
 1

R methylCIPHER: A Methylation Clock Investigational Package for Hypothesis-1 

Driven Evaluation & Research 2 

 3 

Kyra L. Thrush1,2, Albert T. Higgins-Chen3,4, Zuyun Liu5, Morgan E. Levine2* 
4 

1 Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA 5 

2 Altos Labs, San Diego Institute of Science, San Diego, CA, USA 6 

3 Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA 7 

4 VA Connecticut Healthcare System, West Haven, CT, USA 8 

5 Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School 9 

of Public Health, Zhejiang University School of Medicine, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang 10 

Province, Hangzhou, Zhejiang, China 11 

* Corresponding Author 12 

Abstract 13 

Background: Epigenetic clocks are promising tools for the study of aging in humans. 14 

The clocks quantify biological aging above and beyond chronological age, demonstrate 15 

systematic associations with risk factors that accelerate aging, and predict age-related 16 

morbidity and mortality. There is interest in using them as surrogate endpoints in 17 

intervention studies.  However, the large number of clocks, decentralized publication 18 

and explosive popularity in the last decade has made for poor accessibility and 19 

standardization. This has hampered the abilities of new researchers to conduct truly 20 

hypothesis driven research—whether by not knowing about the best available clocks for 21 

a given question, or by systematically testing many or all as they become available. 22 

Results: We report a centralized R package which can be installed and run locally on 23 

the user’s machine, and provides a standardized syntax for epigenetic clock calculation. 24 

The package includes a set of helper functions to assist with navigating clock literature 25 

and selecting clocks for analysis, as well as affording the user with the details of clock 26 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2022. ; https://doi.org/10.1101/2022.07.13.499978doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.13.499978
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2

calculation. We describe each clock’s resilience to missing CpG information, combined 27 

with functionality to assess the need for imputation in the user’s own data. Furthermore, 28 

we demonstrate that while CpGs may not be shared among clocks with similar outputs, 29 

many clocks have highly correlated outputs. 30 

Conclusions: Due to the previous decentralization of epigenetic clocks, gathering code 31 

and performing systematic analysis, particularly in protected datasets, has required 32 

significant information gathering effort. Here, we offer an R package with standardized 33 

implementation and potential for future growth and clock incorporation to assist with 34 

hypothesis driven investigation of aging as measured by epigenetic clocks. We show 35 

the potential of this package to drive the user to think globally about signals captured by 36 

epigenetic clocks, as well as to properly identify the potential and limitations of each 37 

clock in their current research.  38 

Keywords 39 

 40 

Background 41 

Epigenetic clocks are promising tools, often discussed as future surrogate 42 

biomarkers for studies of aging and longevity. These clocks have been extensively 43 

reviewed; for their phenotypic associations [1, 2]; to understand the mechanisms of 44 

epigenetic aging [3, 4]; [5][6]  Our current intent is to instead provide a practical 45 

overview of the categories, training methods, and applications of existing epigenetic 46 

clocks. As epigenetic clock research gathers further momentum in the study of aging, it 47 

is increasingly clear that a centralized toolkit to introduce the epigenetic clocks is 48 

essential. Such a toolkit must satisfy, in our estimation, a handful of requirements: It 49 
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must (1) organize thematically and systematically the existing epigenetic clocks to 50 

minimize the risks of multiple testing and publication bias; (2) provide functionality to 51 

allow the researcher to perform not only pro forma analyses, implicating epigenetic 52 

clocks in a disease or dataset of interest, but push researchers to glean further 53 

biological insight as to the associations found; (3) be complete in its access of 54 

epigenetic clocks, while still giving editorial insight such as to make use of them 55 

navigable; (4) be sufficiently flexible so as to allow future advances to be made equally 56 

accessible. 57 

Because of the relative ease of training epigenetic clocks and of DNA 58 

methylation (DNAm) collection, as well as the numerous age-related CpGs in the 59 

genome, there are currently numerous human epigenetic clocks available in the 60 

literature (Figure 1). The earliest such clocks utilize 1-10 highly age-associated CpGs in 61 

regression models, and these remain useful as low-cost assays [7–11]. However, the 62 

advent of large scale, streamlined collection of DNA methylation data on lllumina 63 

Beadchip methylation array technologies, as well as the adoption of elastic-net 64 

penalized regression to the training method, led to a new generation of clocks that can 65 

capture genome-wide aging signals. The first of these were trained to predict 66 

chronological age with high accuracy, including the Hannum blood [12] and Horvath 67 

multi-tissue [13] clocks, and have since expanded to include additional clocks [14–17]. 68 

For those studying development and gestation, significant effort has been spent to 69 

create reliable gestational and pediatric age clocks [18–22]. Similar approaches led to 70 

the generation of mitotic clocks, so-called for their presumed ability to track the rate of 71 

mitotic divisions and project cancer risk [23–25]. The telomere length estimator 72 
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DNAmTL, which is highly correlated with cellular replication rate, can be included in this 73 

category as well [26]. 74 

In addition to clocks that predict discretely measurable aspects of age and cell 75 

turnover, efforts have been made to capture heterogeneity in aging as meaningful 76 

biological signal. These [27][28], and DunedinPACE[29] are trained to predict 77 

individuals; degree or rate of biological change with time, especially those changes that 78 

contribute to age-related morbidity and mortality risk. It has also been found that DNAm 79 

can be used to predict various traits, lifestyles or exposures that are not necessarily 80 

related to aging [30]. 81 

Finally, there has been recent interest in “bespoke” clocks designed for particular 82 

tissues, diseases, data types, or applications. For example, one ongoing challenge for 83 

epigenetic clocks is that most human clocks were trained using primarily whole blood[2]. 84 

Multi-tissue clocks[13]s conserved across tissues and may ignore tissue-specific aging 85 

changes [6]. Thus, tissue-specific, bespoke clocks have been developed, including for 86 

skin-and-blood [16], brain cortex [31], skin [32], and the scAge framework for predicting 87 

epigenetic age from single cell methylation [33] have been reported. Also, since clocks 88 

are often trained in large aging cohorts, it is possible they may miss aging patterms that 89 

occur in small subsets of the population, as in the context of rare diseases.  Due to the 90 

increasing abundance of non-blood tissue DNAm, new methods for collection [34], 91 

additional approaches to clock-training [35, 36], and emerging age-related diseases, we 92 

predict that the number of bespoke clocks will see a dramatic increase in the next few 93 

years. 94 
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Yet the challenge remains: Which clock should be used? The variety of 95 

epigenetic clocks can be useful for investigating many different aspects of aging. But 96 

selecting the appropriate clock(s) for a study requires navigating a decentralized body of 97 

nuanced literature. The choice of clock may be impacted by the phenotype that they 98 

were trained to predict or the context they were trained for. However, the differences 99 

between clocks can be subtle, amounting to differences in training data composition or 100 

procedure, such as age ranges [22], or preselection of CpGs [23].  101 

This clock selection problem creates concerns regarding the integrity and 102 

interpretability of aging studies. In particular, there are two consequences we would 103 

hope to avoid. The first is exclusive, repeated testing of the best cited and most 104 

reported aging clocks—namely the Horvath multi-tissue, Hannum, Levine PhenoAge 105 

and GrimAge DNA methylation clocks. [1].  This aligns well with the plethora of 106 

publications reporting the associations of acceleration of the Horvath multi-issue, 107 

PhenoAge, and GrimAge predictors with biological changes[37–39], and disease risk or 108 

mortality[40–45].  While this produces some standardization in the field, these clocks are 109 

not necessarily the optimal choice in all cases. If a researcher instead has all available 110 

clocks at their disposal and then applies a hypothesis-driven selection of clocks, an 111 

alternative, lesser-known clock may indeed be the optimal choice. The second 112 

unintended consequence could be that individuals test many clocks as clocks are 113 

published or the researcher becomes aware of them, and only significant results tend to 114 

be noted and published.  115 

The variety of clocks and their decentralized distribution also creates practical 116 

obstacles for aging research. Researchers wishing to apply epigenetic clocks must first 117 
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mine the literature for their options, identify one (or multiple) clocks to test, locate and 118 

download the data to do so, and ensure that the calculation is properly performed 119 

across their samples. This process creates substantial logistical barriers for 120 

researchers. Clocks that are published along with public code and data should be 121 

applauded. Furthermore, a few existing platforms can calculate multiple clocks. These 122 

include the online Horvath calculator (http://dnamage.genetics.ucla.edu) and EstimAge 123 

(https://estimage.iac.rm.cnr.it). However, these require data to be uploaded to a third 124 

party server, which is prohibited for protected datasets and limits researchers’ access to 125 

the underlying details of calculation. There also exists the methylclock Bioconductor 126 

package, which is currently limited to chronological age clocks, gestational age clocks, 127 

DNAmTL and PhenoAge. In summary, the sheer number and variety of clocks creates 128 

two primary challenges that impede use by the broader scientific community: (1) the 129 

selection of the most appropriate clock(s) for the scientific question or hypothesis at 130 

hand; (2) access to the many clocks. We address this by providing a centralized 131 

resource in which individuals can explore, investigate, and calculate any and all clock(s) 132 

appropriate for a research question from a project’s inception. This is a necessary 133 

improvement for the field, as it allows for systematic study of epigenetic clocks, which in 134 

turn advances future understanding of their underlying relationships and biological 135 

significance. 136 

There is currently no true standard format or resource for the researcher to 137 

publish and distribute clocks. Here we present a consolidated resource that applies a 138 

standardized format to the calculation of epigenetic clocks, establishes a repository for 139 

the fitted values of existing clocks, and provides a few helper functions for the 140 
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exploration of appropriate clocks, their CpGs, and inter-clock correlations. Further, this 141 

package can be installed and run on a local machine, eliminating the need for uploading 142 

of potentially protected data, and affords near-immediate results to the researcher, 143 

regardless of the number or identity of clocks they choose to select. To further facilitate 144 

accessibility of the epigenetic clocks, we have also provided a thorough tutorial walking 145 

through use of the package and questions to be addressed on the github page for this 146 

package (github.com/MorganLevineLab/methylCIPHER). 147 

Implementation 148 

This should include a description of the overall architecture of the software 149 

implementation, along with details of any critical issues and how they were addressed. 150 

The current package is implemented using the R programming language and 151 

distributed via installation from Github (github.com/MorganLevineLab/methylCIPHER). 152 

This distribution allows us to provide a flexible, regularly updated, and community driven 153 

package. Not only can we push regular updates to users as new clocks are added, but 154 

the research community can rapidly suggest new clocks, helper functions, or 155 

improvements to code. Users wishing to generate their own independent Github R 156 

packages during the publication process of novel clocks can be imported by this 157 

package, or be referred to in the online Github based wiki and tutorial. The functions of 158 

this package are represented in the schema in Figure 2. 159 

To calculate epigenetic clocks in methylCIPHER (functions of the form calc[Clock-160 

Name]), the user provides a labeled data matrix of pre-processed methylation Beta 161 

values obtained via the Illumina HumanMethylation450 Beadchip or Infinium 162 

MethylationEPIC kit from Illumina (San Diego, CA). These are commonly referred to as 163 
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450k and EPIC arrays respectively. Preprocessing and normalization of methylation 164 

data is typically performed within R using the minfi [46], wateRmelon [47], or SeSAMe 165 

[48] packages, however methylCIPHER functions regardless of normalization protocol. 166 

For more details regarding the effects of choice of normalization, refer to Ori et al. [49]. 167 

The user must simply have an object of matrix or data frame class, with named columns 168 

corresponding to the Illumina CpG names, and cells containing methylation beta ratios 169 

between 0 and 1.   170 

We recommend that the methylation data object have named rows corresponding to 171 

unique sample identifiers. Most analyses will benefit from a corresponding “phenotype” 172 

data frame with sample identifiers; sample metadata; demographics; health outcomes; 173 

age; sex; and other traits of interest. While optional for individual clock calculations, this 174 

typically assists the researcher with downstream analyses. Without this data frame, 175 

clocks can be computed using only a single function at a time, with output to a vector 176 

object. However, the “pheno” dataframe provides a central location to append multiple 177 

clocks to if using the multi-clock wrapper functions calcUserClocks or calcCoreClocks. 178 

Of note, for some analyses (for example, calculation of IEAA or EEAA [50]) 179 

estimates of blood cell composition are necessary. To obtain such estimates, individuals 180 

may want to use the Houseman method [51] of cell-type deconvolution from the minfi 181 

package.  However, local methods for predicting cell composition of blood can be 182 

effectively run only when preprocessing occurs from raw methylation files (i.e. IDAT). If 183 

access is limited to preprocessed methylation beta values, as in some publicly available 184 

datasets, the Horvath Online calculator can predict blood component proportions. We 185 

hope to provide users with this convenient functionality in the future. However, we have 186 
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provided a formatting function formatHorvathOnline which allows the user to quickly 187 

generate the input files for the Horvath Online calculator. This allows for both calculation 188 

of blood composition estimates and GrimAge [28]. 189 

The current version of the R/methylCIPHER package has been tested on both 190 

Windows and Mac computer systems, running R v3.6+. It can run on most modern 191 

personal computers, requiring less than 16 GB of RAM (and in many cases less than 8 192 

GB) for methylation datasets containing hundreds of samples at once. The functions run 193 

efficiently and will provide near-immediate results within seconds or minutes. 194 

Results & Discussion 195 

The R package methylCIPHER provides both seasoned and casual users of 196 

epigenetic clocks with the tools necessary for thorough, hypothesis-driven research 197 

using existing epigenetic clocks. We provide a comprehensive listing of human 198 

epigenetic clocks that use; (1) linear approaches; and (2) CpGs found in the commonly 199 

utilized Illumina 450k and EPIC arrays. This broad set of clocks can be searched 200 

through the function getClockOptions(), which allows users to explore their options. We 201 

have also provided convenient referencing of the source papers for each of the clock 202 

calculation functions, using citeMyClocks. This accepts a group or list of functions at 203 

once, which in turn allows readers to quickly refer to the original clock papers and 204 

understand the underlying principles of their training. This process of information 205 

gathering is shown graphically in the top right region of Figure 2. 206 

Due to the variable performance of experimental designs, and a multitude of 207 

existing pipelines for quality control, users may find missing probes or DNAm values in 208 

their data. This can be seen as missing probe columns in the final normalized beta 209 
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value matrix, columns of NA values, or sporadic NA values in sample/ probe pairs. If the 210 

probes are missing entirely from the beta value matrix, this can impact the decision to 211 

implement specific clocks. Therefore, getClockProbes provides the user with a table to 212 

determine what portion of probes are available for the various clock options, so that a 213 

clearly informed decision can be made. Alternatively, they may find columns of all NA 214 

values, which can be removed using removeNAcol. Sporadic missing values for select 215 

probe/sample pairs can either be mean imputed across the matrix samples (using 216 

function meanimpute), or imputation can be done later within the clock calculation 217 

functions if a mean vector is provided as a reference containing the necessary CpGs. 218 

However, most clocks can be calculated without imputation by simply ignoring those 219 

CpGs in the resultant weighted regression values for such samples. The effect of doing 220 

so varies by clock.  221 

In figure 3 we visualize the degree of information contained in individual CpGs. 222 

The model contribution of each CpG was estimated by multiplying the absolute 223 

regression value in each clock for each site by its standard deviation in the Framingham 224 

Heart Study (FHS) offspring cohort [52], and plotted against the standard deviation 225 

alone. These results are shown for the Hannum (Figure 3A), Horvath Multi-Tissue 226 

(Figure 3B), and PhenoAge (Figure 3C) clocks (additional clocks in supplemental 227 

materials, figures S1-S2). With the CpGs plotted in this manner, we can see that each 228 

CpG in the Hannum clock tends to have higher weight, evident from the higher mean 229 

contribution represented by the blue horizontal dashed line. Further, PhenoAge employs 230 

CpGs with higher standard deviation than the other clocks, but due to lower weight in 231 

the clock regression, these tend to have dampened model contributions. These plots 232 
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help to conceptualize the effect of using mean imputation on model CpGs, as utilizing 233 

mean imputation removes signal in individual samples that may reflect meaningful inter-234 

individual differences.  235 

To functionalize this effect, we simulated the effects of increasing amounts of 236 

missing array methylation probes for a given sample. We performed 1000 iterations 237 

each of randomly drawing 0.01, 5, 10, and 20% of CpGs within each clock. Then, we 238 

found the distribution of Clock Years information contained within each potentially 239 

missing sample. Because we are approximating information lost, the Clock Years 240 

measurement is defined by the absolute value of the sampled CpGs’ clock regression 241 

coefficient, multiplied by the standard deviation of these CpGs. The result is an 242 

approximation of the information in years of measurement lost for a sample or set of 243 

samples for which that proportion of CpGs’s methylation is unavailable. We note that 244 

because Clock Years is defined as absolute values for each CpG, oppositely weighted 245 

CpGs in a clock do not counteract each other. Thus, the information lost may reflect a 246 

larger difference than the shift in actual clock value. As each clock selected is of varying 247 

size, the percentage of missing CpGs varies in the absolute number lost. Here, we 248 

demonstrate that Clock Years information lost appears strongly associated with clock 249 

size: Bigger clocks show a larger amount of information lost, despite removal of the 250 

same proportion of sites (Figure 3D-F).  However, as is demonstrated in the disparate 251 

axis scaling between clocks, there must be far more CpGs missing to exert a similar 252 

effect on the larger clocks than Hannum. 253 

The user can choose, based on what is most appropriate for their hypothesis and 254 

data available, a set of CpG-based DNA methylation clocks to calculate. Then, either 255 
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using the manual functions of the form calc[Clock-Name], or a user-specific character 256 

vector list of clocks, input to calcUserClocks, the appropriate values can be generated. 257 

These are ideally output by binding to an existing “phenotype” data frame supplied by 258 

the user containing relevant sample metadata.  259 

To calculate each clock, an RData object is accessed containing CpG identity 260 

and weight information as supplied by the original authors. Each of these objects can be 261 

accessed using data(“[Clock-Name]_CpG(s)”). A central repository where these data 262 

objects are readily accessible has two advantages. First, it makes the details of clock 263 

calculation transparent to the user. Second, it facilitates studies of clock CpG identities 264 

and their biological underpinnings. 265 

For example, methylCIPHER allowed us to quantify the overlapping CpG 266 

identities of clocks within some of the categories identified in Figure 1. It is often 267 

discussed within the field that CpGs—at least those on the Illumina array 268 

technologies— change in a concerted, multi-collinear manner with age. This has 269 

motivated  some of our prior approaches to clustering clock CpGs to ascertain 270 

underlying biological signals or changes [53, 54]. We find that the vast majority of CpGs 271 

selected by clocks do tend to be unique to those clocks, though a small subset of 272 

methylation sites are common across many clocks within categories (Figure 4A-B). 273 

Other observatons, such as the fact that EpiTOC2 is a subset of the original EpiTOC 274 

sites, or that DNAmTL is entirely unique in its CpG selections, are immediately obvious 275 

from this analysis (Figure 4B). However, despite sparse overlap in clock CpGs, it 276 

remains that these clocks’ sex-adjusted age accelerations (i.e., residuals of regressing 277 

clock values onto sample age and sex) are typically quite correlated (Figure 4C).  278 
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In fact, it was recently reported that numerous combinations of CpGs can be 279 

used to train epigenetic clocks across the epigenome, a concept which arises primarily 280 

from this noted redundancy [55]. To further investigate the CpG identities of the clocks 281 

as distributed by the original authors in our data files, we repetitively retrained multiple 282 

well known epigenetic clocks. We performed this analysis in both a chronological aging 283 

clock (Hannum) and a tissue specific aging clock (Horvath Skin & Blood). We first 284 

generated an experimental design matrix (Figure 5A), which consists of 19x200 sample 285 

cells. Each cell is the result of one of 19 bootstrapped samples of the training data 286 

individuals drawn with replacement (for up to 6 draws of the same individual), and 1 of 287 

200 versions of 10,000 CpGs drawn without replacement from the available probes on 288 

the 450K array. The concept of bootstrapped samples for model training was inspired 289 

by the original Hannum training method [12]. We used the original Hannum training 290 

dataset [12], and the publicly available training datasets (supplemental materials, table 291 

1A) from the original Horvath Skin & Blood clock publication. 292 

Given each experimental matrix cell, we retrain the epigenetic clocks in the 293 

sampled data, by applying elastic net penalized regression on chronological age. Elastic 294 

net regression was performed with 10-fold cross validation and a 0.5 ratio of LASSO 295 

and Ridge regression. All models were subsequently evaluated in an independent test 296 

dataset consisting of either whole blood methylation data [56] or skin and fibroblast 297 

datasets (supplemental materials, table 1B).  298 

This analysis enabled comparison across randomly selected subsets of 299 

individuals and/or CpGs on retrained clocks. The correlations of predicted age and true 300 

age measures were visualized as density plots organized by sample bootstrap, for both 301 
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Hannum (Figure 5B) and Horvath Skin & Blood (Figure 5C). Training sample 302 

correlations were verified normal distributions with high degree of correlation, while 303 

independent test sample correlations for these models retained relatively high 304 

correlations. Medians of each density plot (small vertical bars) are compared to the 305 

original clock’s correlation to age in the test dataset (large vertical bar). As is 306 

demonstrated in the case of Hannum, while some CpG subsets produce models that 307 

have correlation as low as 0.89 with chronological age, this is still a relatively high 308 

correlation.  Thus, while access to some CpGs improves model performance, the 309 

improvement is modest. Furthermore, even when lists of CpGs are partially overlapped, 310 

the degree of overlap in selected CpGs is lower than expected (Figure 3D). Therefore, 311 

while some CpGs may contain relatively important information for age prediction, there 312 

may be significant redundancy in DNA methylation, allowing high model correlation and 313 

performance even with low shared identity of CpGs. It is also important to note that the 314 

original Hannum methylation age clock used CpG preselection [12] whereas here we 315 

are performing unsupervised selection. This may account for the overall slightly reduced 316 

performance. However, we find it more promising that the spread of resultant 317 

correlations in test data is relatively small, retaining correlations above 0.8 for the vast 318 

majority of models. This high redundancy amongst CpGs may largely explain why 319 

different clocks trained to predict the same outcome can have such sparse overlap in 320 

their composition. 321 

Similar results are found for a tissue specific aging clock, Horvath Skin & Blood 322 

(Figure 3C,E). Here, we see that despite training and testing with half the sample size of 323 

the original clock, more than 50% of the models outperform the original clock’s 324 
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prediction in the test dataset. It has been demonstrated that there are measurable 325 

differences in age related DNA methylation changes between tissues [57, 58]. 326 

Consequently, there may exist particular sets of CpGs which are essential to the 327 

function of for tissue specific aging clocks [49]. However, our results suggest that the 328 

majority of the CpGs have significant redundancy even for use in a tissue specific age 329 

predictor. Again, the selected CpGs do not have significant overlap between lists, 330 

despite them having significant overlap within a list across sample bootstraps (Figure 331 

5E). Therefore, there may be many CpGs to select from for age prediction in tissue-332 

specific contexts, though given the limitations of the current training method, they may 333 

not be truly tissue-specific merely single-tissue trained. 334 

Beyond enabling characterization and investigation of the existing epigenetic 335 

clocks’ mechanics, the current package enables efficient comparison of desired clocks 336 

with important biological phenotypes, biomarker data, or other sample metadata (Figure 337 

6). Due to the rapid calculation of DNAm-based clocks in new data with automatic 338 

appending of results to existing phenotype/ sample metadata, researchers can quickly 339 

search for associations between outcomes or biomarkers, and clock scores.  340 

Typically, the user will want to residualize the clock scores rather than using raw 341 

scores, to assess the effects of age acceleration. We have left this step up to the user, 342 

as details of correction for batch, sex, race, or other features tend to be dataset, and 343 

use specific. For instructions on how to approach calculating age residuals, please refer 344 

to the included tutorial or wiki on our GitHub distribution repository.  345 

We find that we can rapidly uncover interesting results, such as univariate 346 

associations between the cluster of accelerated mitotic clocks and cardiovascular 347 
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outcomes in the Framingham heart study (FHS) data (Figure 6A). Alternatively, we find 348 

that the acceleration of BMI and Alcohol clocks by McCartney et al. [30] well surpass 349 

the univariate associations found by other clock accelerations to cancer types and 350 

stages in a subset of TCGA data (Figure 6B). 351 

In nearly all cases, we do not recommend that the user calculate all clocks 352 

available to them, as this introduces significant multiple testing. We have previously 353 

shown that clocks can be driven by similar information content [53], highlighting the 354 

potential utility of clustered-clock approaches.  Typically the researcher would be best 355 

served by selecting a hypothesis-driven subset of clocks: This would look like a single 356 

clock tested from within a cluster (e.g. one mitotic clock) or calculating and reporting all 357 

clocks and their agreement. However, we aim to show the ease with which few or all 358 

clocks can be assessed using the methylCIPHER package, as well as to provide 359 

resources to guide those decisions according to the high degree of correlation between 360 

clocks, particularly relative to those of the traits of interest. 361 

Conclusions 362 

 The current software is an important compendium of clocks currently distributed 363 

through a wide variety of means. This reduces impediments to users, both in gathering 364 

the data for calculation, and ensuring reproducible and accurate calculation. Further, 365 

prior decentralized reporting and distribution of epigenetic clocks has led to the potential 366 

for researchers to inadvertently conduct significant multiple testing, potentially without 367 

proper correction: This can even occur throughout the course of a project in which the 368 

researcher becomes aware of, and iteratively tests, additional epigenetic clocks. 369 
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 Through the provision of standardized clock calculation functions, and tools to 370 

rapidly investigate options available to the user, we aim to improve uptake of epigenetic 371 

clocks while enhancing the reproducibility of DNAm clock-based studies in the future. 372 

Further, as the current package is installed locally to one’s personal computer or 373 

computing cluster, it is possible to rapidly calculate several epigenetic clocks, even in 374 

protected data. We intend to expand the clocks contained in this package in the future: 375 

(1) The addition of future human DNAm (regression) based clocks to the present 376 

researcher’s toolkit will be essential; (2) Availability of mammalian arrays [34] will spur 377 

the use of similarly implemented epigenetic clocks for nonhuman vertebrates, and 378 

should also be included here; (3) The online tutorial provided in the currently discussed 379 

Github repository will be further expanded according to developing practice and user 380 

suggestions for standard features of epigenetic clock-based disease and trait analysis. 381 

Due to their different operating requirements and less standardized implementation, 382 

other forthcoming methods of epigenetic clock calculation are unlikely to be housed 383 

within this package, but we will direct users to their own sources using our wiki and 384 

tutorial pages. These include, but are not limited to, deep learning-based clock 385 

approaches [35, 59], the next generation of low-noise clocks referred to as PC Clocks 386 

[36], and single cell epigenetic clocks approaches [33]. 387 

 388 

Availability and Requirements 389 

Project name: methylCIPHER 390 

Project home page: github.com/MorganLevineLab/methylCIPHER 391 

Operating system(s): tested on Mac OS 11+, with and without M1 chip, Windows  392 
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Programming Language: R 3.6.1+ 393 

Other requirements: 394 

License: TBD 395 

Any restrictions to use by non-academics: TBD 396 

 397 
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575 

Figure 1: The Evolution and Diversity of Epigenetic Clocks. (A) Epigenetic clocks are semantically 576 

organized into key categories, and (B) individual clocks categorized and highlighted along a timeline. 577 

Note that years with multiple clocks are colored in blocks from top to bottom according to the alphabetical 578 

list. 579 
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580 

Figure 2: methylCIPHER Function Schema. A representational schematic of the functionality contained 581 

within methylCIPHER. Data is connected as inputs with dashed lines. User inputs are colored in yellow, 582 

with objects required to be supplied by the user highlighted with “!”. Orange rectangles indicate functions 583 

exported by methylCIPHER for the user to run. Blue pentagonal boxes indicate outputs, with green 584 

checkmarks as endpoints. Green cylindrical objects are RData objects stored and accessible from within 585 

the package. 586 
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587 

Figure 3: Impacts of Missing CpG Imputation on Key Clocks. Three representative clocks, Hannum 588 

(A, D), Horvath Multi-Tissue (B, E), and PhenoAge (C, F), were selected to assess the effects of 589 

imputation. Relative model contribution was calculated according to the absolute CpG weight in the 590 

regression model, multiplied by the standard deviation of the CpG in the Framingham Heart Study 591 

dataset. The model contributions of each CpG were plotted against the standard deviation of the CpGs, 592 

with the mean of each axis plotted as a blue crosshatch (A-C). Imputation of CpGs in the top right 593 

quadrant, with high standard deviation and high model contribution, will have a greater impact than CpGs 594 

in the other quadrants. Further, clocks whose CpGs extend further into this region will be more impacted 595 

by mean imputation effects. We repeatedly tested and plotted the effects of mean imputation on 0.1%, 596 
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5%, 10% and 20% of CpGs selected at random (D-F). Due to varying sizes of the clocks, these 597 

percentages represent varying numbers of missing CpGs for each of the clocks. 598 

599 

Figure 4: Shared Signal Does Not Arise From Shared CpGs. Epigenetic clocks were selected from the 600 

categories of highly accurate chronological age clocks (A) and cancer & mitotic rate clocks (B) as defined 601 

in Figure 1. Selection of CpG identity overlap was limited to 4 clocks per category, and in the case of 602 

mitotic clocks hypoClock was not included as it was designed to select different CpGs from EpiTOC2. (C) 603 

Sex-adjusted clock residuals were found in FHS and correlated according to biweight midcorrelation 604 
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(thresholded at >0.2). While clock residuals can capture well-correlated information, their CpG overlaps 605 

within a cluster can be quite low.  606 
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607 

Figure 5: Bootstrapping Methylation Data Demonstrates Methylation Redundancy. The 608 

experimental design matrix (A) demonstrates how both samples (19x) and CpGs (200 x 10k CpGs) were 609 

selected with random amounts of overlap in their sampled dimensions. Each sampling cell was used to 610 

retrain an elastic net regression model of the Hannum (B) or the Horvath Skin & Blood (C) clocks. The 611 

large vertical lines demonstrate the correlation of the originally developed clock in the whole test dataset. 612 

Smaller vertical lines in the purple density plots indicate the median age correlation of the within-sample 613 

bootstrap elastic net trials. As each experiment is allowed to overlap in CpGs to an extent, we use the p-614 

value and Jaccard indices of modified gene set overlap tests to determine whether CpGs are repeatedly 615 

selected across bootstrapped CpG lists and within a given list across sampling sets, for both Hannum (D) 616 

and Horvath Skin & Blood (E). 617 
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618 

Figure 6: Clock Univariate Associations Capture Key Signal In Diverse Datasets. The available 619 

epigenetic clocks’ simple age regression (regression of clock onto just age) were converted to z-scores 620 

across each dataset, as were samples metadata such as age, BMI, or sex. Additional sample traits were 621 

left as original variables as z-scores aren’t realistic. The univariate associations were then described as 622 

the absolute biweight midcorrelation between the z-scored clock residuals and sample metadata. (A) In 623 

FHS data, there is clear associations between traits of interest and a cluster of mitotic clocks, whereas (B)624 

in a few cancers in TCGA data, McCartney lifestyle/ trait predictors of Alcohol and BMI show the strongest625 

correlations to traits of interest. 626 
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