. The y-axis shows the LnL score degradation per
inferred tree in percent relative to the LnL score of the
best-known tree. Higher percentages indicate worse LnL
scores.
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Fig. 8 Influence of the ϵLnL setting on the runtime of
the IQ-TREE tree inference. The highlighted box indi-
cates the default setting. The y-axis shows the speedup
relative to the average runtime under the default set-
ting.

lower settings. According to our evaluation met-
rics across all analyzed MSAs the ϵLnL setting can
be set to 10 without compromising the quality of
the inferred trees. In our analyses, this results in
an average speedup of 1.3± 0.9.

As mentioned before, we observe a higher sen-
sitivity to the ϵLnL setting in IQ-TREE than in
RAxML-NG. We suspect that this is caused by
the random Nearest Neighbor Interchange (NNI)
topology optimization moves in IQ-TREE’s search
algorithm. IQ-TREE implements these random
NNI moves to escape local NNI maxima (see the
supplementary information for a more detailed

description of the IQ-TREE inference heuristic).
To explore this hypothesis, we modify IQ-TREE
and disable this randomness in the search algo-
rithm. As a consequence, IQ-TREE then only
optimizes the tree topology using standard NNI
moves. We refer to the standard IQ-TREE as ran-
dom IQ-TREE and to the IQ-TREE algorithm
without random NNI moves as de-randomized
IQ-TREE. We re-analyze four MSAs using the
de-randomized IQ-TREE version. Without the
random NNI moves, the IQ-TREE search heuris-
tic can explore the tree space less, thus, we expect
the LnL scores for de-randomized IQ-TREE to
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be worse than for random IQ-TREE, which we
indeed observe in our analyses. To compare the
influence of the ϵLnL threshold, we again com-
pute the proportion of tree inferences yielding
a plausible tree. We observed that when using
de-randomized IQ-TREE, noticeably more tree
inferences yield a plausible tree under ϵLnL ≥ 102

than when using the random IQ-TREE variant.
We conclude that large ϵLnL settings (≥ 102) dis-
tort the random NNI moves in IQ-TREE, causing
a premature termination of the tree inference.
This also explains the vast runtime improvement
under these settings.

5 Conclusion

Increasing the RAxML-NG settings for the like-
lihood epsilons ϵLnL and ϵbrlen to 10 and 103

respectively does not significantly influence the
quality of the inferred trees according to statisti-
cal significance tests. By changing both settings,
we observe a speedup of 1.9± 0.6 on Data collec-
tion 1 and 1.8 ± 1.1 on Data collection 2. With
IQ-TREE, increasing the ϵLnL to 10 has no signif-
icant impact on the LnL scores, and we observe
a speedup of 1.3 ± 0.4 on Data collection 1 and
1.3±0.9 on Data collection 2. Our observations are
independent of the magnitude of the LnL scores of
the analyzed MSAs. For MSAs with a good phy-
logenetic signal, the inferred tree topologies under
the current default settings and the suggested new
settings are identical for both, RAxML-NG and
IQ-TREE (RF-Distance = 0.0). For MSAs with
an intermediate or weak phylogenetic signal, the
topological differences between threshold settings
can be explained by the rugged tree space, and the
RF-Distances between inferred trees under differ-
ent settings are less than or equal to the default
RF-Distance. It is important to note that the tree
evaluation after tree inference should not be omit-
ted and performed under conservative likelihood
epsilon settings, for example the default settings
in RAxML-NG and IQ-TREE.
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