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Abstract

Geometric descriptions of deep neural networks (DNNs) have the potential to
uncover core principles of computational models in neuroscience, while abstracting
over the details of model architectures and training paradigms. Here we examined
the geometry of DNN models of visual cortex by quantifying the latent dimen-
sionality of their natural image representations. A popular view holds that optimal
DNNs compress their representations onto low-dimensional subspaces to achieve
invariance and robustness, which suggests that better models of visual cortex should
have low-dimensional geometries. Surprisingly, we found a strong trend in the
opposite direction—neural networks with high-dimensional image subspaces tend
to have better generalization performance when predicting cortical responses to
held-out stimuli in both monkey electrophysiology and human fMRI data. These
findings held across a diversity of design parameters for DNNs, and they suggest a
general principle whereby high-dimensional geometry confers a striking benefit to
DNN models of visual cortex.

1 Introduction

Deep neural networks (DNNs) are the predominant framework for computational modeling in
neuroscience (Hassabis, Kumaran, Summerfield, & Botvinick, 2017; Kriegeskorte, 2015; Lindsay,
2020; Richards et al., 2019; Yamins & DiCarlo, 2016). When using DNNs to model neural systems,
one of the fundamental questions that researchers hope to answer is: What core factors explain why
some DNNs succeed and others fail? Researchers often attribute the success of DNNs to explicit
design choices in a model’s construction, such as its architecture, learning objective, and training
data (Cadena et al., 2022; Cao & Yamins, 2021a, 2021b; Conwell, Prince, Alvarez, & Konkle, 2022;
Dwivedi, Bonner, Cichy, & Roig, 2021; Khaligh-Razavi & Kriegeskorte, 2014; Konkle & Alvarez,
2022; Kriegeskorte, 2015; Lindsay, 2020; Yamins & DiCarlo, 2016; Yamins et al., 2014; Zhuang et
al., 2021). However, an alternative perspective explains DNNs through the geometry of their latent
representational subspaces, which abstracts over the details of training procedures and architectures
(Chung & Abbott, 2021; Chung, Lee, & Sompolinsky, 2018; Cohen, Chung, Lee, & Sompolinsky,
2020; Jazayeri & Ostojic, 2021; Sorscher, Ganguli, & Sompolinsky, 2021). Here we sought to
understand the geometric principles that underlie the performance of DNN models of visual cortex.

We examined the geometry of DNNs by quantifying the dimensionality of their representational
subspaces. DNN models of vision contain thousands of artificial neurons, but their representations
are known to be constrained to lower-dimensional subspaces that are embedded within the ambient
space of the neural population (e.g. Ansuini, Laio, Macke, & Zoccolan, 2019). Many have argued
that DNNs benefit from representing stimuli in subspaces that are as low-dimensional as possible
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(either at local scales, global scales, or both), and it is proposed that low dimensionality improves
a network’s generalization performance, its robustness to noise, and its ability to separate stimuli
into meaningful categories (Amsaleg et al., 2017; Ansuini et al., 2019; Feng et al., 2022; I. Fischer
& Alemi, 2020; I. S. Fischer, 2020; Gong, Boddeti, & Jain, 2019; Kingma & Welling, 2013; Lee,
Arnab, Guadarrama, Canny, & Fischer, 2021; Ma et al., 2018; Pope, Zhu, Abdelkader, Goldblum,
& Goldstein, 2021; Recanatesi et al., 2019; Tishby & Zaslavsky, 2015; Zhu et al., 2018). Similar
arguments have been made for the benefits of low-dimensional subspaces in the sensory, motor, and
cognitive systems of the brain (Churchland et al., 2012; Gallego, Perich, Miller, & Solla, 2017; Gao
& Ganguli, 2015; Lehky, Kiani, Esteky, & Tanaka, 2014; Nieh et al., 2021; Op de Beeck, Wagemans,
& Vogels, 2001; Saxena & Cunningham, 2019). However, contrary to this view, there are also
potential benefits of high-dimensional subspaces, including the efficient utilization of a network’s
representational resources and increased expressivity, making for a greater number of potential linear
readouts (Barlow, 1961; Fusi, Miller, & Rigotti, 2016; Laakom, Raitoharju, Iosifidis, & Gabbouj,
2021; Olshausen & Field, 1996; Simoncelli & Olshausen, 2001; Stringer, Pachitariu, Steinmetz,
Carandini, & Harris, 2019).

We wondered whether the dimensionality of representational subspaces might be relevant for under-
standing the relationship between DNNs and visual cortex and, if so, what level of dimensionality
performs best. To answer these questions, we measured the latent dimensionality of DNNs trained
on a variety of supervised and self-supervised tasks using multiple datasets, and we assessed their
accuracy at predicting image-evoked activity patterns in visual cortex for held-out stimuli using both
monkey electrophysiology and human fMRI data. We discovered a powerful relationship between
dimensionality and accuracy: specifically, we found that DNNs with higher latent dimensionality
perform better as computational models of visual cortex. This was true even when perfectly con-
trolling for model architecture and the number of parameters in each network, and it could not be
explained by overfitting because our analyses explicitly tested each network’s ability to generalize
to held-out stimuli. Furthermore, we found that high dimensionality also conferred computational
benefits when learning to classify new categories of stimuli, providing support for its adaptive role
in visual behaviors. Together, these findings suggest that high-performing computational models of
visual cortex are characterized by high-dimensional representational subspaces, allowing them to
efficiently express a greater diversity of linear readouts for natural images.

2 Results

2.1 Dimensionality and alignment in computational brain models

We set out to answer two fundamental questions about the geometry of DNNs in computational
neuroscience. First, is there a relationship between latent dimensionality and DNN performance
that generalizes across the architectural and training factors that have typically been emphasized in
previous work? Second, if latent dimensionality is indeed related to DNN performance, what level
of dimensionality is better? In other words, do DNN models of neural systems primarily benefit
from the robustness and invariance of low-dimensional codes or the expressivity of high-dimensional
codes? To explore the theoretical issues underlying these questions, we first performed simulations
that illustrate how the geometry of latent subspaces influences the ability of representational models
to account for variance in brain activity patterns.

For our simulations, we considered a scenario in which all brain representations and all relevant
computational models are sampled from a large subspace of image representations called the natural
image subspace. Here, we use the term subspace to describe the lower-dimensional subspace spanned
by the major principal components of a system with higher ambient dimensionality (e.g., neurons).
We sampled observations from this natural image subspace and projected these observations onto
the dimensions spanned by two smaller subspaces called the ecological subspace and the model
subspace. Projections onto the ecological subspace simulate image representations in the brain, and
projections onto the model subspace simulate image representations in a computational model. We
analyzed these simulated data using a standard approach in computational neuroscience, known as the
encoding-model approach. Specifically, we mapped model representations to brain representations
using cross-validated linear regression. This analysis yielded an encoding score, which is the
explained variance for held-out data in the cross-validated regression procedure. Computational
models with higher encoding scores have better performance when predicting brain representations
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for held-out data. Further details regarding the theoretical grounding and technical implementation of
our simulations are provided in Appendices B and C.

Using this simulation framework, we can now illustrate how two important factors are related to
the performance of computational brain models: effective dimensionality and alignment pressure.
Effective dimensionality (ED) is a continuous measurement of the number of principal components
needed to explain most of the variance in a dataset, and it is a way of estimating latent dimensionality
in our analyses (see Figure 1a). A model with low ED encodes a relatively small number of dimensions
whose variance is larger than the variance attributed to noise (i.e., whose signal-to-noise ratio (SNR)
is high). In contrast, a model with high ED encodes many dimensions with high SNR. Alignment
pressure (AP) quantifies the probability that the high SNR dimensions from a pair of subspaces will
be aligned, as depicted in Figure 1b. For example, if the AP between a model subspace and the
ecological subspace is high, it means that the model is likely to encode the same dimensions of image
representation as those observed in the brain.

Nearly all representational modeling efforts in computational neuroscience seek to optimize AP. For
example, when researchers construct models through deep learning or by specifying computational
algorithms, the hope is that the resulting model will encode representational dimensions that are
strongly aligned with the representations of a targeted brain system. However, if one allows for linear
transformations when mapping computational models to brain systems—a procedure that may, in fact,
be necessary for evaluating such models (Cao & Yamins, 2021a)—then there are possible scenarios
in which model performance can be primarily governed by ED.

To understand how ED can influence model performance, it is helpful to first consider two extreme
cases. At one extreme, models with an ED of 1 can explain, at best, a single dimension of brain
representation and can only do so when AP is extremely high. Such a model would need to encode a
dimension that was just right to explain variance in a targeted brain system. At the other extreme,
a model with very high ED could potentially explain many dimensions of brain representation and
could do so with weaker demands on AP. This means that models with extremely high ED have a
higher probability of performing well and need only be partially aligned with a targeted brain system.

The relative contributions of ED and AP will depend on their empirical distribution in actual compu-
tational models trained to predict real neural data. To better anticipate the possible outcomes, we
varied our simulation parameters and identified distinct regimes for the relationship between ED, AP,
and the performance of computational brain models (Figure 1c).

In the Alignment regime, the ED of computational models varies significantly less than their AP,
such that AP predominantly drives performance in predicting neural activity. This perspective
implicitly underlies most deep learning approaches for modeling visual cortex, which emphasize
factors affecting the alignment between a model and the brain, such as architecture, layer depth,
learning objective, and training images (e.g. Cadena et al., 2022; Cao & Yamins, 2021a, 2021b;
Conwell et al., 2022; Dwivedi et al., 2021; Khaligh-Razavi & Kriegeskorte, 2014; Konkle & Alvarez,
2022; Kriegeskorte, 2015; Lindsay, 2020; Yamins & DiCarlo, 2016; Yamins et al., 2014; Zhuang et
al., 2021). The alignment-based perspective does not entail any specific predictions about ED and,
thus, suggests the null hypothesis that ED and encoding scores are unrelated (Figure 1c left panel).

Alternatively, models might inhabit a Joint regime where ED and AP are entangled, such that there
exists some optimal dimensionality at which model representations are more likely to be aligned
with the brain. Previous work has proposed that both biological and artificial vision systems gain
computational benefits by representing stimuli in low-dimensional subspaces (Ansuini et al., 2019;
Cohen et al., 2020; Lehky et al., 2014). For instance, it has been hypothesized that dimensionality
reduction along the visual hierarchy confers robustness to incidental image features (Amsaleg et al.,
2017; Feng et al., 2022; I. Fischer & Alemi, 2020; I. S. Fischer, 2020; Lee et al., 2021; Ma et al.,
2018; Recanatesi et al., 2019). This dimensionality-reduction hypothesis implicitly underlies a wide
variety of machine learning methods that attempt to encode complex stimuli using a small set of
highly informative dimensions (e.g., autoencoders) (Kingma & Welling, 2013; Tishby & Zaslavsky,
2015; Zhu et al., 2018). The strongest version of the low-dimensionality perspective predicts that
ED and encoding scores will be negatively correlated or exhibit an inverted U-shape, since models
with relatively low-dimensional subspaces would tend to be better aligned with the representations of
visual cortex (Figure 1c middle panels).
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Figure 1: A theory of latent dimensionality and encoding performance. a. This panel illustrates effective
dimensionality (ED) for a hypothetical population of three neurons. The data points correspond to stimuli, and
the plot axes indicate the firing rates of neurons in response to these stimuli. The leftmost plot shows a scenario
where the firing rates of the neurons are highly correlated and primarily extend along a single direction, resulting
in an ED close to 1. The opposite scenario is shown in the rightmost plot where variance in neural responses is
equally distributed across all directions, resulting in an ED of 3. On the right, we show the eigenspectra (λi) in
each scenario and the equation that describes how ED is computed from these eigenspectra. b. Our simulations
examine two geometric properties: effective dimensionality (ED) and alignment pressure (AP). ED is a summary
statistic that indicates the number of features accurately encoded by an ecological or model subspace (i.e., it is a
way of estimating latent dimensionality). The eigenspectrum of a low-dimensional subspace will decay quickly
and most features will be dominated by noise and, therefore, poorly encoded, whereas the eigenspectrum of a
high-dimensional subspace will have high variance spread along a large number of dimensions. AP determines
the alignment of high-variance dimensions across two subspaces. Pairs of subspaces with low AP are sampled
independently with little bias for their signal dimensions to align, whereas pairs of subspaces with high AP
are more likely to have substantial overlapping variance along their signal dimensions. c. Depending on the
distributions of ED and AP in empirical models, our simulations predict different outcomes for the relationship
between model ED and encoding performance. Caption continues on next page.
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Figure 1 (previous page): In the Alignment regime, model performance is predominantly driven by the
alignment of the meaningful, signal dimensions in the model and the brain, with little to no influence of latent
dimensionality. Most modeling efforts in computational neuroscience implicitly assume that models operate
in the Alignment regime. Another possibility is that models operate in a Joint regime, in which there exists
some optimal dimensionality at which model representations are more likely to be aligned with the brain. This
is the implicit assumption behind efforts to explain brain representations with models that compress latent
dimensionality (such as autoencoders). A third possibility, which has been largely overlooked, is that models
operate in a Dimensionality regime, in which models with higher latent dimensionality are more likely to
contain the same representational dimensions that were sampled in a neuroscience experiment. Note that the
Dimensionality regime occurs when there is large variance in model ED, so we use a logarithmic scale on the
x-axis for this regime.

A final possibility is that of a Dimensionality regime. This can occur if the computational models
under consideration vary significantly in terms of ED and are sufficiently constrained to make the
baseline probability of partially overlapping with visual cortex non-negligible (i.e., they have some
moderate level of AP). In this case, ED will exert a strong, positive influence on expected encoding
performance (Figure 1c right panel). This possibility has largely been overlooked in previous work,
but it has been overlooked for good reason—the idea that a single geometric descriptor could be the
key to identifying high-fidelity models of complex brain systems is surprising and is in contrast with
how researchers typically describe the representational theories underlying their models, which is
often in terms of architectures, learning algorithms, task objectives, and training data.

It is unknown whether ED is a governing factor for convolutional neural network models of visual
cortex, and, if so, whether high-dimensional representations lead to better or worse models. Our
simulations suggest several possible outcomes depending on the empirical distribution of ED and
AP, including a previously unexplored scenario where high latent dimensionality is associated with
better cross-validated models of neural activity. Thus, we next set out to examine this possibility
using state-of-the-art DNNs and recordings of image-evoked responses in visual cortex.

2.2 Dimensionality and encoding performance for neural data

Existing hypotheses for the success of deep learning models of visual cortex include the training
task, training data, architecture, and layer depth (e.g. Cadena et al., 2022; Cao & Yamins, 2021a,
2021b; Conwell et al., 2022; Dwivedi et al., 2021; Khaligh-Razavi & Kriegeskorte, 2014; Konkle &
Alvarez, 2022; Kriegeskorte, 2015; Lindsay, 2020; Yamins & DiCarlo, 2016; Yamins et al., 2014;
Zhuang et al., 2021). We therefore examined a large bank of 536 DNN encoding models that vary
across each of these factors. The training tasks for these DNNs included a variety of objectives,
spanning both supervised (e.g., object classification) and self-supervised (e.g., contrastive learning)
settings. We also included untrained DNNs. The training datasets provided to these DNNs included
ImageNet (Russakovsky et al., 2015) and Taskonomy (Zamir et al., 2018). All DNNs had ResNet50
or ResNet18 architectures (He, Zhang, Ren, & Sun, 2015), and we examined each convolutional layer
from each network. This allowed us to examine the effect of ED while controlling for architecture. We
restricted our analyses to convolutional layers because the architectures of the fully connected layers
substantially differed across models. A detailed description of all models is provided in Appendix E.

We first compared these DNN models with electrophysiological recordings of image-evoked responses
in macaque IT cortex—a high-level region in the ventral visual stream that supports object recognition
(DiCarlo, Zoccolan, & Rust, 2012). These data were collected by Majaj, Hong, Solomon, and DiCarlo
(2015), and the stimuli in this study were images of objects in various poses overlaid on natural
image backgrounds. In total, the dataset consisted of 168 multiunit recordings for 3,200 stimuli. We
quantified the ability of each convolutional layer in each DNN to explain neural responses by fitting
unit-wise linear encoding models using partial least squares regression, which is a standard procedure
in the field for mapping computational models to neural data (Yamins et al., 2014). These encoders
were evaluated through cross-validation, where regression weights are learned from a training set
and then used to predict neural responses to stimuli in a held-out test set (Fig. 2b). We measured
encoding performance by computing the median explained variance between the predicted and actual
neural responses across all recorded units.

We wanted to determine if encoding performance was related to the ED of representational subspaces
in DNNs (Fig. 2). Thus, we empirically estimated the ED of the DNNs by obtaining layer activations
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Figure 2: Method for comparing latent dimensionality with encoding performance for neural data. a. Layer
activations were extracted from a large bank of DNNs trained with different tasks, datasets, and architectures. b.
Using these layer activations as input, we fit linear encoding models to predict neural activity elicited by the same
stimuli in both monkey and human visual cortex. We used cross-validation to evaluate encoding performance on
unseen stimuli. c. To estimate the effective dimensionality of our models, we ran principal component analysis
on layer activations obtained from a large dataset of naturalistic stimuli (specifically, 10,000 images from the
ImageNet validation set). d. These analyses allowed us to examine the empirical relationship between effective
dimensionality and linear encoding performance across a diverse set of DNNs and layers. DNN = deep neural
network, PCA = principal component analysis.

in response to 10,000 natural images from the ImageNet validation set (Russakovsky et al., 2015).
We applied PCA to these layer activations and computed ED using the eigenvalues associated
with the principal components. An important methodological detail is that we applied global max-
pooling to the convolutional feature maps before computing their ED. The reason for this is that we
were primarily interested in the variance of image features, which indicates the diversity of image
properties that are encoded by each model, rather than the variance in those properties across space.
Nevertheless, we show in Appendix F that our main results on the relationship between ED and
encoding performance were observed even when ED was computed on the entire flattened feature
maps without pooling. The ED values that we computed can be interpreted as estimates of the number
of meaningful dimensions of natural image representation that are encoded by each model (i.e., their
latent dimensionality). Note that a central hypothesis underlying dimensionality metrics like ED is
that high-variance dimensions correspond to meaningful axes in representational space while low-
variance dimensions correspond to random or less-useful axes. In this framework, even deterministic
systems, like the DNNs examined here, have a range of meaningfulness versus randomness across
their representational axes. Indeed, previous work provides evidence that DNNs expand variance
along dimensions that are useful for solving their tasks and may even contract variance along random
or less-useful dimensions (Flesch, Juechems, Dumbalska, Saxe, & Summerfield, 2022; Frei, Chatterji,
& Bartlett, 2022; Recanatesi et al., 2019). We provide a more detailed discussion of these points in
Appendices A & J.

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2023. ; https://doi.org/10.1101/2022.07.13.499969doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499969
http://creativecommons.org/licenses/by-nc-nd/4.0/


Our analyses of ED showed several general trends, which are discussed in detail in Appendix H.
Briefly, we found that ED is higher for trained compared with untrained models, that ED tends to
increase with layer depth, and that ED tends to be higher for models trained on a wide variety of
natural images rather than only indoor scenes. These trends in ED suggest that feature expansion
may be an important mechanism of the convolutional layers in DNNs.

Figure 3: Relationship between effective dimensionality and encoding performance. a. The encoding
performance achieved by a model scaled with its effective dimensionality (Pearson r = 0.59, p < 0.0001). Each
point in the plot was obtained from one layer from one DNN, resulting in a total of 536 models. b. Even when
conditioning on a particular DNN layer, controlling for both depth and ambient dimensionality (i.e., number of
neurons), effective dimensionality and encoding performance continued to strongly correlate. The plot shows
the distribution of these correlations (Pearson r) across all unique layers in our analyses. c,d. The above trends
also held within different kinds of model training paradigms (supervised, self-supervised, untrained), further
demonstrating the generality of the relationship between ED and encoding performance.

We next sought to determine how the ED of these DNNs compares with their encoding performance
when modeling cortical responses. Our analysis revealed a clear and striking effect: the encoding
performance of DNN models of visual cortex is strongly and positively correlated with ED (Fig.
3a). This effect could not be explained by differences in ED across DNN layers because it was
also observed when separately examining subsets of models from the same layer (Fig. 3b). Note
that this within-layer analysis also perfectly controls for ambient dimensionality, which is the
number of neurons in a layer, and, thus, shows that this effect is specifically driven by the latent
dimensionality of the representational subspaces. Furthermore, this effect could not be explained
by categorical differences across learning paradigms because it was also observed when separately
examining subsets of models that were either untrained, supervised, or self-supervised (Fig. 3c,d).
Remarkably, this effect is not specific to the encoding model paradigm, as it was also observed
when using representational similarity analysis (Kriegeskorte, Mur, & Bandettini, 2008), which
involved no parameter fitting (see Appendix G). Finally, we also performed these analyses for more
brain regions (V4 and V1) and for a human fMRI dataset collected by Bonner and Epstein (2021).
With the exception of the monkey V1 data, we found a strong, positive relationship between ED
and encoding performance across multiple datasets, thus showing a replication of this effect across
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species, recording modalities, and brain regions (see Appendix F). We speculate that the effect was
not observed in the monkey V1 dataset for two potential reasons. The first is that the stimuli in this
V1 dataset were simple images of synthesized textures, which may not require the complexity of
high ED models Freeman, Ziemba, Heeger, Simoncelli, and Movshon (2013). The second is that
V1 is known to be explained by primitive edge detectors that likely emerge in most DNNs, even
those with low ED. In sum, DNNs that encode a greater diversity of image features tend to yield
higher-fidelity predictions of image representations in visual cortex, with the effects observed most
strongly in higher-level regions.

Together, these findings show that latent dimensionality—a single geometric descriptor—can predict
the likelihood that a DNN will be an accurate encoding model of visual cortex, regardless of other
explanatory factors that have been emphasized in previous work, such as learning objective, training
data, and layer depth.

2.3 Low-ED outliers have high latent dimensionality

In our comparison of latent dimensionality and encoding performance, we observed several notable
outliers that exhibited good encoding performance despite having low ED (upper left corner in Figure
3a). To investigate this further we examined the complete eigenspectra of all models (i.e., the variance
along successive principal components). Intuitively, models with more slowly decaying eigenspectra
use more of their principal components to represent stimuli. In line with this, Figure 4a shows that
the more slowly a model’s eigenspectrum decays, the higher its encoding performance tends to be.
Interestingly, the top-performing models all tend to approach a power-law eigenspectrum decaying
as 1

i , where i is the principal component index. This power-law decay corresponds to a proposed
theoretical limit wherein features are maximally expressive and high-dimensional while still varying
smoothly as a function of changing stimuli Stringer et al. (2019).

When focusing on the low-ED outliers from Figure 3, we can see that their eigenspectra are largely
similar to other models with high encoding performance: beyond the first principal component,
their eigenspectra decay as 1

i . Why, then, do they have low ED? Figure 4b shows that, in general,
models with slowly decaying eigenspectra have high ED, as expected. However, for the outliers, the
disproportionately high variance along the first principal component drastically decreases their ED.
Seen in this light, it is clear that the outlier models from Figure 3 are consistent with the general trend
across all models: they have high latent dimensionality (i.e., slowly-decaying eigenspectra across
all but their first PC) and high encoding performance. Furthermore, in Appendix I we show that the
later principal components in these models are essential to their high encoding performance, which
further suggests that they are in fact high-dimensional and that their low ED can be attributed to the
disproportionately high-variance of their first PC.

While visual inspection of eigenspectra plots can be illuminating, it is difficult to succinctly summarize
the large amount of information that these plots contain. We, therefore, we continue to use ED in our
discussions below in virtue of the concise, high-level description it provides.

2.4 High dimensionality is associated with better generalization to novel categories

Our finding that top-performing encoding models of visual cortex tend to have high dimensionality
was surprising given that previous work has either not considered latent dimensionality (Cadena et
al., 2022; Cao & Yamins, 2021a, 2021b; Conwell et al., 2022; Dwivedi et al., 2021; Khaligh-Razavi
& Kriegeskorte, 2014; Konkle & Alvarez, 2022; Kriegeskorte, 2015; Lindsay, 2020; Yamins &
DiCarlo, 2016; Yamins et al., 2014; Zhuang et al., 2021) or argued for the opposite of what we
discovered: namely that low-dimensional representations better account for biological vision and
exhibit computational benefits in terms of robustness and categorization performance (Ansuini et
al., 2019; Lehky et al., 2014). We wondered whether there might be some important computational
benefits of high-dimensional subspaces that have been largely missed in the previous literature. Recent
theoretical work on the geometry of high-dimensional representations suggests some hypotheses
(Laakom et al., 2021; Sorscher et al., 2021; Stringer et al., 2019). Specifically, it has been proposed
that increased latent dimensionality can improve the learning of novel categories, allowing a system
to efficiently generalize to new categories using fewer examples (Sorscher et al., 2021). Efficient
learning is critical for visual systems that need to operate in a diversity of settings with stimulus
categories that cannot be fully known a priori, and it is something that humans and other animals
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Figure 4: Relationship between model eigenspectra and encoding performance. Each curve shows the
eigenspectrum of one layer from one DNN. The x-axis is the index of principal components, sorted in decreasing
order of variance, and the y-axis is the variance along each principal component (scaled by a constant in order to
align all curves for comparison). Inset plots show a subset of models that appear as outliers in Fig. 3 due to
their high encoding performance despite low ED. The black line is a reference for a power law function that
decays as 1

i
, where i is the principal component index. This power law of 1

i
was hypothesized in Stringer et al.

(2019) to be a theoretical upper limit on the latent dimensionality of smooth representations. a. Eigenspectra are
color-coded as a function of the corresponding encoding performance each model achieved. Models with more
slowly decaying eigenspectra (i.e., higher latent dimensionality) can reliably better predict neural activity, with
top-performing models approaching the theoretical upper bound on dimensionality proposed in Stringer et al.
(2019). b. Eigenspectra are color-coded as a function of their corresponding ED. Since ED is a summary statistic
of an eigenspectrum meant to quantify its rate of decay, we expect models with slowly decaying eigenspectra to
have higher ED. While this is generally true, some slowly decaying eigenspectra have low ED (blue curves that
are near the black line). Specifically, the outliers from the upper left corner of Fig. 3a have low ED despite despite
having a slow decay rate across most of the spectrum (inset). This can be explained by the disproportionately
high variance along the first principal component of the outlier models, which leads to a low ED score.

are remarkably good at (Behl-Chadha, 1996; Carey & Bartlett, 1978; Quinn, Eimas, & Rosenkrantz,
1993; Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002).

Thus, we examined whether the dimensionality of our DNNs was related to their generalization
performance on newly learned categories. We employed a standard transfer learning paradigm in
which we fixed the representations of our DNN models and tested whether they could generalize
to a new target task using only a simple downstream classifier (depicted in Figure 5a). Following
the approach in Sorscher et al. (2021), we trained a classifier on top of each model’s representations
using a simple prototype learning rule in which stimuli were predicted to belong to the nearest class
centroid. We used 50 object categories from the ImageNet-21k dataset (Ridnik, Baruch, Noy, &
Zelnik-Manor, 2021) and trained on 50 images per category, evaluating on another 50 held-out images
from the same categories. Importantly, none of the ImageNet-21k classes appeared in any of the
datasets our models were pre-trained on, allowing us to assess a relationship between the latent
dimensionality of a representation and its ability to classify novel categories. The results, illustrated in
Figure 5b, show a striking benefit of high-dimensionality for this task. Even though high-dimensional
representations have traditionally been thought to be undesirable for object classification (Chung et
al., 2018; Feng et al., 2022; I. Fischer & Alemi, 2020; I. S. Fischer, 2020; Lee et al., 2021; Recanatesi
et al., 2019), they proved to be extremely effective in separating novel categories. This suggests
that while low-dimensional representations may be optimal for performing specialized tasks (such
as separating the fixed set of categories in the standard ImageNet training set), high-dimensional
representations may be more flexible and better suited to support open-ended tasks (Brown et al.,
2020; Flesch et al., 2022; Fusi et al., 2016; Higgins, Racanière, & Rezende, 2022; Sorscher et al.,
2021).
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Figure 5: The computational benefit of high effective dimensionality in generalization to new object
categories. We examined the hypothesis that high-dimensional representations are better at learning to classify
new object categories (Sorscher et al., 2021). a. We tested this theory using a transfer learning paradigm, where
our pre-trained model representations were fixed and used to classify novel categories through a prototype
learning rule. b. Our high-dimensional models achieved substantially better accuracy on this transfer task, as
measured using the mean reciprocal rank (MRR).

3 High dimensionality concentrates projection distances along linear readout
dimensions

How do high-dimensional models achieve better classification performance for novel categories?
If we consider an idealized scenario in which categories are represented by spherical or elliptical
subspaces, it is a geometric fact that projections of these subspaces onto linear readout dimensions
will concentrate more around their subspace centroids as dimensionality increases (assuming that the
radius is held constant) (Gorban, Makarov, & Tyukin, 2020; Gorban & Tyukin, 2018; Sorscher et al.,
2021). The reason for this is that in high dimensions, most of the subspace’s mass is concentrated
along its equator, orthogonal to the linear readout dimension. This blessing of dimensionality is
typically referred to as the concentration of measure phenomenon (Gorban & Tyukin, 2018), and we
depict it for the case of idealized spherical subspace in Figure 6a,b.

Although we do not know the geometric shapes of category subspaces in DNNs or whether they
can be approximated by elliptical subspaces, we can, nonetheless, test whether there is empirical
evidence that a similar concentration phenomenon occurs in our models. To answer this question,
we computed the average sample projection distance between every pair of our 50 ImageNet-21k
classes, normalized by an estimate of the subspace radius for each class (see Section 5, Materials and
Methods). This yielded a matrix of all pairwise projection distances for each model. Figure 6c shows
that, as predicted, the mean projection distance systematically decreases as model ED increases. This
means that sample projection distances concentrate closer to class centroids as model dimensionality
increases, allowing DNNs with higher ED to discriminate novel categories more effectively. This
concentration effect exemplifies an underappreciated computational advantage conferred by the
geometric properties of high-dimensional subspaces.

4 Discussion

By computing geometric descriptors of DNNs and performing large-scale model comparisons, we
discovered a geometric phenomenon that has been overlooked in previous work: DNN models
of visual cortex benefit from high-dimensional latent representations. This finding runs counter
to the view that both DNNs and neural systems benefit by compressing representations down to
low-dimensional subspaces (Amsaleg et al., 2017; Ansuini et al., 2019; Churchland et al., 2012; Feng
et al., 2022; I. Fischer & Alemi, 2020; I. S. Fischer, 2020; Gallego et al., 2017; Gao & Ganguli,
2015; Gao et al., 2017; Gong et al., 2019; Kingma & Welling, 2013; Lee et al., 2021; Lehky et al.,
2014; Ma et al., 2018; Nieh et al., 2021; Op de Beeck et al., 2001; Pope et al., 2021; Recanatesi et
al., 2019; Saxena & Cunningham, 2019; Tishby & Zaslavsky, 2015; Zhu et al., 2018). Furthermore,
our findings suggest that the design factors that have been a major focus of previous work, such as
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Figure 6: High-dimensional models concentrate sample projections close to their class centroids. a. For
binary classification of samples distributed within class subspaces, the projection distance of a sample refers to
its distance to the true class centroid along the classification readout direction, normalized by the subspace radius.
b. For idealized spherical subspace, the distribution of projection distances concentrates more tightly around 0
as the dimensionality Dsphere increases. c. Empirically, the mean projection distances of our models decreased
as effective dimensionality increased, matching what is predicted by theory. Note that because the magnitude of
projections partially depend on the model architecture and layer depth (denoted by different colors), projection
distances form distinct bands in the plot. However, when looking only at models with the same architecture and
layer (i.e., looking at points sharing the same color), projection distances reliably decrease with ED. d. Full
projection distance matrices, computed along classification readout directions between all object category pairs.
Matrices are shown for three different models of increasing effective dimensionality.

architecture and training, are of secondary importance and are best understood in the context of how
they influence representational dimensionality. Thus, geometric descriptors offer a powerful level of
explanation that can predict the encoding performance of DNN models of visual cortex and abstract
over the details of their architectures, training data, and learning objectives.

Our results speak to a fundamental question about the dimensionality of neural population codes.
Empirical estimates have consistently shown that the latent dimensionality of both DNNs and neural
systems is orders of magnitude lower than their ambient dimensionality (i.e., the number of neurons
they contain) (Ansuini et al., 2019; Churchland et al., 2012; Cohen et al., 2020; Feng et al., 2022;
Gallego et al., 2018; Gao & Ganguli, 2015; Gao et al., 2017; Gong et al., 2019; Lehky et al., 2014;
Nieh et al., 2021; Op de Beeck et al., 2001). Furthermore, there are compelling theoretical arguments
for the computational benefits of low-dimensional codes, which may promote robustness to noise
(Amsaleg et al., 2017; I. Fischer & Alemi, 2020; Lee et al., 2021; Ma et al., 2018; Recanatesi et
al., 2019; Zhu et al., 2018), abstraction and invariance (I. S. Fischer, 2020; Gallego et al., 2017,
2018; Kingma & Welling, 2013; Tishby & Zaslavsky, 2015), compactness (Cohen et al., 2020), and
learnability for downstream readouts (Abu-Mostafa, 2012, i.e., avoiding the curse of dimensionality).
It is, thus, no surprise that many neuroscientists and machine learning researchers have argued that
a signature of optimal population codes is the degree to which they reduce latent dimensionality,
focusing on the minimum components needed to carry out their functions. However, there are
competing theoretical arguments for the benefits of high-dimensional population codes. High-
dimensional codes are more efficient (Barlow, 1961; Olshausen & Field, 1996), they allow for the
expression of a wider variety of downstream readouts (Fusi et al., 2016), and they may have counter-
intuitive benefits for learning new categories due to concentration phenomena in high dimensions
(Sorscher et al., 2021). Furthermore, recent evidence from large-scale data in mouse visual cortex
suggests that cortical population codes are higher dimensional than previously reported and may,
in fact, approach a theoretical limit, above which the code would no longer be smooth (Stringer et

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2023. ; https://doi.org/10.1101/2022.07.13.499969doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499969
http://creativecommons.org/licenses/by-nc-nd/4.0/


al., 2019). Our findings provide strong evidence for the benefits of high-dimensional population
codes. Specifically, we demonstrate two major benefits that are directly relevant to computational
neuroscientists. First, high-dimensional DNNs provide more accurate cross-validated predictions of
cortical image representations. In fact, when looking at the eigenspectra of our top-performing models,
they appear to approach the upper limit on dimensionality that was proposed in Stringer et al. (2019).
Second, high-dimensional DNNs are more effective at learning to classify new object categories. We
suggest that while low-dimensional codes may be optimal for solving specific, constrained tasks on a
limited set of categories, high-dimensional codes may function as general-purpose representations,
allowing them to better support an open-ended set of downstream tasks and stimuli.

Our findings also have implications for how neuroscientists interpret the relationship between DNNs
and neural representations. When developing theories to explain why some DNNs are better than
others as computational brain models, it is common for researchers to place a strong emphasis on
the role of design factors, such as architecture, training data, and learning objective (Cadena et al.,
2022; Cao & Yamins, 2021a, 2021b; Conwell et al., 2022; Dwivedi et al., 2021; Khaligh-Razavi &
Kriegeskorte, 2014; Konkle & Alvarez, 2022; Kriegeskorte, 2015; Lindsay, 2020; Yamins & DiCarlo,
2016; Yamins et al., 2014; Zhuang et al., 2021). However, our findings suggest that these design
factors may be of secondary importance, with geometric factors best explaining the relationship
between DNNs and neural representations. Indeed, we found that a variety of design configurations,
spanning different architectures, layers, training data, and learning objectives, are sufficient to yield
high-performing encoding models of visual cortex. However, when analyzing the geometry of
these networks, we found that a common thread running through the best-performing models was
their strong tendency to encode high-dimensional subspaces. It is worth emphasizing that we were
only able to observe this phenomenon by analyzing the geometry of latent representations and
by performing large-scale comparisons across diverse DNNs. In other words, the most important
factors for explaining model performance were not evident in the surface properties of an single
model but rather in their latent statistics. This findings is consistent with other recent work showing
that widely varying learning objectives and architectures—including transformer architectures from
computational linguistics—are sufficient to produce state-of-the-art encoding performance in visual
cortex, which suggests that these design factors are not the primary explanation for the success of
DNNs in visual neuroscience (Conwell et al., 2022; Konkle & Alvarez, 2022; Zhuang et al., 2021).
Our findings are also consistent with recent work that calls into question the apparent hierarchical
correspondence between DNNs and visual cortex (Sexton & Love, 2021). Indeed, we found that
the relationship between latent dimensionality and encoding performance generalized across layer
depth, meaning that even within a single layer of a DNN hierarchy, encoding performance can
widely vary as a function of latent dimensionality. Thus, our work suggests that the geometry of
latent representations offers a promising approach for discovering unified explanations of diverse
computational brain models and for abstracting over the details of their architectures and training.
Importantly, we predict that accurate computational models of the brain may necessarily need to have
high-dimensional latent representations.

Our results raise several important questions for future work. First, while our findings show that
computational models of visual cortex benefit from high latent dimensionality, they cannot speak to
the dimensionality of visual cortex itself. However, our findings suggest a promising model-guided
approach for tackling this issue: one could use high-dimensional DNNs to create stimulus sets that
vary along as many orthogonal dimensions as possible. This sets up a critical test of whether the
latent dimensionality of visual cortex scales up to the dimensionality of the model or, instead, hits
a lower-dimensional ceiling. Second, we found that one way in which DNNs can achieve both
strong encoding performance and strong image classification performance is by increasing the latent
dimensionality of their representations, but this finding diverges from previous work that has linked
better classification performance to dimensionality reduction in DNN representations (Ansuini et
al., 2019; Recanatesi et al., 2019). We believe that this discrepancy arises due to a fundamental
problem with classification metrics: DNNs with the best classification scores are optimal for a
single task on a small and closed set of categories (e.g., ImageNet classes), but these seemingly
optimal DNNs may be far less useful for representing new categories or for representing meaningful
variance within a category (e.g., object pose). This problem with classification metrics may help to
explain why the strong correlation between DNN classification performance and cortical encoding
performance (Yamins et al., 2014; Zhuang et al., 2021) appears to break down at the highest levels of
classification accuracy (Schrimpf et al., 2018, 2020) (see an extended discussion of these issues in
Appendix A). Finally, an important open question is whether our results are specific to convolutional
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neural networks and visual cortex or whether similar results could be obtained for other classes
of computational models (e.g., Transformers, generative models) and other sensory and cognitive
domains (e.g., audition, language).

The computational problems of real-world vision may demand high-dimensional representations that
sacrifice the competing benefits of robust, low-dimensional codes. Indeed, our findings reveal striking
benefits for high dimensionality: both cortical encoding performance and novel category learning
scale with the latent dimensionality of a network’s natural image representations. We predict that
these benefits extend further and that high-dimensional representations may be essential for handling
the open-ended set of tasks that emerge over the course of an agent’s lifetime (Brown et al., 2020;
Flesch et al., 2022; Fusi et al., 2016; Higgins et al., 2022; Sorscher et al., 2021).

5 Materials and Methods

Simulations The theory and rationale behind our simulations is explained in Appendix B. Precise
implementation details are provided in Appendix C.

Deep neural networks We used 40 different pre-trained DNNs, each with either a ResNet18 or
a ResNet50 architecture. Training tasks included supervised (e.g., object classification) and self-
supervised (e.g., colorization) settings. We also used untrained models with randomly initialized
weights. The training datasets of these DNNs included ImageNet (Russakovsky et al., 2015) and
Taskonomy (Zamir et al., 2018). Further details describing each model are provided in Appendix E.
Convolutional layers in ResNets are arranged into 4 successive groups, each with a certain number
of repeated computational units called blocks. We extracted activations from the outputs of each of
these computational blocks, of which there are 8 in ResNet18 and 16 in ResNet50. Across our 40
DNNs, this resulted in a total of 536 convolutional layers that we used for all further analyses.

Neural datasets Neural responses were obtained from a publicly available dataset collected by
Majaj et al. (2015). Two fixating macaques were implanted with two arrays of electrodes in IT—a
visual cortical region in later stages of the ventral-temporal stream—resulting in a total of 168
multiunit recordings. Stimuli consisted of artificially-generated gray-scale images composed from 64
cropped objects belonging to 8 categories, which were pasted atop natural scenes at various locations,
orientations, and scales. In total, the dataset held responses to 3,200 unique stimuli.

In Appendix F, we also show results on additional datasets. The V4 electrophysiology dataset was
collected in the same study as for IT (Majaj et al., 2015). The V1 electrophysiology dataset was
collected by Freeman et al. (2013), and consisted of responses to 9000 simple synthetic texture
stimuli. In addition to our electrophysiology datasets, we also used a human fMRI dataset collected
by Bonner and Epstein (2021). The stimulus set consisted of 810 objects from 81 different categories
(10 object tokens per category). fMRI responses were measured while 4 subjects viewed these
objects, shown alone on meaningless textured backgrounds, and performed a simple perceptual task
of responding by button press whenever they saw a “warped” object. Warped objects were created
through diffeomorphic warping of object stimuli (Stojanoski & Cusack, 2014). The methods for
identifying regions of interest in these data are detailed in Bonner and Epstein (2021). The localizer
scans for these data did not contain body images, and, thus, a contrast of faces-vs.-objects was used
to select voxels from the parcel for the extrastriate body area (EBA).

Predicting neural responses We obtained activations at a particular layer of a DNN to the same
stimuli that were used for obtaining neural responses. The output for each stimulus was a three-
dimensional feature map of activations with shape channels× height× width, which we flattened
into a vector. For our monkey electrophysiology dataset, we fit a linear encoding model to predict
actual neural responses from the DNN layer features through partial-least-squares regression with 25
latent components, as in Yamins et al. (2014) and Schrimpf et al. (2018). To measure the performance
of these encoding models, we computed the Pearson correlation between the predicted and actual
neural responses on held-out data using 10-fold cross validation, and averaged these correlations
across folds. We aggregated the per-neuron correlations into a single value by taking the median,
which we then normalized by the median noise ceiling (split-half reliability) across all neurons. This
normalization was done by taking the squared quotient r2 = (r/rceil)

2, converting our final encoding
score into a coefficient of explained variance relative to the noise ceiling. The entire process described

13

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 11, 2023. ; https://doi.org/10.1101/2022.07.13.499969doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499969
http://creativecommons.org/licenses/by-nc-nd/4.0/


above for fitting linear encoding models was implemented with the Brain-Score package (Schrimpf
et al., 2018, 2020) using default arguments for the Majaj et al. (2015) public benchmark.

The process for fitting voxel-wise encoding models of human fMRI data (presented in Appendix F)
differed slightly from above. For each of our 4 subjects, we used 9-fold cross-validated ordinary least
squares regression. Encoding performance was measured by taking the mean Pearson correlation
between predicted and held-out voxel responses across folds, and then aggregated by taking the
median across voxels. Finally, this score was averaged across subjects. No noise-ceiling normalization
was used.

Before fitting these linear encoding models, we also applied PCA to the input features in order to
keep the number of parameters in the encoders constant. For each model layer, principal components
were estimated using 1000 images from the ImageNet validation set. Layer activations to stimuli
from the neural dataset were then projected along 1000 components and finally used as regressors
when fitting linear encoding models. We emphasize that this dimensionality reduction procedure was
done purely for computational reasons, as using fewer regressors reduced the computer memory and
time required to fit our encoding models. Our findings are not sensitive to this particular decision, as
we obtained similar results by applying max-pooling instead of PCA to our DNN feature maps as an
alternative method for reducing the number of regressors.

Estimating latent dimensionality We used a simple linear metric called effective dimensionality
(ED) (Giudice, 2021) to estimate the latent dimensionality of our model representations. ED is given
by a formula that quantifies roughly how many principal components contribute to the total variance
of a representation. We, thus, ran PCA on the activations of a given model layer in response to a
large number of natural images (10,000 from the ImageNet validation set) in an effort to accurately
estimate its principal components and the variance they explain. An important methodological detail
is that we applied global max-pooling to the convolutional feature maps before computing their ED.
The reason for this is that we were primarily interested in the variance of image features, which
indicates the diversity of image properties that are encoded by each model, rather than the variance in
those properties across space.

Classifying novel object categories To see how model ED affected generalization to the task of
classifying novel object categories, we used a transfer learning paradigm following Sorscher et al.
(2021). For a given model layer, we obtained activations to images from M = 50 different categories
each with Ntrain = 50 samples. We then computed M category prototypes by taking the average
activation pattern within each category. These prototypes were used to classify Ntest = 50 novel
stimuli from each category according to a simple rule, in which stimuli were predicted to belong to
the nearest prototype as measured by Euclidean distance. This process was repeated for 10 iterations
of Monte Carlo cross-validation, after which we computed the average test accuracy. Importantly,
none of these object categories or their stimuli appeared in any of the models’ pre-training datasets.
Stimuli were taken from the ImageNet-21k dataset (Ridnik et al., 2021), and our object categories
were a subset of those used in Sorscher et al. (2021).

Projection distances along readout dimensions Appendix 3 investigated how points sampled
from high-dimensional object subspaces project along linear readout vectors. We sampled 50 random
images from the same 50 ImageNet-21k object categories described above. For every pair of object
categories i and j, we created a classification readout vector wi,j by taking the difference between
category centroids normalized to unit length. This is the readout vector along which samples would be
projected using a prototype learning classification rule. We then projected each sample k in category
i along the readout vector, yielding a scalar projection distance to the category centroid pki,j . We took
the mean of all 50 sample projections and normalized them by the mean standard deviation along
all category subspace dimensions in order to see how closely samples projected to their category
centroids relative to the subspace radius. We refer to the resulting values as the mean normalized
projection distances p̄ij . For i, j = 1, .., 50 object categories, this procedure yields a 50× 50 matrix
P̄ for each model. Figure 6d shows examples of these matrices for models of increasing ED. The
means of these matrices as a function of ED are shown for all models in Figure 6c.

Data availability The neural electrophysiology datasets are publicly available and was collected in
prior work by Majaj et al. (2015) and Freeman et al. (2013). It is imported automatically using the
BrainScore version 0.2 Python library through code in our publicly available project repository. The
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fMRI data was collected in prior work by Bonner and Epstein (2021) and is publicly available here:
https://osf.io/ug5zd/.

Code availability All code used for this project has been made publicly available on GitHub
https://github.com/EricElmoznino/encoder_dimensionality.

Acknowledgments and Disclosure of Funding

The brain icon in Fig. 2 was obtained from Smith Breault (2020).

References
Abu-Mostafa, Y. (2012, April). Lecture notes from machine learning course: Learning from data

(lecture 7). Caltech. Retrieved from https://home.work.caltech.edu/lectures.html
Amsaleg, L., Bailey, J., Barbe, D., Erfani, S., Houle, M. E., Nguyen, V., & Radovanović, M.
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Appendix A Anticipated questions

In this section, we address some questions that readers are likely to have regarding our results and conclusions.
While certain parts of our responses are more speculative in nature and have yet to be tested empirically, we
believe that they nevertheless provide useful insights.

Question: Isn’t it trivially true that models with higher latent dimensionality will exhibit better encoding
performance?

It is important to emphasize that the relationship between ED and encoding performance cannot be explained as
a trivial statistical consequence of models with high ED. First, all models were evaluated using cross-validation,
which means that the only way for a model to perform well is by explaining meaningful variance that generalizes
to held-out data. If models with high ED were simply overfit to the training data, their performance on the
held-out test data would be poor. Second, our ED metric characterizes the distribution of variance in the
eigenspectrum, but it does not directly indicate the number of available dimensions in a system, nor does it
change the number of parameters in the model. In fact, all models examined here were full rank, meaning that
their image representations spanned the maximum number of latent dimensions. Thus, in our analyses, ED
alone has no direct relationship to the maximum number of latent dimensions that could potentially be used in a
regression. Finally, the data that we modeled come from a high-level visual region (IT) whose image-evoked
responses have long been a challenging target for computational modelers. In fact, decades of efforts to model the
representations in this brain region directly led to the advent of deep learning approaches for the computational
neuroscience of vision (Kriegeskorte, 2015; Yamins et al., 2014). If any model with high ED could trivially
explain the representations of IT, then neuroscientists would have no need for deep neural networks. One could,
instead, solve the challenging problem of modeling IT by running linear regression on RGB pixel values and
adding polynomials or interaction terms until ED was high enough to account for the variance in neural responses.
The reason that such an approach would not work is that the space of all possible image representations is infinite:
there is an unlimited variety of arbitrary computations that could be used to add dimensions to a model. Models
that achieve high ED through arbitrary computations would have a negligible probability of overlapping with the
representations of visual cortex. We, thus, suspect that the use of performance-optimized DNN architectures
is critical for constraining the computations of encoding models and increasing their overlap with cortical
representations.

Question: Why should we care about latent dimensionality if ImageNet classification performance also
correlates with encoding performance?

Prior work has found that a model’s object classification accuracy (e.g., on ImageNet) strongly correlates with
its encoding performance for certain brain regions (Yamins et al., 2014; Zhuang et al., 2021). Could we simply
focus on classification accuracy, or is latent dimensionality theoretically important in its own right?

While object classification accuracy seems to account for the encoding performance of current models, it is
worth asking whether or not it can be a viable theory going forward. To say that it is a complete explanation
is to say that we believe the correlation between classification accuracy and encoding performance will hold
indefinitely, across the space of all current and future models (i.e., a model that performs better on object
classification will always obtain higher encoding performance). This is unlikely to be the case. Optimal object
classification requires that a model be invariant to features unrelated to object identity, such as orientation and
position, which can only contribute to noise in the classifier (Recanatesi et al., 2019). However, we know that
the brain represents orientation, position, and a host of other features unrelated to object identity. Therefore, we
know that the object classification theory of encoding performance breaks down in some regime, and that the
true dimensionality of visual cortex must be higher than what ideal object classification models would predict.
Indeed, initial results suggest that the relationship between object classification and encoding performance does
indeed break down past a certain ImageNet classification accuracy (Schrimpf et al., 2018, 2020). A theory based
on latent dimensionality (and alignment pressure) has the potential to explain the encoding performance of both
current and future models on more rich neural datasets, and it may help us to understand why the relationship
between encoding performance and classification accuracy breaks down at the highest levels of classification
performance.

An interesting question emanating from this discussion is whether the observed relationship between classification
accuracy and encoding performance might be overly optimistic due to the limited space of DNNs that are available
for computational neuroscientists to examine. Most of the DNNs in visual neuroscience are trained on ImageNet
or similar image databases, and we do not have DNNs that can perform open-ended tasks in complex, real-world
environments. If we did have DNNs that handled more complex and naturalistic visual behaviors, we postulate
that they would surpass the encoding performance of our best object-classification models (and also have higher
dimensionality). With the current space of state-of-the-art DNNs being dominated by (a) supervised object
classification and (b) self-supervised objectives that learn invariances tailored to object classification, we are
bound to observe the current correlation between object classification performance and encoding performance
because object recognition is undoubtedly one important problem that biological vision solves—but, importantly,
it is one of many complex problems solved by the representations of visual cortex.
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Question: Does effective dimensionality really represent the number of accurately encoded visual features?

Essential to our theory is the assumption that the variance of a representation along a particular dimension is
proportional to the meaningfulness of the feature it encodes. In such cases, it is valid to say that ED roughly
quantifies the number of encoded visual features. This interpretation is central to popular dimensionality
reduction techniques, such as PCA, and it has good theoretical support given that high-variance dimensions are
typically more robust and would, thus, be best-suited for carrying the signal in a population code. Importantly, in
the DNN literature, recent findings have shown that neural networks expand variance along dimensions that are
useful for solving their tasks and contract variance along noise dimensions that are left over from their random
initialization (Flesch et al., 2022; Frei et al., 2022; Recanatesi et al., 2019). There is, thus, a straightforward
relationship between the number of meaningful latent dimensions in a neural network and the shape of the
principal component variance spectrum.

Nonetheless, there is no guarantee that high-variance dimensions correspond to meaningful signal and that
low-variance dimensions correspond to random features or noise. Furthermore, ED is only an imperfect summary
statistic of the rate of decay of the eigenspectrum, and does not directly quantify the number of meaningful
features features. An interesting direction for future work would be the development of dimensionality metrics
that try to explicitly differentiate between meaningful and random dimensions in DNNs, as can be done for
neural data when using repeated stimulus presentations (Stringer et al., 2019).

Appendix B Theory of latent dimensionality and encoding performance

While the space of all possible visual stimuli is vast and high-dimensional, we can define many lower-dimensional
subspaces within it, referred to as subspaces B.1a. For instance, the natural image subspace consists solely
of images taken from the physical world, and typical neuroscience experiments consist of tightly controlled
stimulus sets spanning a data subspace. In a similar way, we can formalize visual representations and the
features they encode using the framework of subspaces embedded in a higher-dimensional visual space.

Figure B.1: A theory of latent dimensionality and encoding performance. a. Our theory models the
distribution of natural images, the distribution of experimental stimuli, and the features encoded by brains
and models as lower-dimensional subspaces embedded in a high-dimensional ambient space (denoted here
using ellipses of varying eccentricity). b. For ecological and model subspaces, the variance along a dimension
represents the accuracy with which it is encoded. For example, visual cortex might accurately encode differences
in animacy (high variance), but only coarsely encode differences in color saturation (low variance).

For instance, if we were to show a human subject a set of object images that varied along the dimension of
animacy (e.g., ranging from inanimate rocks to cats) we would expect them to clearly and accurately notice the
differences between these images (see Figure B.1b). On the other hand, if we were to vary a more perceptually
subtle property, such as color saturation, the differences might appear less pronounced and we could say that
the visual system is less accurate along this dimension. At the extreme, we could generate images by sampling
from a distribution of white noise, in which case differences would be almost imperceptible, despite varying
significantly in the input space.

What these examples show is that the human brain does not accurately encode the vast space of all possible
visual dimensions, but only a lower-dimensional subspace of these dimensions that are ecologically relevant
for survival and behavior in the real world (i.e., dimensions along an ecological subspace). In the same way,
any computational model of perception, such as a DNN, will preferentially encode different visual dimensions
more or less accurately and define its own representational model subspace. We refer to dimensions along these
representational subspaces as latent, and we refer to the dimensions of the larger visual space in which they are
embedded as ambient.
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With these concepts in mind, we can now begin to think about the conditions under which a model can achieve
high encoding performance when predicting a given neural dataset. Intuitively, this can only happen when the
stimuli span dimensions that are accurately encoded by both the model and the brain. In other words, the latent
dimensions of the ecological subspace must overlap with latent dimensions of the model subspace. A key factor
driving our simulated and empirical results is that the probability of these overlaps increases substantially as the
latent dimensionality of the model subspace grows.

Appendix C Implementation of simulations

Our process is summarized in Figure C.1, and consists of 3 steps. First, given our simulation parameters, we
sampled subspace geometries within a high-dimensional ambient space. Next, we generated a set of experimental
stimuli from the data subspace and projected them onto both the ecological and model subspaces, yielding a set
of neural and model activations. Finally, we fit a linear encoding model to measure how well neural responses
to the stimuli could be predicted from the corresponding model activations. By repeating this process across a
range of simulation parameters (e.g., different model effective dimensionalities), we could better understand
their influences on encoding performance. We describe this process in more detail below.

Figure C.1: Simulating our theory of latent dimensionality and encoding performance. 1. Our Gaussian
subspaces were sampled to have a desired effective dimensionality. The ecological, model, and data subspaces
were also sampled with a given alignment pressure to a shared space: the natural image subspace. 2. Experimental
data were sampled from the distribution specified by the experimental data subspace and then projected onto the
ecological and model subspaces, which stretch or compress the data according to their variance along different
dimensions. Isotropic noise was then added so that high-variance subspace dimensions had higher SNR and more
accurately encoded their corresponding image features. 3. A linear encoding model was trained using ordinary
least squares (OLS) regression to predict neural responses from model activations. The reported encoding score
is the percentage of explained variance normalized to the noise-ceiling of the neural data.

subspace geometry In essence, our simulations consider four subspaces and relations between them: the
natural image subspace, the data subspace from which experimental stimuli are sampled, the ecological subspace
governing neural representations, and the model subspace. For simplicity, we parameterized all subspaces as
multivariate Gaussian distributions embedded in a common ambient space of all possible visual dimensions.
Using multivariate Gaussians also provided a simple method for modulating and measuring the subspace’s latent
dimensionality, which we describe later in this section.

Variance along latent dimensions In our simulations, the amount of variance in a subspace along a given
dimension has important significance. For the natural image and data subspaces, this variance corresponds to
changes in a particular image feature (e.g., animacy). For the ecological and model representational subspaces,
however, the variance along a dimension represents how accurately that dimension is encoded by the brain or a
particular model. For example, consider Figure B.1b. Here, the human brain accurately and precisely represents
differences in object animacy (high-variance dimension) but is relatively imprecise in how it represents fine
changes in color saturation (low-variance dimension). One way to re-frame this idea is to think of the variance
along a given dimension as representing its signal-to-noise-ratio (SNR).
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Sampling subspaces Within an image space of ambient dimensionality Da, we wished to generate mul-
tivariate Gaussian subspaces with desired effective dimensionalities and mutual alignment pressures (Figure
C.1 step 1). First, we sampled a natural image subspace MNI with effective dimensionality EDNI . The
orthonormal eigenvectors for this subspace were sampled uniformly within the ambient dimensional space,
whereas the eigenvalues were selected deterministically to achieve EDNI . Although there are many ways to
design eigenspectra with a particular ED, we opted to parameterize the decay rate of the eigenvalues as a power
law λi =

1
iα

and solved for the α that yielded our desired ED.

We next sampled the ecological subspace MEco, model subspace MModel, and data subspace MData. To
select their eigenvalues, we followed the same power law parameterization as for the natural image subspace
to achieve effective dimensionalities EDEco, EDModel, and EDData. Their eigenvectors, however, were
all sampled in a way that depended on their respective alignment pressures to the natural image subspace
APEco←NI , APModel←NI , and APData←NI . This aspect of the sampling procedure is described in detail
below.

Formulation of AP In our simulations, AP is a scalar value that ranges between -1 and 1. An AP = 0
corresponds to no alignment pressure, in which case a basis of eigenvectors is sampled uniformly in the ambient
space. When AP > 0, eigenvectors are sampled such that dimensions with larger eigenvalues capture more of
the total variance in the natural image subspace (i.e., the high-variance dimensions of both subspaces are more
likely to be aligned). On the other hand, when AP < 0, eigenvectors are sampled to preferentially align with
low-variance dimensions of the natural image subspace.

Specifically, we needed to sample orthogonal vectors to form the eigenbasis of a new Gaussian subspace Ma,
where those vectors preferentially spanned regions of high-variance in a reference Gaussian subspace Mb,
in a way that depended on APa←b. We achieved this by first defining a multivariate Gaussian distribution
Na←b(0,Σa←b). The eigenvectors of Σa←b were equal to those of Mb, while the eigenvalues of Σa←b were
generated as follows:

xi =

{
i−1

Da−1
, if APa←b ∈ [0, 1]

1−i
Da−1

, if APa←b ∈ [−1, 0)
(1)

λi = e−sAPa←bxi (2)

where i is the index of the eigenvalue starting from 1, Da is the ambient dimensionality of the subspaces, and s
is a scaling factor which we set to 20. Essentially, this drew eigenvalues from Da equally spaced points on an
exponential function in the domain of [0, 1] that is either decaying (in the case of positive AP) or growing (in the
case of negative AP).

Next, we iteratively (1) sampled a vector vi ∼ N (i)
a←b, (2) normalized vi to unit length, and (3) projected

N (i)
a←b onto the subspace orthogonal to vi, giving N (i+1)

a←b . This process was repeated Da times. We then used
the normalized vi’s as the eigenvectors of Ma. First, note that the vi’s collectively define an orthonormal
basis because each is sampled from a subspace orthogonal to v1:i−1. Second, note that for positive APa←b

early vi’s are more likely to be oriented towards regions of high variance in Mb, where Na←b has most of its
probability mass. For negative APa←b, though, the probability mass of Na←b is concentrated along low-variance
dimensions in Mb, which results in early vi’s that tend to point in low-variance dimensions of Mb as well. For
an APa←b = 0, the covariance matrix of Na←b is identity, and the vi’s thus do not depend on the eigenvectors
of Mb in any way. Collectively, these properties satisfied our desiderata regarding the function of alignment
pressure.

Sampling experimental data Having generated subspaces that specified the distribution of stimuli as well
as model and ecological coding properties, our next step was to sample experimental data (Figure C.1 step 2).
First, we sampled N points from the multivariate Gaussian distribution specified by the data subspace:

xData
i ∼ N (0, VDataΛDataV

T
Data) (3)

where VData denotes the column matrix of data subspace eigenvectors and ΛData is the diagonal eigenvalue
matrix. These points can be thought of as experimental stimuli, which vary along different image dimensions.

Next, we projected the stimuli onto the eigenvectors of both the ecological and model subspaces (VEco and
VModel) and scaled them by the standard deviation along each of those eigenvectors (

√
ΛEco and

√
ΛModel).

The net effect of this scaling was that the ecological/model subspaces amplified or attenuated different stimulus
dimensions depending on whether or not they had significant variance along them. However, only applying this
scaling would have had no effect on linear encoding performance, since regression weights could re-scale to
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compensate. Therefore, after performing this projection and scaling, we added ambient noise ϵ ∼ N (0, σnoiseI)
across all dimensions. The final result was a dataset of neural and model activations:

XEco = XData

√
ΛEcoVEco + ϵ (4)

XModel = XData

√
ΛModelVModel + ϵ (5)

Since the magnitude of the noise was equal in all directions, its net effect was to modulate the SNR along the
subspace dimensions. Essentially, ecological/model dimensions with high variance were relatively unaffected by
the noise and accurately encoded stimulus features, whereas dimensions with low variance were dominated by the
noise and only coarsely encoded stimulus features (e.g., the ordering of different stimuli along noise-dominated
dimensions might not be preserved).

Measuring encoding performance After having stimulated neural and model activations, our last step
was to measure the linear encoding performance of predicting XEco from XModel. Specifically, we predicted
neural activations X̂Eco and then computed the percentage of explained variance normalized to the noise ceiling
of XEco:

X̂Eco = βXModel + b (6)

Encoding Score = r2ceil(XEco, X̂Eco) (7)

where the regression parameters β and b were estimated using ordinary least squares regression without any
regularization and prediction accuracy was computed through cross-validation. The noise ceiling corresponded
to the percentage of variance in XEco that was explainable signal. In our simulations, we had direct access to
this value because EEco was generated according to:

XEco = XData

√
ΛEcoVEco + ϵ (8)

= X
(signal)
Eco + ϵ (9)

where X
(signal)
Eco is the signal component of XEco. Thus, we simply fit another linear regression model to

predict XEco using X
(signal)
Eco as regressors, in which case the resulting percentage of explained variance r2

corresponded to the noise ceiling.

When computing percentages of explained variance, we also needed to aggregate across all dimensions (i.e.,
neurons) of XEco that were predicted. Typically, this is done by taking the mean r2i across all dimensions i, but
this would violate an important principal of our theory wherein dimensions with larger variance contain more
signal, and are therefore more important to predict. Instead, we computed a weighted average of all r2i , with
weights equal to the variance in XEco along dimension i.

Simulation parameters Unless otherwise stated, our simulation parameters were set as follows: Da = 100,
EDNI = 20, EDEco = 10, EDData = 100, APEco←NI = 0.75, APModel←NI = 0.75, σnoise = 0.1.
EDModel ranged from 1 to Da, and 50 repeats of the simulation were performed for all values of EDModel,
each with independently sampled subspaces/datasets.

Appendix D Additional simulation results

In this section, we show how the relationship between EDModel and encoding performance can be modulated
by different settings of EDEco, AP , and σnoise. Figure D.1 demonstrates these effects, which we interpret
below.

Increasing EDEco As EDEco increased, higher EDModel was needed to achieve the same level of
encoding performance simply because there were more ecological dimensions to explain. In practice, this means
that if the ecological subspace (i.e., representations in visual cortex) is high-dimensional, encoding performance
will saturate later as a function of EDModel.

Increasing AP In regards to different AP between the model and ecological subspaces to the natural image
subspace, we see that lower-dimensional models were able to achieve better encoding performance if they
were preferentially aligned to ecological dimensions. Nevertheless, given any constant alignment pressure,
there remains a positive correlation between EDModel and encoding performance, indicating independent
contributions.
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Figure D.1: Modulating additional simulation parameters. Each simulation parameter modulated the
relationship between EDModel and encoding performance. Within a plot, only the titled parameter was changed
(shown in different line colors), while other parameters were held constant.

Increasing σnoise Varying σnoise is key to simulations of our theory. In the case of no noise (σnoise =
0), encoding performance was in fact independent of EDModel, and all models achieved perfect encoding
performance. This is because our models had some non-zero variance along every ambient dimension, which, in
the absence of noise, always led to an SNR of ∞. In essence, the variance along a dimension had no semantic
meaning in this case because it could be scaled arbitrarily without any change in the representation. As σnoise

increased, however, having high variance along a dimension became increasingly more important for accurately
representing features with high SNR, and encoding performance therefore became more dependent on high
EDModel.

Limitations of our theory and simulations While our simulations provide valuable intuitions regarding
ED, AP, and encoding performance, they make several simplifying assumptions that are unlikely to hold in
practice. First, they assume that all subspaces are multivariate Gaussians, in which case linear metrics such as
ED are appropriate for estimating latent dimensionality. While the precise topologies of subspaces in biological
and artificial neural representations are unknown, there is evidence that they are likely nonlinear (Ansuini et
al., 2019). Another simplification is that our simulations sample linear model and neural dimensions within the
same ambient space, whereas in reality models and the brain both nonlinearly transform image dimensions. In
other words, an image feature that is linearly encoded in the ecological subspace might be highly curved and
warped in the model subspace. Future work could build on our simulation framework to explore these issues.
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Appendix E Details of DNN models

Table E.1 lists details for all DNNs used in our experiments. PyTorch models were obtained from the torchvision
package and from PyTorch Hub (Paszke et al., 2019), VVS models were obtained from Zhuang et al. (2021), and
Taskonomy models were obtained from Zamir et al. (2018).

Table E.1: DNN models used in experiments

Training task Learning setting Training dataset Architecture Source

Object classification Supervised ImageNet ResNet18 PyTorch
Object classification Supervised ImageNet ResNet50 PyTorch
Barlow-Twins Self-Supervised ImageNet ResNet50 PyTorch
N/A Untrained N/A ResNet18 N/A
N/A Untrained N/A ResNet50 N/A
Object classification Supervised ImageNet ResNet18 VVS
Depth prediction Supervised ImageNet ResNet18 VVS
Auto-encoding Self-supervised ImageNet ResNet18 VVS
Colorization Self-supervised ImageNet ResNet18 VVS
Contrastive multiview coding Self-supervised ImageNet ResNet18 VVS
Contrastive predictive coding Self-supervised ImageNet ResNet18 VVS
Deep cluster Self-supervised ImageNet ResNet18 VVS
Instance recognition Self-supervised ImageNet ResNet18 VVS
Local aggregation Self-supervised ImageNet ResNet18 VVS
Relative position Self-supervised ImageNet ResNet18 VVS
SimCLR Self-supervised ImageNet ResNet18 VVS
Object classification Supervised Indoor buildings ResNet50 Taskonomy
Scene classification Supervised Indoor buildings ResNet50 Taskonomy
Semantic segmentation Supervised Indoor buildings ResNet50 Taskonomy
Curvature estimation Supervised Indoor buildings ResNet50 Taskonomy
Depth estimation Supervised Indoor buildings ResNet50 Taskonomy
Depth estimation (z-buffer) Supervised Indoor buildings ResNet50 Taskonomy
Edge detection (2D) Supervised Indoor buildings ResNet50 Taskonomy
Edge detection (3D) Supervised Indoor buildings ResNet50 Taskonomy
Egomotion Supervised Indoor buildings ResNet50 Taskonomy
Fixated pose estimation Supervised Indoor buildings ResNet50 Taskonomy
Non-fixated pose estimation Supervised Indoor buildings ResNet50 Taskonomy
Keypoint detection (2D) Supervised Indoor buildings ResNet50 Taskonomy
Keypoint detection (3D) Supervised Indoor buildings ResNet50 Taskonomy
Point matching Supervised Indoor buildings ResNet50 Taskonomy
Reshading Supervised Indoor buildings ResNet50 Taskonomy
Room layout estimation Supervised Indoor buildings ResNet50 Taskonomy
Surface normal estimation Supervised Indoor buildings ResNet50 Taskonomy
Vanishing point estimation Supervised Indoor buildings ResNet50 Taskonomy
Auto-encoding Self-supervised Indoor buildings ResNet50 Taskonomy
Denoising Self-supervised Indoor buildings ResNet50 Taskonomy
Inpainting Self-supervised Indoor buildings ResNet50 Taskonomy
Jigsaw Self-supervised Indoor buildings ResNet50 Taskonomy
Unsupervised segmentation (2D) Self-supervised Indoor buildings ResNet50 Taskonomy
Unsupervised segmentation (2.5D) Self-supervised Indoor buildings ResNet50 Taskonomy
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Appendix F Additional analyses of ED and encoding performance

Here, we replicate our results in more contexts. Figure F.1 shows the relationship between effective dimensional-
ity and encoding performance without applying a max-pooling operation to the DNN feature maps. Figures F.2
and F.3 shows encoding performance across multiple species, recording modalities, and brain regions. Figure
F.4 fits encoding models using OLS instead of partial-least-squares regression.

Our general results hold across all of these settings, with the exception of V1 in the monkey electrophysiology
data. We speculate that this is due to the far lower complexity of representations in V1, which serve primarily as
simple edge detectors for later processing in higher-level regions.

Figure F.1: Effective dimensionality and encoding performance without max-pooling. a. The encoding
performance achieved by a model scaled with the effective dimensionality of its entire feature map (without
max-pooling applied). Each point in the plot was obtained from one layer from one DNN, resulting in a total of
536 models (see main text for further details). b. Even when conditioning on a particular DNN layer, controlling
for both depth and ambient dimensionality, effective dimensionality and encoding performance continued to
strongly correlate. The plot shows the distribution of these correlations (Pearson r) across all unique layers in
our analyses.

Figure F.2: Latent dimensionality and encoding performance on monkey electrophysiology data. The
encoding performance for all of our models across multiple brain regions in monkey electrophysiology datasets
collected by Majaj et al. (2015) (IT and V4) and Freeman et al. (2013) (V1), plotted against the models’ ED and
eigenspectra. Our results hold across all brain regions except for V1; encoding performance increases with latent
dimensionality.
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Figure F.3: Latent dimensionality and encoding performance on human fMRI data. The encoding
performance for all of our models across multiple brain regions in a human fMRI dataset collected by Bonner
and Epstein (2021), plotted against the models’ ED and eigenspectra. Our results hold across all brain regions;
encoding performance increases with latent dimensionality. FFA=fusiform face area, OFA=occipital face area,
EBA=extrastriate body area, RSC=retrosplenial complex, PPA=parahippocampal place area, OPA=occipital
place area, STS-superior temporal sulcus, LO=lateral occipital region, pFs=posterior fusiform region.
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Figure F.4: Effective dimensionality and encoding performance using OLS regression. a. The encoding
performance achieved by a model fit using OLS regression scaled with its effective dimensionality. Each point
in the plot was obtained from one layer from one DNN, resulting in a total of 536 models (see main text for
further details). b. Even when conditioning on a particular DNN layer, controlling for both depth and ambient
dimensionality, effective dimensionality and encoding performance continued to strongly correlate. The plot
shows the distribution of these correlations (Pearson r) across all unique layers in our analyses.

Appendix G ED and Representational Similarity Analysis

To provide additional evidence that our central results are not due to trivial statistical effects wherein models with
higher latent dimensionality have more degrees of freedom to predict neural data, we replicated our results using
Representational Similarity Analysis (RSA) (Kriegeskorte et al., 2008). In representational similarity analysis,
a dissimilarity matrix is constructed for both the model and the brain data by computing a distance between
the representations for each pair of stimuli. These matrices are then correlated to evaluate their similarity.
Importantly, unlike when fitting encoding models, this method for measuring the similarity between a model and
the brain is entirely non-parametric and thus cannot be biased to favour models with high latent dimensionality.

While not as strong, there is nevertheless a clear trend in which models with higher RSA scores tend to have
higher ED. Thus, our core results replicate using RSA.

Figure G.1: Effective dimensionality and Representational Similarity Analysis (RSA). We compared the
representations in our models to those in the monkey IT electrophysiology data using RSA. Note that the y-axis
is on a log-scale in order to provide better resolution in face of the high variation in RSA scores. Our results
hold across this different similarity metric; the similarity between model and brain representational dissimilarity
matrices increases with latent dimensionality.

Appendix H ED varies with model and training parameters

To better understand how and why latent dimensionality varies in DNNs (and perhaps manipulate it for a desired
effect), we can start by observing its empirical relationship to parameters of the training procedure, dataset, and
architecture. Figure H.1 illustrates several of these relationships, which we were able to quantify thanks to the
use of our large bank of models. We summarize our most important conclusions from these analyses below.
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Figure H.1: Effective dimensionality varies with model and training parameters. a. Models trained on
object classification (blue) had larger effective dimensionality than untrained models (orange) across all layers in
ResNet18 and ResNet50. After training, effective dimensionality also gradually increased as a function of layer
depth (only convolutional layers are shown). b. Plots indicate the distribution of effective dimensionality across
models that were trained on Taskonomy (red) and ImageNet (green). These distributions differed significantly,
despite the models in both groups largely sharing similar architectures and training tasks.

Training increases effective dimensionality Figure H.1a shows how effective dimensionality varied
across the layer hierarchy for ResNet18 and ResNet50 architectures when they were trained on ImageNet object
classification compared to when they were untrained and had randomly initialized weights. We can see that
training resulted in substantial increases in effective dimensionality for both architectures across all layers. To
solve complex tasks such as object classification, then, it appears that models must learn to extract a large number
of orthogonal image features. This finding contradicts a commonly held belief that DNNs trained on visual tasks
compress high-dimensional inputs to a small number of latent dimensions (Ansuini et al., 2019; Chung et al.,
2018; Feng et al., 2022; Kingma & Welling, 2013; Recanatesi et al., 2019).

Effective dimensionality increases with layer depth Another notable trend in Figure H.1a is that
effective dimensionality increased as a function of layer depth within the two supervised classification models
we considered. Importantly, this cannot be explained simply as a result of an increasing number of channels
along the layer hierarchy, as effective dimensionality remained more or less constant within the untrained models.
This gradual increase in effective dimensionality appears to contradict other findings from (Ansuini et al., 2019;
Chung et al., 2018; Cohen et al., 2020) in which latent dimensionality generally decreases as a function of layer
depth, but there are important methodological differences to note. First and foremost, we computed effective
dimensionality only along the channel dimension of our feature maps after applying a max-pooling operation
across the spatial dimensions, which allowed us to focus on the diversity of image features. Given that spatial
resolution decreases as a function of layer depth in our architectures (and most convolutional DNNs in general),
the effective dimensionality of earlier layers will be higher simply due of the larger number of spatial dimensions
that they contain. Another important difference in our work is that we only considered convolutional layers and
performed no analyses on fully-connected layers. Indeed, much of the drop in latent dimensionality reported in
other work occurs within these fully-connected layers.

Training data has a large impact on effective dimensionality Another important factor that has a
significant impact on a model’s learned representations is the training dataset. Our bank of models includes
DNNs trained on ImageNet and Taskonomy. Figure H.1b shows the distribution of effective dimensionality
for all models trained on each of these datasets. Despite similar architectures and training tasks used on both
datasets, the ImageNet-trained models tended to have significantly larger effective dimensionality. Although
we did not perform further analyses to determine which dataset differences explain this result, we speculate
that it is due to the much greater diversity of image statistics within ImageNet. Whereas ImageNet contains
images spanning many object categories appearing in diverse environments, Taskonomy consists solely of
man-made indoor scenes across 600 buildings. Effective dimensionality, therefore, might scale in proportion to
the complexity and variation of image features in the training data.

Appendix I Recruitment of low-variance dimensions in encoding models

The main findings that we presented in Section 2.2 contain a small number of outliers: encoding models that have
low ED but nevertheless attain good encoding performance. These models are shown in Figure I.1a, along with
performance-matched high-ED models for comparison. We tested the hypothesis that these outliers encode a
larger number of meaningful dimensions than their low ED suggests. To do so, we examined how their encoding
scores scaled as an increasing number of PCs were included as regressors. If their low-variance PCs do not
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encode meaningful information, we should expect their encoding scores to saturate early on as a function of the
number of PCs used.

For each model, we projected stimulus responses onto PCs computed from the ImageNet validation set (Rus-
sakovsky et al., 2015). This was done according to the same procedure that we used to calculate the ED of the
models (see Materials and Methods). We then fit encoding models using responses along an increasing number
of PCs as regressors. Encoding models were fit using cross-validated partial-least-squares regression and OLS
regression as outlined in Materials and Methods, with a notable exception being that the PCA dimensionality
reduction procedure that is described there was no longer necessary given that the regressors already consist
of PCs. We used OLS in addition to partial-least-squares in order to more easily tease apart the effects of
regularization when performing PCA regression.

The result of this analysis is shown in Figures I.1b (partial-least-squares regression) and I.1c (OLS regression).
Despite having significantly lower ED, the outlier models continued to benefit from additional PCs at the same
rate as control models that had high ED, whereas other low-ED models benefited less from adding additional
PCs. Thus, unlike the other models in our analyses, it appears that the rapid decay of the eigenspectra for these
outlier models does not accurately reflect the number of meaningful dimensions that they encode.

Figure I.1: Low-ED outliers still benefit from low-variance PCs. a. Among the encoding models we
investigated, we observed high-performing models with high ED that fit the general trend (green samples),
high-performing models with low ED that were outliers (red samples), and all other models (blue samples). b.
We compared the degree to which these groups of encoding models benefited when an increasing number of
PCs were used as regressors. Overall, encoding performance increases significantly as a function of the number
of PCs used in the high-performing groups (green and red), and there is little qualitative difference between
them. Importantly, both the low-ED outlier models (red) and the high-ED models (green) obtain relatively large
gains in encoding performance for high-rank PCs. In contrast, the rate of increasing performance drops off
more quickly for the remaining models (blue), especially for the later PCs. c. Same as (b), but using OLS
regression to fit the encoding models. For OLS, performance drops off after about 2000 PCS because the number
of features is approaching the number of training stimuli and causing overfitting (OLS is unregularized). Note
that these PCs were generated from max-pooled DNN feature maps in order to match the dimensions from our
ED computations, whereas the encoding models in panel (a) were fit without max-pooling and thus attained a
higher encoding score. Curves for each model terminate at different locations because models differ in their
ambient dimensionality, which determines their total number of PCs.
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Appendix J High ED alone is not sufficient to yield strong performance

Our findings show that ED is positively correlated with encoding performance when examining standard DNNs
used in computational neuroscience. However, it is important to emphasize that high ED alone is not sufficient
to yield strong encoding performance. Indeed, it is not difficult to imagine contrived models with extremely high
dimensionality but no predictive power. As a simple example, imagine a maximally sparse representation in
which each stimulus elicits a response along a single, unique dimension (akin to "grandmother cells” (Barwich,
2019)). In this case, because every stimulus is represented along a unique dimension, an encoding model fit to a
training set would have no ability to generalize to unseen stimuli.

In this section, we discuss some of the necessary conditions for observing a strong and positive correlation
between effective dimensionality and encoding performance. In addition, we provide some empirical experiments
to support our arguments.

Alignment pressure plays a significant independent role In the vocabulary of our theory laid out in
Section 2.1, encoding performance depends not only on the latent dimensionality of a model, but also on its
alignment pressure. And, because latent dimensionality can vary independently from alignment pressure (in the
sense of independent causal interventions), it is not causally sufficient for achieving good encoding performance.
Furthermore, in the infinite-dimensional space of possible visual features where model dimensions are unlikely
to overlap with ecologically-relevant ones by chance, alignment pressure is essential.

In empirical models of visual cortex, the statistical relationship between alignment pressure and latent dimen-
sionality has not been investigated. If models achieving high alignment pressure to biological representations
tend to systematically have lower latent dimensionality, we might observe a net negative correlation between
latent dimensionality and encoding performance. That this is not the case in our empirical results suggests that
alignment pressure is probably uncorrelated (or perhaps positively) correlated with latent dimensionality.

Figure J.1: Increasing latent dimensionality
with ZCA whitening does not enhance encoding
performance. The y-axis shows the difference in
encoding performance after whitening model fea-
tures, while the x-axis shows the ratio of increase
in effective dimensionality. Most whitened models
saw a substantial increase in effective dimension-
ality, but showed either no change in encoding
performance or a decrease (highlighted gray re-
gion).

Latent dimensionality must reflect the number of
accurately-encoded features If high latent dimen-
sionality improves encoding performance in all circum-
stances, we should be able to trivially obtain excellent
encoding performance with any model by applying sim-
ple feature transformations. ZCA whitening, for instance,
applies a linear transformation that results in a new set of
features with covariance matrix close to identity (i.e., a flat
eigenspectrum with maximum effective dimensionality).
After applying ZCA to all models, however, we saw no
improvement in encoding performance, despite significant
increases in effective dimensionality, as shown in Figure J.1.
Again, this shows that effective dimensionality alone is not
sufficient to improve encoding performance. In this case,
the reason is that ZCA whitening does not augment the
model with additional information about the stimulus. Our
theory in Section 2.1 states that the relationship between la-
tent dimensionality and encoding performance depends on
an assumption that higher-variance dimensions more accu-
rately encode stimulus features. ZCA whitening, however,
violates this assumption since it increases latent dimen-
sionality by numerically scaling existing model dimensions
without changing their semantics. No new dimensions
are added and no existing dimensions are encoded more
accurately, so encoding performance remains unchanged.

The empirical relationship between dimensional-
ity and encoding performance is robust Despite
the above caveats, we note that it is difficult to construct
poor-performing high-dimensional models in practice, with-
out having to resort to trivial feature transformations such
as whitening. We attempted to do so by training a DNN on a version of ImageNet where the labels in the
training set were randomly scrambled. Due to their large capacity, it is well known that DNNs are able to achieve
low training error on this task by finding an arbitrary mapping between each input and its label, essentially
memorizing the dataset (Zhang, Bengio, Hardt, Recht, & Vinyals, 2016). Our rationale for choosing this task
was that it is unlikely to produce ecologically-relevant dimensions, but stands a good chance of learning a high-
dimensional latent space in which it is easier to linearly separate arbitrarily labeled data (Gorban et al., 2020).
However, this turned out not to be the case. In Figure J.2, we show the effective dimensionality and encoding
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performance of a DNN fit to scrambled labels and compare it to an identical architecture fit with the correct
labels. As expected, the DNN with scrambled labels achieved much lower encoding performance. Surprisingly,
however, this model also had much lower effective dimensionality than its correctly trained counterpart. We
speculate that ecologically-relevant visual tasks in which humans excel (and most DNNs are trained on) require
high latent dimensionality as a result of their inherent complexity, producing a positive correlation between
latent dimensionality and alignment pressure. We explore this possibility in Section 2.4.

Figure J.2: Training a model to overfit scrambled labels does not increase latent dimensionality. a. We
trained the same ResNet18 DNN architecture on ImageNet classification in two different settings: once with
correctly labeled images (blue) and the other time with scrambled labels, such that each image was assigned to a
random class. Despite the arbitrary nature of the second task, the model was able to achieve good performance
on the training set (47% accuracy over 1000 classes) by memorizing an idiosyncratic mapping from each input
to its label. b. Our initial hypothesis was that the model trained with scrambled labels would have higher
effective dimensionality and lower encoding performance than the model trained with correct labels, but our
results surprisingly run counter to this intuition: the model trained with scrambled labels had lower encoding
performance and lower effective dimensionality. Blue points denote layers from the model trained with correct
labels, and purple points denote layers from the model with scrambled labels. Size and brightness denote
increasing layer depth, and lines indicate matching layers.
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