Abstract
Maximum Likelihood (ML) is a widely used phylogenetic inference model. ML implementations heavily rely on numerical optimization routines that use internal numerical thresholds to determine convergence. We systematically analyze the impact of these threshold settings on the log-likelihood and runtimes for ML tree inferences with RAxML-NG, IQ-TREE, and FastTree on empirical datasets. We provide empirical evidence that we can substantially accelerate tree inferences with RAxML-NG and IQ-TREE by changing the default values of two such numerical thresholds. At the same time, altering these settings does not significantly impact the quality of the inferred trees. We further show that increasing both thresholds accelerates the RAxML-NG bootstrap without influencing the resulting support values. For RAxML-NG, increasing the likelihood thresholds ϵLnL and ϵbrlen to 10 and 103 respectively results in an average tree inference speedup of 1.9 ± 0.6 on Data collection 1, 1.8 ± 1.1 on Data collection 2, and 1.9 ± 0.8 on Data collection 2 for the RAxML-NG bootstrap. Increasing the likelihood threshold ϵLnL to 10 in IQ-TREE results in an average tree inference speedup of 1.3 ± 0.4 on Data collection 1 and 1.3 ± 0.9 on Data collection 2.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
We added an additional Study on the RAxML-NG bootstrap procedure to our analyses. As a consequence, the structure of our manuscript was changed, instead of two Studies, we separated our analyses into four distinct studies. The results of the original manuscript have not changed, we merely added the new results for the bootstrap analyses.
https://cme.h-its.org/exelixis/material/freeLunch_data.tar.gz