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Abstract

miRNAs are major post-transcriptional regulators. Discovering pre-miRNAs is the core of locating

miRNAs and their genomic annotations. Using traditional sequence/structural features many tools

have  been  published  to  discover  miRNAs.  However,  in  practical  applications  like  genomic

annotation, their actual performance has been far away from acceptable. This becomes more grave

in plants where unlike animals pre-miRNAs are much more complex and difficult to identify. This

is reflected by the huge gap between the available software for animal and plant miRNA discovery.

Here, we  present  miWords,  an attention  based  genomic  language  processing  transformer  and

context scoring deep-learning approach to accurately identify pre-miRNAs in plants which can be

extended to other eukaryotes also. During a comprehensive bench-marking the transformer part of

miWords  alone  significantly  outperformed  the  compared published  tools  with  consistent

performance while  maintaining  an  accuracy of  ~94% across  a  large  number  of  experimentally

validated data.  Performance of miWords was also evaluated with Arabidopsis genome annotation

where also  miWords outperformed even those software which essentially  use sRNA-seq reads to

identify  miRNAs.  miWords was  run  across  the  Tea  genome,  reporting  821 pre-miRNAs,  all

validated  by  RNA-seq  data.  10  such  randomly  selected  novel  pre-miRNAs  were  also

experimentally validated  through qRT-PCR. 

Keywords: microRNA, Transformers, Gradient Boosting, Deep learning, Genomics
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Introduction

miRNAs  are  prime  regulatory small  RNAs  (sRNAs)  having  ~21  bases length  which  post-

transcriptionally regulate  most  of  the  genes  and  stand  critical  for  most  of  the  processes  of

eukaryotic cells including their development and specialization (1). miRNAs can be found in the

intronic as well  as intergenic regions (2,3).  Mature miRNAs are derived from longer  precursor

miRNA molecules (pre-miRNAs) which are double-stranded RNAs (dsRNAs) with terminal hairpin

loop. Discovering these pre-miRNAs is the central to the problem of finding miRNAs and genomic

annotations for them. However, finding these pre-miRNAs remains a challenge, and more so in

plants.  Unlike animals,  in plants mature miRNA formation from the precursors is a single step

process.  Also in terms of complexity,  secondary structures  of plant pre-miRNAs are way more

complex  and  longer  than  those  of  animal  pre-miRNAs  (4),  making  them  difficult  to  detect

accurately. The traditionally considered sequence and structural properties and features to identify

miRNAs also hold responsibility of difficulty in identifying them as they display lots of variability

across  the  plant  genomes in  terms  of  sequence  composition properties,  structural,  and

thermodynamic properties. 

A comparison  of  these  traditional  properties  properties  like AU%,  GC%,  length  of  sequence,

number  of  bulges,  terminal  loop  length,  minimum  free  energy  (MFE),  maximum  bulge  size,

mismatches  and stem length  for pre-miRNAs in plants  and animals  display  a  good amount  of

variability and overlap with other genomic elements with several of these properties.  Also these

values differ a lot between plants and animals, while within plants a good overlap is found between

miRNAs and non-miRNAs regions for the same properties (Figure 1 and Supplementary Table 1

Sheet 1). This all suggest that how they are prone to wrongly identify the miRNA regions.
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Though experimental techniques like direct cloning and quantitative real-time PCR (qRT-PCR) are

used identify  miRNAs  with  high  expression  levels,  they  are  very  costly  and  cumbersome  for

genomic level  identifications  and remain mainly limited for experimental validation purpose or

studying a handful of miRNAs. Off-late,  experiments like RNA-seq and arrays studies have been

identified as the main way to identify and profile miRNAs/pre-miRNAs across the genome, but

they too essentially require support from computational approaches while using the sequencing read

data.  The difficulties in  the  identification of plant  miRNAs has  been so much that  it  could be

fathomed  from  the  fact  that  it  has  been  plagued  of  huge  volume  of  false  identifications  and

reporting and in year 2018 miRBase had to scrap a large number of the reported plant miRNAs data

(5). An urgent call was made to critically look into the process of plant miRNA identification and

annotation process, following which in the year 2018 some critical guidelines were suggested (6).

These  studies  highlighted  the  need  of  support  by  sRNA-seq  for  reporting  novel  miRNAs  and

seriously questioned the capabilities of existing software pool to identify plant pre/miRNAs which

were flooded with false predictions and false positive reportings. The same studies, therefore, also

recommended that credibility of any such software must be judged by using it across some well

established and annotated genomes like  Arabidopsis, and evaluate their false positive rates. Since

then, most of the approaches to identify plant miRNAs and their precursors have been focused on

using sRNA-seq data to report the precursors and their miRNAs while basically founded on the

above mentioned traditional properties as descriminators.

In the identification of miRNA precursors,  identification of secondary structure patterns, hairpin

loops, and their thermodynamic  stability have been the most followed approaches.  Additionally,

homology and conservation patterns were also used to locate similar kind of precursors in other

genomes. Tools like MirFinder (7), MicroHARVESTOR (8), RNAmicro (9), MIRcheck (10) show

case  that.  Based  on  near-perfect  complementary properties  between  plant  miRNAs  and  their
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targets , other methods like FindMiRNA (11) and MiMatcher (12) were also developed to predict

the plant pre-miRNAs.   

Lately, with the rise of next generation sequencing techniques, it has become possible to sequence

entire expressing miRNAome. This led to the evolution of the tools which utilize the sRNA-seq

reads as guide to support their pre-miRNA models. Tools like miR-PREFeR (13),  ShortStack (14),

PalGrade (15) or miRDeep (16), belong to this category which has also become the default choice

of present days miRNA discovery  projects. Compared to totally computational approaches, these

methods take additional support from the sRNA sequencing data as guide. But they have their own

shortcoming and they are not immune to false identifications. First, their dependence on sRNA-seq

data makes  them not approachable by all and a costlier stuff as one will have to first manage the

sequencing experiments and costs related to that. Secondly, these all methods also utilize the same

old features and rules which we described above how they work as poor discriminator. Third, they

can capture only those pre-miRNAs which express in any given condition, and miRNA expression

is highly specific. Many of their rules are not suitable and may even capture non-miRNAs as well as

discard genuine miRNAs. 

Though sRNA-seq based approaches have become the default choice to detect miRNAs, advent in

new machine learning techniques have improved the core miRNA discovery protocol which are

defining new developments.  Compared with the conservation-based methods,  machine-learning-

based methods are mainly anchored on sequence and structure based features of pre-miRNAs with

more mature automated statistical  learning process, sans the rules based  approaches. They have

specially emphasized upon the RNA secondary structure and hairpin loops identification. Although,

groups like Bentwich  et al suggested that there are about 11 million hairpins in human genome,

making it a daunting task to correctly identify miRNA precursor candidates from  hairpins (17).
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Based  on  support  vector  machines  (SVMs),  Xue  et  al.  developed  triplet-SVM  with  32  local

structure-sequence  features  (triplet  elements)  from known  human  pre-miRNAs  which  captured

structural as well as sequence information (18). This study marked the machine learning revolution

in the area of miRNA biology.  This was soon followed by SVM based tools like miPred (19),

microPred  (20). Methods like Probabilistic co-learning models, naïve Bayes, random forest, and

kernel density estimation also came into the scenario to identify pre-miRNAs form pseudo hairpins.

Advanced bagging based ensemble method was also introduced with miR-BAG (21).  However,

these developed methods were specifically designed to predict animal pre-miRNAs but  rarely for

plant pre-miRNAs. Only  Triplet-SVM (18)  had been tested on the pre-miRNAs from A. thaliana

and O. sativa. As the plant pre-miRNAs differ greatly from the animal pre-miRNAs and are more

complicated,  plant  miRNA  discovery  kept  lagging  while  lots  of  software  were  developed  for

animals.  Yet,  plant  miRNA  biology  took  forward  the  Machine-learning  revolution  caused  by

Triplet-SVM with machine-learning tools like PlantMiRNAPred (SVM based) (4), MiPlantPreMat

(SVM based) (22), HuntMi (Random Forest based) (23), and plantMirP (Random forest) (24). It

rarely witnessed any major entry of deep-learning based plant pre-miRNA discovery tools until

very recently.  This has also to be noted that majority of these tools  don’t comply with the 2018

criteria for plant microRNA annotation (6).

Lately, deep learning (DL) techniques have been implemented successfully to tasks such as speech

and  image  recognition,  largely  eliminating  the  manual  construction  of  features  and  their

engineering.  They have been very effectively  digging out  better  but  hidden features  for  model

building which are otherwise difficult  to detect manually (25). In an excellent benchmarking of

machine learning based pre-miRNA discovery tools, it was found that the deep learning methods

were constintly performing better than the other machine learning approaches, more so when the

data  was  imbalanced  (26),  seting  the  pointer  for  further  developments  towards  DL  based
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approaches. miRNA biology has very recently witnessed some of them for pre-miRNA discovery,

which though not developed exclusively for plants, but can be trained on the plant specific data

also.  This  includes  appraoches  involving  Boltzman  machines  based  deep  learning

DP-miRNA/deepBN  (27),  deep  learning  based  self  organizing  maps  (SOM)  (28),  convolution

neural  nets  (CNN)  based  miRNA  classifier  like  deepMiR  (29),  convolutional  deep  residual

networks (30), long-short term memory (LSTM) based pre-miRNA classifier like deepMiRGene

(31).  

DL approaches  like convolutional neural networks (CNN) and  recurrent neural networks (RNN),

the two dominant types of DNN architectures which have shown huge success in image recognition

and  natural  language  processing  (NLP)  (32,  33,  34).  CNN takes  input  in  the  form of  pixeled

matrices where it effectively compresses the features to detect the spatial patterns. Natural language

processing approaches like recurrent neural nets (RNN) were developed for processing sequential

data  (34).  RNNs  evolved  further  into  long  short-term memory  (LSTM) approach  where  a  bit

distanced associations within a sequence could be detected and memorized.  

However, despite the forays into DNN based software to detect pre-miRNAs, there remains lots of

voids  to  be  filled.  First  is  the  inconsistent  performance  where  huge  gaps  were  found  when

benchmarked across different datasets. Secondly, most of them are still based on direct reading of

the input sequences and work with 4-states nucleic acid sequence inputs and 3 states secondary

structure inputs. As Deep RBM based software above showed, increasing features in input boosts

performance.  Third,  barring  CNN,  LSTM, and  RBM deep  learning  approaches  require  lots  of

compute power, time, and resources. LSTM like approach can’t be parallelized and become very

high on memory consumption and time to train the network. Further to this, they fail to detect the

associations  effectively  if  the  sequence  length  is  increased  or  long  distanced  associations  are
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present.  As  already  mentioned  above,  the  plant  pre-miRNAs  differ  significantly  from  animal

miRNAs from sequence  to  structural  properties,  as  can  be  seen  from the  Figure  1.  Plant  pre-

miRNAs have much larger sequences than animals, which may complicate LSTM based learning.

And above all, the existing software at present still fail miserably in their practical application of

genome annotation for miRNAs, as noted by some recent studies (6). Recently, a new revolutionary

DL architecture, Transformers, has been  introduced in the area of artificial intelligence, which has

emerged as a highly efficient architecture for language processing tasks (35).  It uses self attention

mechanism on the input which can be process parallely while more effectively capturing the long

distanced  associations  and  contexts  within  any  sequential  data.  It  has  outperformed  all  DL

approaches in the machine learning bench-marking and exhibits high promises for much smarter

system development .   

Inspired by these milestones in Deep Learning, present work proposes a novel hybrid deep  learning

based  approach,  where  the  transformer  defines  the  first  phase whose  sequence  output  from  its

encoder becomes  the  input  to  a  shallow  learning  approach,  XGBoost,  which  takes  the  final

classification decision. By unifying the two ML approaches, further performance improvement and

balance  was obtained when tested  across  a  large  amount  of  validation  datasets.  The important

aspect  is  that  unlike  most  of  the  existing  deep-learning  approaches,  miWords sees  a  genome

sequence as a set of sentences composed of words made from  monomers, di-mers, and pentamers

capturing sequence based information and communication  among themselves. They also capture

properties like base stacking structural properties and nucleic acids shape properties. Besides this,

genome is  also seen as  a  sentence  pool  made of  words  from structural  triplets  from the  RNA

secondary structures. Context wise their association including long ranged ones are successfully

detected  which  is  otherwise  missed  by  the  existing  software  pool  for  miRNA  discovery.  A

comprehensive  benchmarking  study  was  performed  whose  results  showed  that  miWords
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outperformed  all  the  compared  software  with  highly  significant  margin,  just  based  on  this

transformer part alone.

The real application of such software in genomic sequence annotation of pre-miRNA discovery has

been a challenging part where most of the existing software for pre-miRNA discovery generate lots

of wrong classification besides being lethargically slow to scan genomic sequences. The existing

software pool  hardly  considers  the  long  distanced  relative  standing  of  the  genomic regions  to

characterize pre-miRNA regions, which is one big reason why they end up producing lots of false

positives. We noticed that the regions having miRNAs generate a specific transformer scoring (T-

score)  pattern  when  compared  to  the  non-miRNA  regions,  and  this  could  work  as  a  strong

discriminator which  could  further  boost  pragmatic  miRNA  discovery  with  genomic  context

information. The T-score generated by the transformer across the genomic region forms a scoring

plot which captures the relative standing of the scores for various regions on which  a CNN module

was trained. This CNN part can scan the regions and their T-scores in a relative and contextual

manner for the genome wide T-scoring profile. It remarkably lowers the false identifications which

is otherwise hardly seen with any existing approaches. In addition to this CNN module, one more

optional CNN module has been provided where the user can supply the sRNA-seq data to further

enhance the accuracy. Thus, a user can run miWords with and without sRNA-seq support data, and

in both the ways can get highly accurate results. 

Considering the 2018 guidelines for miRNA  discovery and annotations which asks to prove the

performance  of  such  software  across  well  annotated  genome  like  Arabidopsis,  to  measure  the

degree of false positives in the real application, we also ran miWords across the whole genome of

Arabidopsis and carried out the genomic annotation performance measure while comparing with

other existing tools. miWords outperformed  all of them with just 10 false positives. Even without
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considering sRNA-seq read data, miWords outperformed all those well established software which

essentially require sRNA sequencing read data, making it much affordable besides being a better

performer. Finally, miWords was applied across the Tea genome whose miRNAs annotation is still

not well established. It identified a total of 821 pre-miRNAs across the Tea genome. We selected

and experimentally  validated  10 of  these novel  pre-miRNAs identified  across  the Tea genome.

miWords has  been  made  freely  available  as  a  source  code  as  well  as  web-server.  We expect

miWords to  drastically  improve  the  scenario  of  plant  genomes  annotations  and  plant  miRNA

biology.

Materials and Methods

Datasets Sources

In this study data was retrieved for 27 different plant species. For the 27 plants species, the positive

set  included  experimentally  validated  pre-miRNAs  and  negative  datasets  contained  mRNAs,

rRNAs, snoRNAs, snRNAs, tRNAs, and other non-coding sequences while  following the same

protocol which we had followed in animal pre-miRNA discovery tool miRBAG (21).  The pre-

miRNAs sequences and their co-ordinates were fetched from miRBase version 22  for all available

plant species including  the model plant species (36). Species which  had no genome information

were discarded, bringing the total number of species to 27. From Ensembl Plants (v51)  and NCBI

negative instance sequences were downloaded for same selected 27 plant species.  The repeated

sequences were filtered out. After that, the same number of sequences were extracted randomly for

each species with respect to their species pre-miRNAs number. A combined positive and negative

datasets were created for all these 27 plants species to build a model that could act as a universal

classifier for plants pre-miRNAs.
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Dataset Generation

Uniform  length  sequences  with  flanking  regions  were  obtained  for  every  individual  positive

instance which varied pre-miRNA-wise. For creating the positive dataset, the central base of the

terminal loop was treated as the reference point, a standard protocol (21). This placed the reference

point appropriately at constant position, providing uniformity across all possible dataset instances,

irrespective of variation in length and loop size. Considering the central base of the terminal loop as

the midpoint, genomic sequences up to 200 bp were extracted from the flanking regions. 

For the negative dataset creation, the terminal loops were identified in the hairpin structures of the

negative instances. As followed above, the central base of the terminal loop was mapped as the

reference central position for the creation of every negative instance, as in case of the precursors for

reference  position  identification.  The  negative  dataset  consisted  of  different  types  of  RNA

sequences including ribosomal RNA, small  nucleolar RNA, small  nuclear RNA, transfer RNA,

mRNA and long non-coding sequences, all taking pseudo-hairpin shapes. For all the instances, the

genomic co-ordinate of central reference position was considered for taking 200 bp sequence with

equal flanks.  With this approach, a consistent sequence length for positive and negative instances

was maintained.  These sequences were used to create the training and testing datasets for all 27

species. In the entire study this dataset is known as Dataset “A”.

We additionally constructed an independent dataset, known as Dataset “B”, for another layer of

unbiased benchamarking. This dataset  is based mainly on the  instances considered by other tools

considered for their benchmarking purpose while covering 75 plant species. Like Dataset “A”, the

positive instances were from the pre-miRNAs available at miRBase. But unlike Dataset “A” which

has positive instances from only 27 species whose coordinates  are available as discussed earlier,
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Dataset  “B”  had  also  those  pre-miRNAs  from  miRBase  for  the  species  whose  genomic

coordinates/information are presently not available. None of the data came from the miRBase (v22)

and also redundant sequence were discarded. Negative instances of this dataset were also built from

the dataset for the same for the  selected tools. Redundant sequences were dropped. For the negative

instances, a total of 92,000 instances were collected for this dataset. Dataset “B” was purely used

for objective comparative bench-marking on which all comapred tools were tained and tested on

common training and testing datasets. 

Encoding of sequence data

The Encoder-Decoder  architecture  with  Transformer  has  emerged as  one  of  the  most effective

approaches for the neural machine translation, sequence-to-sequence, and binary classification. The

prime  importance of the method  is the potential  to  train a  single end-to-end model directly  on

source  and  target  sentences  having the  capability  to  handle  variable  length  input  and  output

sequences. However,  deep networks  like  transformers,  LSTM,  and  RNN  work  by  performing

computation on integers, passing in a group of words won't work. So these input sequences were

tokenized for further computation. Provided a character or word sequence and a defined vocabulary

set, tokenization is the procedure of cutting it up into unique numerical units, called tokens. These

tokenizers  along with processes words from the sentence as input and output a unique numerical

representation for the tokenized word which becomes input for the embedding layer of the model.

Tokenization followed by embedding layer allowed to vectorize the words into a fixed sized (28

elements  each)  vector of  numeric  values.  The  process  of  tokenization  was  implemented  using

TensorFlow  (Keras)  Tokenizer  class  for  end-to-end  tokenization  of  the positive  and  negative

datasets.  We  created  the  Tokenizer  object,  providing  the  maximum  number  of  words  as  our

vocabulary size, which we had in the training data.  Tokenizing the data  while maping the words to
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unique  numeric  representation,  the  vocabulary  and  words  within  the  genomic  sequences were

encoded.

To encode  sequences,  every single instance was  converted into possible  words  i.e. monomeric,

dinucleotide, and pentameric sequences in an overlapping window.  Dinucleotides and pentamers

provide structural stacking and shape information, respectively (37, 38).  The secondary structural

information  of  these  RNA sequences  were  also  used.  This  information  of  structure  for  each

sequence  was  obtained  by  RNAfold  of  ViennaRNA Package  v2.4.18  (39).  RNAfold  predicts

secondary structure of RNA and gives output  in  dot-bracket  form (“(“,”.“,”)”).  To tokenize the

information obtained from RNAfold, notations were transformed using the following: (“(“−>”M”,

“.”−>”O”, “N” −>” )”. For a sequence length of 200 bases, a maximum length of the input vector

was of 793 elements. The encoded monomers, dinucleotides, pentameric sequences and secondary

structural  words were independent of  each another. In this way, the network would determine the

correlations between the sequence derived inputs and the structure triplets based inputs in its own

way. The encoded instances were then fed as input the transformer encoder to train and evaluate the

models.

Implementation of the hybrid Transformers and XGBoost classification system

With the tokenized sequence, encoded vectors were used to build models to classify and distinguish

pre-miRNAs from other  genomic elements  using a  deep-shallow learning  approach:  The multi-

headed attention  system of  Transformer’s  encoder  which  derives  the  most  confident  contextual

associations and places them into a hidden space vectors, which becomes the input for the XGBoost

part to classify and generate the classification score (T-score). Both were implemented using python

scikit-learn, XGBoost, Keras, and Tensorflow libraries. In addition, as per the standard practice, the

dataset was broken into 70% and 30% as  train and test sets, and using the 70% training part the
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model was built and tested upon the 30% totally untouched unseen testing part. Further, in order to

assess the consistency of the approach and  its observed performance,  10-fold randomized trials

were  performed where  10 times the entire  data-set  was randomly split  into 70:30 training  and

testing data, and new model was built and tested from the scratch every time. Also, this was ensured

that absolutely no instance overlaped between the train and test set in any fold. This ensured fair

training and testing process without any scope of memorization of instances.

The input layer consists  of embedding and position encoding layers which operate on matrices

representing  a  batch  of  sequence  samples.   Embedding  encodes  each  word  ID  (unique  token

number) into a word vector whose length is the embedding size, resulting in a (samples, sequence

length,  embedding  size)  shaped  output  matrix.  For  any  given  genomic  sequence  of  length  “l”

(sentence size) , there are “n” words in it. Embedding of these arranged words can be represented

as:

Let the sentence S = {w1, w2,……, wn}

where, wn = nth word in the sentences

Every such word in a sentence is converted into a vector of d-dimension whose elements (Id) carry

the optimized numeric weights:

Wn = [ I1, I2, …., Id] ;

Therefore, the sentence can be represented in the form of embedded words matrix X:

X = [
w 1
w 2
...
wn

][
I11 , I 12 , ... , I 1 d

I21 , I 22 , ... , I 2 d

........
I n1 , I n 2, ... , I nd

];
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where,  each row corresponds to  the  word in  “S”.  This  matrix  has,  thus  a  dimension of  n x  d

(number of  words  in  the  sentence  x the dimension used to  represent  each  word in  embedding

vector).

Each word of the matrix “X” is also combined with its corresponding positional embedding “P”.

The position embedding has same dimension “d” as is for the word embedding vector Wn :

X’ = X + P

where, P = [p1, p2,….., pd] and the values of P are derived using the following equations:

Pd = sine ( index|10000index /no . of dimensions )for all the even positions in the vector;

Pd = cos (index|10000index /no . of dimensions )for all the odd positions in the vector.

Position encoding produces a similarly shaped matrix that can be added to the embedding matrix.

Shape of the matrix (samples, sequence length, embedding size) produced by the embedding and

position encoding layers is maintained throughout the Transformer, which is finally reshaped by the

final output layers. The input embedding layer sends its outputs into the next layer. Similarly, the

output  embedding layer feeds into the next layer (encoder layer).

The encoder passes input into a multi-head attention layer. The attention module consists of one or

more attention heads. The attention module splits its query, key, and value parameters N-ways and

feds each split independently through a different head and then merged together to generate a final

attention score. This entire process of attention score generation has five major steps:

Step 1: From the above mentioned input matrix  X’ derived from the embedded words create the

Query matrix (Q), Key matrix (K), and Value matrix (V):

Q = X’.WO , where WQ is the optimizable weight matrix for the query matrix generation.
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K = X’.WK , where WK is the optimizable weight matrix for the key matrix generation.

V = X’.WV , where WV is the optimizable weight matrix for the value matrix generation.

All these three weight matrices are randomly initialized.

Step 2: Inner product between Query (Q) and Key (K) transpose matrices: Q.KT

This step establishes the weights for association between the words within a sentence and captures

their dependence.

Step 3: Scale the Query-Key inner product to stabilize the gradients:

Q . K T
/√dimension of the key vector

Step 4: Normalization through softmax function, which ensures that values are in the range of 0-1:

Softmax( Q . K T
/√dimension of the key vector)

Step 5: Compute the attention matrix “A” to get the attention score for each word in the sentence:

This is achieved by taking inner product of the above mentioned softmax normalized query and key

inner product with the Value matrix (V):

Softmax (Q . K T
/√dimension of the key vector) . V

This is a single column vector which holds the attention score for each positional word and their

relative closeness in the given sentence.
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For multi-headed attention, the same steps were repeated according to the number of heads and their

individual attention scores vectors were finally concatenated and forwarded to the block of feed-

forward network of the transformer encoder for further processing. Figure 2 provides a snapshot of

how this entire system is working.  The output from multi-head attention layer passed into dropout

layer which helps to reduce over-fitting, which is followed by a layer of normalization. Afterwards

the output  from this layer passes to a feed-forward layer, which then sends its output  to the next

dropout layer in the stack.  Another layer of feed-forward layer was implemented gathering its input

from the previous layer, followed by a layer of GlobalAveragePooling1D  which then passes its

output to  the third Dropout layer  of the model.  The Dropout  layer  passes output  into the fully

connected hidden layers. 

The performance of the  Transformer  was  evaluated for a numbers of hidden layers where finally

total two hidden layers were found performing the best and the connections between the nodes were

made dense. For the model, the number of nodes across the two hidden layers were tuned. All the

component  layers  were  optimized for  their  suitable  numbers  and component  nodes  number  by

iterative  additions.  Different  activation  functions  were examined for  the  layers  from a pool  of

available activation function. The fourth Dropout layer takes into from the last hidden layer and

passes its output into an  LeakyReLu activation function based single node output classification

layer was used with binary cross entropy loss function to calculate the loss. “Adadelta” optimizer

was used at this point to adjust the weights and learning rates. Adadelta adapts learning rates based

on a moving window of gradient updates, instead of accumulating all past gradients even when

many updates have been done. The learning rate was set to 0.583 for the optimizer and the model

build was trained using 20 epochs and batch sizes of 40 instances. The transformer part derived the

hidden features and their relationships which got structured also and on which classification could

be done in much superior manner.  Since the present problem in this study was not translation but
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classification, decoders were not needed and instead the encoder output were taken as input for next

step of extreme gradient boosting. For this purpose out output of the transformer was passed to the

XGBoost classification part.

Optimizaiton of Tansformer-XGBoost system

A gradient  boosting framework, XGBoost,  is  a decision-tree-based ensemble Machine Learning

algorithm which has been consistently rated at the top in shallow learning approaches at Kaggle

bench-markings.  In the classification phase with XGBoost, grid search was applied for parameter

optimization using scikit-learn function RandomizedSearchCV. Following  hyper-parameters were

optimized  with  the  grid  search:   "eta/learning  rate",  "max_depth",  "objective",  "silent",

"base_score",  "gamma",  "subsample",  "eta",  "colsample_bytree",  "n_estimators",

"min_child_weight",  eval_metric",  "tree_method",  "reg_alpha",  "reg_lambda".  Gradient  boosted

decision trees learn very quickly and may overfit.  To overcome this  shrinkage was used which

slows down the learning rate of gradient boosting models. Size of the decision tree were run on

different combinations of max-depth.  Values changed until stability was gained as the logloss got

stabilized and did not change thereafter. The final max_depth value was 6.

The final model obtained was saved in hierarchical data format 5 (HDF5). Since the entire system is

implemented  here  using TensorFlow  and  scikit-learn,  the  HDF5  format provided the  graph

definition  and weights  of  the  model  to  the  TensorFlow  structure  and  saved the  model  for

classification purpose.  Each  and  every  hyper-parameter values  involved  to  finalize  this  hybrid

model were fixed using an in-house developed script which tested various combinations of values

of the hyper-parameters to pick the best ones. This entire optimization process was done using two
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different approaches: Random search optimization and Bayesian optimizations. Figure 2 shows the

detailed workflow of the implemented architecture.

Performance Evaluation 

The performance of the built model was evaluated. Four classes of the confusion matrix namely true

positives (TP) , false negatives (FN), false positives (FP), and true negatives (TN) were evaluated.

The performance of the raised transformer based model was assessed the performance metrics like

sensitivity,  specificity,  accuracy,  F1-Score, and  Mathew  correlation  coefficient  (MCC).

Sensitivity/True  Positive  Rate  (TPR)  defines  the  proportion  of  positives  which  were  correctly

identified as positives.  The specificity value informs about the proportion of negative instances

correctly identified. Precision defines the proportion of positives with respect to total true and false

positives.  F1-score  measures  the  balance  between  precision  and  recall.  Besides  these  metrics,

Mathew’s Correlation Coefficient (MCC) was also considered. MCC is considered among the best

metrics to understand the performance where score equally influenced by all the four confusion

matrix classes (true positives, false negatives, true negatives, and false positives) (40). A good MCC

score is an indicator of robust and balanced model with high degree of performance consistency.

AUC/ROC and mean absolute error were also measured for the build model.

Besides this all, the consistency of performance on the developed approach was evaluated through

10-fold random trials of training and testing. Every time the  dataset was randomly split into 70:30

ratio with first used to train and second part used to test,  respectively. Every single time data was

shuffled and random data was selected for building new model from the scratch. Accuracy and other

performance measure were calculated for each such model. In order to avoid any sort of imbalance,

19

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2022. ; https://doi.org/10.1101/2022.07.14.500029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500029
http://creativecommons.org/licenses/by/4.0/


memory, and bias, it was ensured that no overlap of instances existed ever between the train and test

sets. 

Performance measures were done using the following equations:

Acc=
         TN+TP
(TN+TP+FN+FP )

Specificity (Sp )=
     TN
(TN+FP )

Precision=
    TP
(TP+FP )

Sensitivity (Sn )=
    TP
( TP+FN )

F 1−Score=2×(Precision × Recall
Precision+Recall )

AUC=∫
0

1

Pr [ TP ] ( v ) dv

MCC=
  TP× TN− FP ×FN

√ (TP+FP ) (TP+FN ) ( TN+FP ) ( TN+FN )

Where:

TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives, Acc =

Accuracy, AUC = Area Under Curve.

CNNs based implementation of  genomic scanning capabilities  using Transformer-

XGBoost scoring profiles

Two different CNN modules were constructed for the identification of pre-miRNAs most potential

regions across the genomes. First one is genome wide T-scoring based CNN model and the second
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one is  the  optional  one  which  uses  Read  Per  Million  (RPM) based CNN  further  improve the

identification of pre-miRNAs across the genomes while using sRNA-seq reads data as guide.

The first  module works with the Transformer modules scoring output for every genomic position.

Thus,  the  scanned  genomic  sequence  is  transformed  into  its  corresponding  transformer  scores

sequence for each scanned position until the last window frame. It appears like a plot image where

the T-scoring around the pre-miRNA regions appear different than the regions not having them. This

scores sequence is converted into a one hot encoding acting as an input to a convolution layer. The

scoring profile input has a dimension of 280X10. If the length of some instance was found shorter

it was padded for the empty columns with value of zero. Size of 280 covers the base positions in a

window, for each of which corresponding T-score exists. 10 dimensions come from 10 different

categories of T-scoring ranging from 0 to  1.  To evaluate  the performance of the scoring based

CNNs, various number of hidden, convulational, maxpooling, and Batchnormalization layers were

tested and finally two convolutional, one maxpooling, four batch normalization, and four hidden

layers were  applied in fully connected manner. The number of the nodes across both the dense

hidden layers were tuned based on the number of filters  used in the convolution layer.  All  the

component layers were optimized for their best numbers and component nodes number by iterative

additions.  Additionally,  the kernel size and strides were optimized by trying different values in

incremental order. A sigmoid activation function based single node classification layer was used

with  binary crossentropy loss function to calculate the loss. “Adam” optimizer was used at this

point to adjust the weights and learning rates. The batch size was set to 4 and the number of epochs

was set to 25. 

The  second  CNN based  module  is  optional  as  it  requires  availability  of  short  reads  sequence

mapping  information.  It  takes  RPM value  for  each  base  while  the  input  genomic sequence  is
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represented in the form of RPM value sequence. For this RPM based second module RPM profiles

were created and transformed later into length of 280 vector, where each element holds the scaled

normalized sRNA read depth value for the position of nucleotide in the sequence window. Here

also, padding was done for the shorter input  instances. Similar to the T-scoring based CNN, the

performance evaluation of the RPM based CNNs, various number of hidden, convolutional, and

maxpooling  layers  were  tested  and  finally  one convolutional,  one  maxpooling,  two batch

normalization,  and two fully  connected  hidden layers  were  selected.  The number  of  the  nodes

across both the dense hidden layers, the number of filters used in the convolution layer, the kernel

size and strides were optimized by trying different values  were tuned to find optimal values. As

similar to previous CNN, a sigmoid activation function based single node classification layer was

used with  binary cross entropy loss function to calculate the loss. “Adam” optimizer was used at

this point to adjust the weights and learning rates. The batch size was set to  64 and the number of

epochs was set to 25.

To train and test the T-scoring based CNN module, another dataset was created from the known pri-

miRNA regions of Oryza sativa. The 500 bases from their 5’ and 3’ ends were extracted from the

genome, which acted as the negative instances which could help recognize the boundaries and shift

towards the corresponding miRNA region. All these sequences were represented as corresponding

T-score for  each base position.  Same was done for  the  pre-miRNA regions  also.  As discuused

earlier,  the sequence which is transformed into its corresponding probability scores appears like a

plot image where the scorings around the pre-miRNA regions appear different than the flanking

regions not having them. This entire data from Oryza was considered as training set, where the total

number of positvie instances (pre-miRNA regions) were 604, and the total  number of non-pre-

miRNA regions  (  the  500 bases  flanking sequences  around the  pre-miRNAs) were 604.  Later,
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scores were converted into a one hot encoding acting as a input to a convolution layer and had the

dimension of 280X10. 

Similarily with the RPM based CNN module, the extracted sequences from the genome of  Oryza

sativa were mapped back to the genome to calculate it’s Read per million (RPM) value for every

single base. A total of 131 different samples covering a total of  42  experimental condition, and a

total of four billion sRNA-seq reads (161.GB) were considered for raising the RPM CNN module.

The fully annotated Arabidopsis thaliana genome version (GCA 000001735.1 TAIR10) was used as

the test set to benchmark the performance for genomic annotation.

Optimization of CNNs

In the  T-scoring based CNNs model, the  scores is converted into a one hot encoding acting as a

input to a convolution layer and has a length of 280X10, where the various scoring bins defined the

first dimension and the base positions in the length of 280 window defined the second dimension.

The input layer was followed by a convolution layer containing 64 channels at each position with

2X2 kernel size. The input sequence was padded if the length was shorter than  280 in order to

ensure  a  constant  size  of  the  input  matrix.  The  output  resulted  into  279X9X64 dimension

representation  after  convolution  which  passes  into  a  MaxPooling  layer.  This  layer  included 32

nodes  having  kernel  size  2×2.  Max-pooling  helped  in  reducing  the  dimensions  of  convoluted

sequence into a dimension of 139×4×64 which is then flattened by the flatten layer. The output from

flatten layer passes into first dense layer which is followed by Batch Normalization. This layer was

used  to  overcome  the  over-fitting  problem during  training  process.  Likewise,  the  output  from

previous  layer  passes  into second  dense layer  and then into second Batch Normalization layer.

Similarly, the input passes through two more combinations of dense and Batch Normalization.  It
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goes  finally into the output layer with 50 dimension The output layers had a node with  sigmoid

activation function. The model was compiled by binary cross entropy loss function to calculate the

loss which was optimized  with “Adam” optimizer,  for a batch size of four and 25 epochs. The

model produced probability score for every instance passed.

In the optional RPM based CNNs model, the scaled normalized RPM values of each base became

the input  to  a 1D convolution layer with  dimension of 280X1. The convolution layer  had 32

channels at each position with kernel dimension of of 5X1 . The output from the convolutional layer

passed into a Max-pooling layer  whose output was flattened into a flatten layer. The output from

the flattened layer passed into two fully connected dense layers. Later, It  was followed by a final

output layer with sigmoid activation function. The model was compiled by binary cross entropy loss

function to calculate the loss which was optimized by using “Adam” optimizer with batch size 64

and epochs of 25. The model produces probability score for every instance passed.

Performance benchmarking for genomic annotations and application demonstration

To identify the pre-miRNAs on Arabdiopsis thaliana and Camellia sinesis, we downloaded both the

genomes from NCBI (‘GCA 000001735.1 TAIR10’ and ‘GCA 004153795.2 AHAU CSS 2’) for

performance  benchmarking  for  genome  wide  pre-miRNAs  annotation  and  as  the  application

demonstration,  respectively.  The genomes  were scanned  by the  transformer  module  through an

overlapping sliding window of 200 bases up to n-200th position. The generated position-wise scores

sequence  was  scanned  through  an  overlapping  sliding  window  of  280  elements,  where  every

window becomes the input to the CNN modules as described above.  
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Arabidopsis  genome annotation for miRNAs were obtained from miRBase (v22). Seven different

published tool’s annotations for  Arabidopsis (miR-PREFeR, ShortStack, mirDeep-P, miRanalyzer,

mirDeep2, mirDeep*, MIReNA) were also considered for the corresponding performance measure

for the benchmarking process (5, 6). In addition to this, another reference dataset for Arabidopsis

was retrieved from the work of Bugnon, et al 2021 where they had benchmarked various tools for

miRNA identification  recently  (41).  They focused on the  performance of  the  tools  on the real

situation data like genomes where class imbalance is pronounced with much higher instances of

non-miRNA instances.

Validation of identified pre-miRNAs candidates using sRNA-seq reads 

For the validation of the identified pre-miRNAs, the sRNA reads were considered by mapping them

to the genome. These sRNA-seq fastq data were collected from GEO and SRA databases which had

88 and  104  different  read  files  for  Arabdiopsis  thaliana and  Camellia  sinesis,  respectively

(Supplementary Table 1 Sheet 2-3).  Genomic sequences, annotations and reference RNA sequences

were downloaded from NCBI. Trimmomatic v0.39 (42) and in house developed reads processing

tool, filteR (43), were used to filter out poor quality reads, read trimming, and for adapter removal.

Filtered  reads  were  mapped  back  to  the  genome  using  Hisat2  (44).  Complete  list  of  various

conditions and sources is available in Supplementary Table 1 Sheet 2-3 . To remove any bias and

noise due to some random elements, two different criteria were applied: (i) Reads which appeared

more than five times in any given experiment were only considered, and (ii) the mapping region got

support  from  at  least  for  two  different  experimental  conditions,  as  suggested  by  the  recent

guidelines (45). All  these reads were subjected to validation for identified pre-miRNAs across the

genomes. The  co-ordinates of  the short reads were obtained from the mapped results and were

intersected it with results obtained from miWords utilizing bedtools (46). Since many miRNAs are

also homologous, the identified miRNAs by miWords were searched for homology support using
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blastn with already reported plant miRNAs in miRBase. Related information about sRNA reads file

is provided in Supplementary Table 1 Sheet 2-3.

Server and Standalone Implementation

The entire server was implemented in Apache-Linux platform using PHP. Majority of the codes

were  developed  in  python  and  shell.  Statistical  processing  and  calculations  were  implemented

through methods were also executed using modules developed with python. The standalone version

was  developed  in  python  and  shell.  The  entire  work  was  carried  out  in  Open  Source  OS

environment of Ubuntu linux platforms.

Experimental validation: RNA isolation and quantitative real-time analysis

Total RNA was isolated from tea leaves (Camellia sinensis) from the CSIR-Institute of Himalayan

Bioresource technology (32° 05’ 59’’N; 76° 34’ 04’’ E; 1305 m a. s. l) experimental farm (CSIR-

IHBT-269) in (47).  Approximately 10-12 plants more than eight years old were randomly selected

from three sub-populations from the same farm, thus representing three biological replicates for leaf

sampling.  Samples were harvested in liquid nitrogen and stored at -80 °C for RNA isolation.  Total

RNA was isolated from leaf tissue (100mg) using Trizol (Invitrogen, USA) according to (48).  Total

RNA was treated with RNase-free DNase I (Invitrogen, USA) as per as manufacturer’s protocol.

The  cDNA  synthesis  was  performed  using  random  hexamer  and  SuperSrcipt®  III  Reverse

Transcriptase (Invitrogen, USA), as per as manufacturer’s protocol.  Primers of 10 pre-miRNAs

were designed using primer 3 software v.0.4.0; Applied Biosystem (Table  1).  Quantitative real

time-PCR was performed using the standard protocol on Applied Biosystem, USA.  In brief, 2.5 µg

of the 1/100 dilution of cDNA with water was added to 5.5µl of SYBR green (Thermo scientific,

USA), 2.5nM each primer, and water to 10 µl reaction mixture.  Amplification was performed with
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an initial denaturing at 95 °C for 7 min, followed by 40 cycles of 95 °C for 10s, 53 °C for 30 s, and

72 °C for the 30s.  Relative expression of each pre-miRNA was calculated using the equation 2 -ΔC
T

where ΔCT = (CTPre-miRNA – CT18SrRNA) (49).  18S rRNA was taken as an internal control to normalize

the variance in cDNA.  To simplify the relative presentation expression of each pre-miRNA was

multiplied by 106.   All  reactions  of qRT-PCR were performed using three biological  and three

technical replicates.

Results and Discussion

The datasets instances

Presently,  there  are  8,615 known  plant  pre-miRNAs  in  the  miRNA database  miRBase  v22

(http://www.mirbase.org/). After the retrieval of data, only those species sequences were kept which

had their respective genome information and those having no information were eliminated from the

pool.  5,685 pre-miRNAs belonged to 27 plant species which  formed the positive sample dataset.

Supplementary Table 1 Sheet 4 shows the pre-miRNAs distribution across the 27 plant species. 

To  construct  the  negative  dataset,  same  number  of  instances  were  collected  from the  species

selected for their corresponding positive dataset. For only 14 out of 27 species, non-coding RNAs

were available at Ensembl plants (v51) from which a total of 5,685 RNAs of different classes were

retrieved while eliminating the redundant sequences. 

Besides raising the trained model and testing it, 10 times random train-test trails have also been

done to evaluate the consistency of the transformer approach. For every such trial, a total of 3,978

plant pre-miRNAs and 3,978 negative  instances,  totaling 7,956  instances in overall,  formed  the
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training  dataset.  A total  of  3,412  instances  formed  the  testing  dataset.  It  was  ensured  that  no

instances overlapped between train and test sets in order to avoid any chance of bias and memory. 

Besides  the  above mentioned dataset,  another  Dataset  “B” was built  for  absolutely testing  and

objective comparative bench-marking purpose. This dataset was built from the datasets used by the

different tools like miPlantPreMat (22), PlantMiRNAPred (4), HuntMi (23), and plantMirP (24). A

total  of  16,404  sequences  were  retreived,  covering  75  plant  species.  After  removing  similar

sequence,  only  9,214  (positive  instances)  plant  pre-miRNAs  were  obtained.  Similarily,  92,000

RNAs of  different  classes  (negative  instances)  were  retrieved  after  removal   of  the  redundant

sequences.

In addition to this, to fathom the performance on the real situation data like genomes where class

imbalance is pronounced with much higher instances of non-miRNA instances, dataset provided in

the study by Bugnon et al (2021) was also considered (41).

 

Sentences,  Words,  and Attention!  Seeing  genome as  a  pool  of  sentences  through

transformers delivers high accuracy  

Most of the existing pre-miRNA discovery tools depend upon some traditionally identified feature

sets highly focused on the hair-pin loop structures and sequence composition. They build around

properties like Minimum free energy (MFE), stem length, AU/GC content, pairing in stem, terminal

loop size etc,  most of which are inherited from miPred (20).  However,  these properties exhibit

significant  differences  between  animal  and  plant  system,  and  within  plants  themselves,  these

properties exhibit lots of variations. Figure 1 shows the distribution plots for some of such features

to build the pre-miRNA models which exhibit a lot of difference from animals as well as variation

among themselves and overlap with other types of RNAs. Also, in most of the existing tools, there
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is absolutely no effort made to record their relative standing and context which largely limit their

practical application when used to annotate genomic sequences (6, 26) .

One  of  these  studies  clearly  showed how poorly  most  for  the  existing  software  to  detect  pre-

miRNAs perform when they face real situation application of performing genomic annotation. They

recommended that compared to the traditional machine-learning approaches, it is the need of the

time to focus upon the development of the methods based on DL approaches which may perform

better  than the other  machine learning methods.  Considering  these seminal  works  and existing

limitations  of  existing machine learning approaches,  the  current study proposes a  revolutionary

transformers deep-learning based approach  where context and relative standing of the properties

have been emphasized upon to come up with a highly accurate and practical pre-miRNA discovery

system, miWords.

For the building of a universal model for plant pre-miRNAs for its classification form other types of

RNAs, we used 13 different combinations for various sequence input encodings: 1) Monomers, 2)

Dimers,  3)  Trimers,  4)  Pentamers,  5)  Structure  triplets,  6)  Monomers+Dimers,  7)

Monomers+Trimers,  8)  Monomers+Dimers+Trimers,  9)  Monomers+Dimers+Pentamers,  10)

Monomers+Dimers+Pentamers+Triplets,  11)  Monomers+Dimers+Trimers+Triplets,  and  12)

Monomers+Dimers+Trimers+Pentamers+Triplets  were evaluated for  performance of through  the

raised transformer encoder based model. An assessment was  made for each encoding considered

where the Dataset “A” was split into 70:30 ratio to form the train and test dataset. Then, the model

was  trained  with  the  train  set  and  all  the  above  mentioned  properties  encodings  were  done

accordingly. This protocol came in action as an ablation analysis to  evaluate how  each of these

individual encodings of the sequence was contributing towards the building of model for accurate

29

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2022. ; https://doi.org/10.1101/2022.07.14.500029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500029
http://creativecommons.org/licenses/by/4.0/


classification. The sequences were taken in a uniform length of 200 base while taking the reference

from the midpoint of the terminal loop, as described in the methods section.

At the first,  the Transformer was trained and tested without  the XGBoost  gradient  boosting to

evaluate  its performance.  First,  the  test  of  performance  was  done  with  monomeric  sequence

representation and its corresponding encodings fed into the input layer of the Transformer. The

observed accuracy for monomeric encodings was just 72.36% covering a total of  200  words per

sentence.  This  was  followed  by  feeding  of  dimeric,  trimeric,  and  pentameric  sequence

representations and their encoded sequences into the input layer of the Transformer. This returned

an accuracy of 73.21%, 75.36%, and 79.01%, respectively, while covering a total of 199, 198, and

196 words, respectively.

The  reasoning  for  considering  monomeric  representation  was  that  they  capture  sequence

composition. While the dinucleotide representation has been proven very useful to reflect the base

stacking and secondary structure properties (39, 50). Pentamaric sequences are reflective of the

nucleic acids shape which determine protein-nucleic acids interactions (38, 51). All these are critical

to  characterize  a  pre-miRNAs.  Besides  the  above  mentioned  sequence  based  properties,  the

secondary structure stem-loop based features were also used for the representation and encoding, as

miRNAs exist in the stem-loop hairpin form.  RNAfold  derived stable secondary structure of the

considered  region  was  used  for  the  structural  representation.  For  the  sequence encoding  the

extracted  dot-bracket  secondary  structure  of  these  sequences  were converted  as  following:

(“(“−>”M”, “.”−>”O”, “N” −>” )”. These encoding were fed into input layer in the form of triplet

words covering a total of 198 words per sentence. This fetched an accuracy of 77.09%. As can be

seen here now, individually all these properties did not score much and needed information sharing
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with each other. To obtain encoding of a particular type, the sequence was broken down into sub-

sequences in an overlapping fashion to gather all the existing possible combinations which were

later converted into encodings. 

Above evaluation results showed varying influences on pre-miRNA identification were observed

for the different encodings.  The next step was observing the influence of combining these sequence

and structure derived words encodings and learn on them. Combining of  the encodings was done in

a gradual manner in order to see the additive effect of them on the classification performance. These

combination  of  encoding  yielded  a  better  result  than  using  any  single  encoding.  Combining

monomers with dinucleotides (399 words) yielded an accuracy of 81.23% while the combination of

monomers+trimers (398 words) yielded an accuracy of 84.06%. In addition, the combination of

monomers+dimers+trimers (597 words) and monmers+dimers+pentamers (595 words) achieved the

accuracies of 87.63% and 89.32%, respectively. As we know, secondary structure holds critical role

in miRNA biogenesis,  combining these encodings with structure triplets based encodings led to

further superior  result.  Monomers+dinucleotides+trinucleotides+structure  triplets  (795  words),

Monomers+dinucleotides+trinucleotides+pentanucleotides+structure  triplets  (991  words),  and

monomers+dinucleotides+pentamers+structure  triplets  (793  words)  combinations yielded the

accuracy of 93.67%, 93.84%, and 93.96%, respectively, with the latter one having the better balance

between the sensitivity and specificity values. Thus, combinations of different representations and

encoding  for  the  genomic sequence  markedly improved  the  performance  through  the  natural

language  processing  approach  of  transformers.  Figure 3  presents  the  plots  for  the  accuracy,

sensitivity and specificity values distribution observed for the various combinations of the sequence

encodings  for the classification of pre-miRNAs.

After  getting  an  accuracy  of  93.96%  from  the  Transformers  built from  the combination  of

monomer+dimer+pentamer+structure triplet encodings delivered a good accuracy of 93.96%. There
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was a gap of 0.9% between sensitivity and specificity, though not a big gap, yet  we tried to reduce

it further. In doing so, the output layer of the transformer having the LeakyReLu activation function

was replaced by XGBoost for the classification purpose. XGBoost was the choice as it has come

consistently at the top along with deep learning approaches in Kaggle benchmarkings, and performs

exceptionally good on structured data and manually extracted features input sets. In our case, the

Transformer’s  encoder  became  the  feature  feeder  to  XGBoost. This  also  strengthened the

performance  further  while  leveraging  from the  two  best  and  different  approaches  of  machine

learning. This hybrid shallow-deep model reduced the performance gap between the sensitivity and

specificity to just 0.46% while also increased the accuracy slightly to 94.08% (Supplementary Table

1 Sheet 5). This became the first part of the transformer based pre-miRNA identification system,

which can even work independently and can be used directly for pre-miRNA identification. It was

further enhanced for pragmatic genomic scanning and annotation purpose which is discussed in the

upcoming sections.

Optimization of the Transformer-XGBoost system

Optimization of the hyper-parameters is an important step to derive the best possible model.   The

transformer part had encoder role which learned across the hidden space of features and presented it

to  the  classification  part  done  by  XGBoost  part.  The  transformer  encoders had multi-headed

attention layer   where a total of 14 self attention heads were found best performing. Multihead

attentions help a transformer to avoid misunderstanding the relationships between the words by

multiple  vetting  by  the  different  transformer  heads  for  the  derived  attention  scores.  The  input

sequence was padded if the length was shorter than 200 bases in order to ensure a constant size of

the input matrix. This output was passed into a dropout layer with dropout fraction 0.1. By passing -

dropout fraction, 10% of the hidden units were randomly dropped during the training process of the
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model. This layer helped to reduce over-fitting. Later, this output was normalized by the second

layer called  normalization layer. This layer was followed by a third layer called Feed Forward layer

with 14 nodes and followed by second Dropout layer with dropout fraction of 0.1 and second Feed

Forward  layer  with  14  nodes.  The  output  from  Feed  forward  layer  passed  into

GlobalAveragePooling1D layer, followed by the third dropout layer with dropout fraction of 0.16.

Next to this layer, pooled feature maps were passed to two fully connected layer. The hidden layers

in the present study had two dense layers with both having 38 and 12 hidden nodes with RELU and

SELU activation function, respectively. The hidden layer output was passed into the fourth dropout

layer in the stack with dropout fraction of 0.17 which passed its output into the last layer. Finally,

the output of the dense layer with 12 dimension was passed to the last and final output layer, a node

with LeakyReLu activation function. The model was compiled by binary cross entropy loss function

to calculate the loss which was optimized by using the “Adadelta” optimizer with learning rate of

0.583. An accuracy of 94.08% was observed for the test set (Dataset A).

In the classification part of the hybrid Transformer-XGBoost, XGBoost takes input from the second

fully  connected  layer  of  the  Transformers  stack.  Grid  search  was  applied  for  hyperparameter

optimization using scikit-learn function RandomizedSearchCV. Following hyperparameters  were

finalized after the grid search: params = {"eta/learning rate": 0.22, "max_depth": 6, "objective":

"binary:logistic", "silent": 1, "base_score": np.mean(yt), "gamma": 6.4, "subsample": 0.6, "eta": 0.4,

"colsample_bytree":  0.83,  "n_estimators":  1400,  "min_child_weight":  4.76,  "eval_metric":

"logloss", "reg_alpha": 149.468151996443, "reg_lambda": 0.02399001301159498, "tree_method":

'approx'}.  To overcome  over-fitting shrinkage was used which slows down the learning rate  of

gradient boosting models. At the value of 6, stability was gained as the logloss got stabilized and

did not change thereafter. The output from the XGBoost returned the probability score (T-Score) for

each input sequence. The probability score indicated the confidence of each instance as non-pre-
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miRNA or pre-miRNA. If the T-Score >0.50,  the corresponding input sequence was identified as

pre-miRNA  else  a non-pre-miRNA.  The  final  hyperparameters  set  for  the  output  layer  of  the

implemented  model  was:  {“Activation  function”:  LeakyReLu,  “Loss  function”:  binary

crossentropy, “Optimizer”: Adadelta}. The related information about optimization towards the final

model is listed in Supplementary Table 1 Sheet 6-7 and illustrated in Supplementary Figure S1.

Consistent  performance across different validated datasets reinforces  miWords as a

universal classifier for plant pre-miRNAs

As mentioned in the Methods section, for performance testing two different datasets, “A” and “B”,

were  created.  Dataset  “A”  had 5,684 positive  instances  and  5,684  negative  instances,  totalling

11,368 instances. 70% of this dataset was used for training purpose and 30% was kept aside as a

totally  unseen test  set  instances  in  mutually  exclusive  manner  to  ensure  unbiased  performance

testing with no scope for memory from data instances. Besides the Dataset “A”, another Dataset

“B” was used for completely testing and objective comparative benchmarking purpose. Dataset “B”

covered  75  plant  species  with  9,214  pre-miRNA and  92,000  non-pre-miRNA sequences  from

miPlantPreMat  (22),  PlantMiRNAPred  (4),  HuntMi  (23),  and  plantMirP  (24)  tools.  Related

information  is  summarized  in  Supplementary  Table  1  Sheet  4.  All  possible  redundancy  in  the

datasets was curtailed and a proportionate representation of negative instances from various classes

was maintained to ensure a balanced representation.

When the above mentioned Transformer-XGBoost based model was tested over the experimentally

validated instances in the test set (Dataset A) it attained an accuracy of 94.08%. The classifier was

able to identify a total of 1,601 true negatives out of a total of 1,706 negative instances, approaching

a specificity value of  93.85%. The observed sensitivity was at  94.31%, with a total of 1,609 true
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positives correctly identified while 97 instances were identified wrongly as false negative instances.

Similarly,  the MCC values for the classifier also exhibited higher score with a value of 0.8816

(Figure 4A ).

In order to fathom the consistency of the observed performance on variable train and test set pairs,

10 folds cross random trials was performed where the train and tests  instances from Dataset “A”

were selected randomly and mutually exclusive non-overlapping manner. Every time the model was

built from the scratch using the training data and was tested upon the corresponding test set.  This

10-fold validation trials concurred with the above observed performance level and scored in the

same range consistently. Mean absolute error (MAE) was calculated between the train and test set

utilizing scikit-learn library.  The difference between train and test  MAE across 10-fold random

validation trials was in the range of 0.009 to 0.0132 which indicates the model was trained well

with no significant overfitting.  All  of them achieved good quality ROC curves with high AUC

values in the range of 0.9294 to 0.9436 and maintained reasonable balance between specificity and

sensitivity. (Supplementary Table 1 Sheet 8). As emerges from the performance metrics evaluation

for the  build  model  and  their  AUC/ROC  plots  (Supplementary  Figure  S2),  the  developed

transformer based pre-miRNA classification approach scored high on performance with consistent

and reliable performance. 

Integrating Transformer as a trainable feature extractor works better  with higher dimensions and

instances to learn from. In the input layer combined encodings for sequence and structure derived

words  were  used  on which  the Transformer block gave  remarkable  results.  The 14 multi-head

attention  system ensured  proper  attention  to  each word  while  mitigating  any chance  of  wrong

weighting and association mapping between the words while taking care of right context in the

sentence.  
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miWords consistently outperforms all the compared tools for pre-miRNA discovery

This  study  has  performed  a  series  of  different  comparative benchmarkings.  The  first  two are

covered  in  this  section.  In  this  comparative benchmarking,  the performance of  eight  compared

software was studied across the Datasets “A” and “B”.  The compared tools covered the classical

machine  learning  approaches  for  pre-miRNA discovery  as  well  as  recently  developed  Deep

Learning  tools:  miPlantPreMat  (SVM based), HuntMi  (Ensemble  method  of  Random  Forest),

PlantmirP-Rice (Ensembl method of Random Forest)  (52),  microPred (SVM based),  plantMiRP

(SVM  based),  mirDNN  (convolutional  deep  residual  networks),  deepMir  (CNN  based)  and

deepSOM (deep learning based SOM).   Besides this, the benchmarking has also considered two

different datasets to carry out a  fully unbiased assessment of performance of these tools  across

different datasets. The first dataset considered was the testing dataset part of Dataset “A”. Besides

measuring the performance of miWords of this neutral and totally unseen testing part of Dataset

“A”, performance of the other eight tools was also benchmarked. The performance measure on the

test set of Dataset “A” gave an idea how the compared algorithms in their existing form perform.

The second dataset “B” was used to carry out objective comparative benchmarking, where each of

the compared software was trained as well  tested across a common dataset in order to  fathom

exactly how their learning algorithms differed in their comparative performance. 

All these  eight software were tested across both the datasets  which covered more than 27 plant

species considered where miWords  outperformed all of them across  both the datasets, for all the

performance metrics considered (Figure 4A). As already reported above for the Dataset “A” test set,

miWords scored the accuracy of 94.08% and the MCC value of 0.88816, while displaying a very

good balance between sensitivity and specificity with difference of just 0.4%  on Dataset “A”. On

36

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2022. ; https://doi.org/10.1101/2022.07.14.500029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500029
http://creativecommons.org/licenses/by/4.0/


the same Dataset  “A”,  the second best  performing tool  was plantmiRP-Rice  which scored and

accuracy  of  87.89% and  MCC of  0.75  only,  far  behind  the  values  observed  for  miWords.  It

displayed a gap of just 0.76 between sensitivity and specificity, a gap which is slightly higher than

miWords, but yet a good balance between sensitivity and specificity. A Chi-square test confirmed

that  miWords  significantly  outperformed  the  second  best  performing  tool  on  Dataset  “A”

comparative benchmarking (p-value<<0.01 ).

On the Dataset  “B”, all these tools were trained on the same common training dataset and tested

across the common testing dataset in order to achieve the objective comparative benchmarking of

the algorithms. However, two tools, microPred and miPlantPreMat could not be included in this part

of bench-marking as both these tools don’t give provision to train on another dataset and rebuild

models. Thus, in this part of benchmarking, the remaining six tools and miWords were trained and

tested on the common dataset. In this benchmarking also miWords outperformed all the compared

tools with significant margin with the similar level of performance (Figure 4B). miWords clocked

an accuracy of 93.6% and MCC of 0.87, while displaying a good balance between sensitivity and

specificity where gap of only 0.94% was observed. The second best performing tool was HuntMi

which attained an accuracy of 90.5% and MCC value of 0.81 but displayed much higher gap of

~7% between sensitivity and specificity scores, exhibiting significant performance imbalance. A

Chi-square test done here also confirmed that miWords significantly outperformed the second best

performing tool, HuntMi (p-value<<0.01 ).

Also this needs to be noted in both the bench-marking tests, miWords scored much higher MCC

values  which suggests  consistent  and robust  performance.  MCC gives  high  score only when a

software  scores  high on all  the four  performance parameters  (true positive,  false  positive,  true

negative, false negative). As it is visible from the score distribution for all the metrics (Figure 4A
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and B), miWords also exhibited least dispersion among all. miWords’s performance points out that

more appropriate features may be learned through training on syntax of words, and their subsequent

efficient  encoding  with  multi-headed  attention  using  Transformer  as  an  encoder  and  feature

extractor combined with gradient boosting for classification on that. The full details and data for the

benchmarking studies are given in Supplementary Table 1 Sheet 9-10.

Genomic context learning on transformer scores delivers extremely good results on

genome wide annotaitons of pre-miRNAs 

Performance over standard testing datasets may be claimed good, as has been done by most of the

published software in the past. But in actual application of genome annotation, huge performance

gaps exist and far below the acceptable limits. Some recent reports have highlighted that how much

poor  performing most  of  the  existing  pri-miRNA discovery  tools  become in  the  real  situation

applications like genomic annotations where most of them end up reporting very high proportion of

false positives (5, 41). This has also led to one of the rare event of mass withdrawal of entries of

plant miRNAs from databases like miRBase, recently. Taking note of such extreme events in plant

miRNA biology, a very  insightful commentary was made by Axtell and Meyers (6). There they

recommended  some  protocols  to  identify  genuine  pre/miRNAs  candidates  and  suggested  a

necessary run against some well studied established genome like Arabidopsis to compare how much

false positive identifications were made by any plant miRNA discovery tool. It has become the

standard protocol to assess the success of such tools in real application of locating pre-miRNA

regions  across  a  genome.  Most  of  the  existing  tools  perform  highly  unreliably  in  genome

annotation. The best performing tools were found to be dependent on sRNA sequencing read data to

identify pre/miRNAs.

38

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 16, 2022. ; https://doi.org/10.1101/2022.07.14.500029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500029
http://creativecommons.org/licenses/by/4.0/


One important problematic factor about all these existing tools is that they hardly acknowledge the

role  of relative information from the flanking non-miRNA regions  in accurate  identification of

miRNA regions during genome scanning. The relative scoring patterns between miRNA regions and

neighborhood  non-miRNA regions  can  become  a  highly  valuable  feature  for  more  accurate

discrimination. We hardly found any study which performed genomic scanning and tried to further

learn on the scoring patterns for pre-miRNA regions and non pre-miRNA regions. A high scoring

pre-miRNA region is expected to display higher scoring distribution across  its bases along with

gradual decline when compared to its non-miRNA flanking regions where scoring is also expected

to exhibit random and sharper trend. Doing so would also help in detecting boundaries of the pre-

miRNA regions sharply. A t-test between the flanking regions T-score distribution and pre-miRNA

region supported this view (p-value < 0.05). Thus, it became another important aspect of miRNA

regions and to refine their discovery in genomic context.  Therefore, for the first time we conducted

such study and trained another DL CNN based system on the obtained T-scoring profiles in actual

run across the genomes. 

In this process, the transformer part was run across  the fully annotated genome of Oryza Sativa

where the transformer’s scoring patterns was recorded for the annotated pre-miRNAs regions and

the  non-pre-miRNA regions.  This  was  done  with  a  sliding  window  of  size  200  bases,  which

generated  vectors  of  transformer  scores  per  base  for  the  pre-miRNA regions  and  non-miRNA

regions.  The  obtained  scoring  profiles  for  pre-miRNA regions  constituted  the  positive  datasets

while the T-score distribution per base for flanking 500 bases both sides of non-pre-miRNA regions

constituted the negative dataset. In the methods section above, full details of implementation for this

module is already given. The position specific scoring profiles were converted into a matrix of

280X10 dimension, where the rows contained the scoring values in the range of 0-1 in a discrete

manner, while the columns captured the base position for the given window size. One-hot encoding
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was done in this matrix where for any given base position, the corresponding value was assigned

value from the range of 0-1. This mimicked a pixeled image which now could be passed through

Convolution neural nets (CNN). CNN has been brilliant in recognizing spatial patterns, and we

expected  them to  capture  the  assumption  that  miRNAs  display  a  completely  different  scoring

pattern for the bases in its region than those belonging to non-miRNA regions. This way a total of

604 experimentally validated Oryza sativa pre-miRNA instances belonged to the positive instances

dataset, and a total of 604 non-miRNA regions (comprised of randomly selected 5’ and 3’ flanking

non-miRNA neighbors) belonged to the negative dataset, on which the CNN was trained. This also

needs to be mentioned here that in order to ensure a fully unbiased treatment,  the  Arabidopsis

training instances were removed from the Transformer’s training part and the Transformer-XGBoost

model was rebuilt without introducing it to the Arabidopsis pre-miRNAs during its training.

Now the real test was to check the raised scoring profile based model’s performance was on its

ability to correctly identify the miRNAs and non-miRNA regions in some very well annotated and

studied genome. For this, the Arabidospsis genome was taken with its full annotations. Arabidopsis

has genome size of  119.763 MB and a total  of  326 pre-miRNAs are  reported  for  Arabdiopsis

thaliana in miRBase version 22 (36).  In the first phase, for the entire genome for each base the

transformer score (T-score) was generated which became the input to the scoring based CNN as a

totally unseen test set. 

A total of 323 out of the annotated 326 pre-miRNAs of Arabidopsis were detected successfully. The

next important question was that how much novel miRNAs were identified across this genome,

which could be most probably the false  positive cases?  A total of  771 pre-miRNAs regions were

suggested by the transformers,  which meant that a total  of 448 false positives were called pre-

miRNA regions  by  the  transformers.  Though  this  number  is  very  much  lesser  than  what  the
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currently existing pre-miRNA  discovery  tools and approaches report (including some NGS sRNA-

seq  data  dependent  tools)  (26),  but  even  this  number  may  be  considered  substantially  high.

However,  we got an exceedingly good and surprising result when the transformers scores were

passed through the above mentioned scoring profile  based CNN. Just  29 novel  candidates,  the

potentially  false  positive cases,  were  obtained for  the  entire  Arabidopsis genome.  This  was an

exceptionally good result, especially when considering the fact that it was not given any sRNA-seq

data guidance. And the existing tools which were run across Arabidsopsis genome with sRNA-seq

read data supports predicted at least 11 false positive pre-miRNA candidates and went predicting up

to 12,306 miRNAs despite having sRNA-seq reads support. Also, in general they grossly missed to

identify a big number of actual miRNAs with their sensitivity value ranging from 3% to utmost

86%. Figure 5 provides one such comparative benchmarking map between some of these NGS read

data guided software performance on Arabidopsis genome and miWords’s relative standing. Even

without using sRNA sequencing read data unlike these category of software,  miWords was found

outperforming them by big margin. 

Besides  this  all,  one  more  interesting  comparative  benchmarking  analysis  was  done  on  an

imbalanced dataset recently provided by Bungan et al, 2021 (41). In their benchmarking study, they

knowingly created an  imbalanced data with much higher negative instances to  mimic the actual

genome condition where class imbalance is pronounced. There they strongly attracted the attention

on the fact that how most of the existing pre-miRNA discovery software performed very poorely.

miWords’s performance was compared fot this dataset also, and here too it scored the highest for all

the performance metrics with huge lead margin than the rest of the six software (Supplementary

Table 1 Sheet 11). Thus, the implications of our developed software is going to be high: It can

identify pre-miRNA regions across the genomes highly accurately even without getting any help

from sRNA sequencing experiments, directly cutting the cost of experiments, time, and efforts.
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And then  naturally comes the next question: How good it would perform if some one provides

sRNA sequencing data too? miWords has implemented another CNN module which takes input in

just 1-D vector manner. The provided sRNA-seq reads data are mapped across  the genome and

every genomic position can be expressed in  the form of RPM-value.  The 1-D vector holds the

RPM-value.  Details  of  this  module  is  already  provided  in  the  methods  section  above  and

Supplementary Figure S3. On passing through this optional and second CNN based on RPM values

of the bases derived from the sRNA-seq data, the false positive identification further decreased to

just 10 cases, a number much lesser than the number of 28 false positive cases reported by best

performing software, miR-PREFeR after taking support from sRNA-seq data. Figure 5 provides the

comparative benchmarking of miWords with seven best performing tools which use sRNA-seq data,

clearly suggesting the top notch performance by miWords. 

This also may be noted that in a previous bench-marking study on these compared software, it was

found that they are sensitive towards the size of sRNA-seq data and number of studies included. As

this data volume and number of studies increases, the number of potential false positives by these

software was reported to increase also (13). The reported total number of total novel 28 miRNAs by

the best performing tool, miR-PREFeR, was when only two experimental conditions sRNA-seq data

were considered. As soon as they considered higher number of  samples (6), their reported novel

miRNAs number shot up to 49. The same trend was observed for almost all of the compared tools

with much higher offshooting. In the present study we had considered comparatively much bigger

sRNA-seq data for Arabidopsis, a total of 88 samples, and yet did not see such overshooting effect

and reported only 10 novel pre-miRNAs. Even without sRNA-seq data support, just based on the

Transformer  scoring  profile  based  CNN,  it  outperformed  all of  the  compared  software  which

needed sRNA-seq data.
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Thus, miWords emerged not only as the best performing software, but has exceptionally exceeding

performance with much stability and reliability. It has emerged as the  most suitable software to

annotate plant genomes for pre-miRNA/miRNA regions. 

Application of miWords on  C. sinensis genome and experimental validation of the

identified pre-miRNAs

To  exhibit  the  applicability  of  miWords in  real  scenario  of  genome  scanning  for  pre-miRNA

discovery, miWords was run across the C. sinensis genome whose size is 3.06 GB. Tea is the most

consumed beverage, a highly important commercial crop with medicinal values also, and which is

also highly sensitive to climate change. Though its genome has been revealed, to this date there is

no entries  for Tea miRNAs in miRBase.  Thus,  reporting miRNAs of  Tea here would not  only

exhibit  the application demonstration of  miWords in genome annotations for miRNAs, but also

benefit the research groups working on Tea to understand its molecular systems. 

The first run of miWords, which was the transformer part, identified 17,044 pre-miRNA regions in

the tea genome. The scoring for all these regions were passed to the T-scoring profile based CNN

module,  which screened them and reported a total of 3,194 pre-miRNA candidates. Finally, the

sRNA-seq data supported RPM-CNN module was run on it,  which reported a total of 821 pre-

miRNA candidates in Tea (Figure 6). For this part of run, we had collected sRNA-seq reads from

104 samples while covering 34 different conditions. This is not necessary that all other discarded

pre-miRNA candidates reported by the previous step were false positive,  as sRNA-seq data are

highly condition specific, and many conditions may not have been captured by the existing sRNA-

seq experiments done on Tea. Yet, these 821 pre-miRNAs from Tea genome may be considered as

the most confident cases. All of these 821 potential pre-miRNA candidates exhibited sRNA-reads
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data mapping in multiple samples, with at least five reads mapping in each condition. All this gave

strong support evidence to the identified pre-miRNAs as per the 2018 guidelines also.

The final leg of this study belonged to the experimental validation of some of these identified pre-

miRNA candidates using quantitative qRT-PCR experiments on 10 such candidates. The cDNA of

tea tissue was amplified by qRT-PCR using primers for these 10 pre-miRNAs. Moderate to strong

signals were generated for most of the pre-miRNAs (Figure 7). Based on qRT-PCR data, csi-MIR

099 had very strong expression, csi-MIR018, csi-MIR454, csi-MIR582, and csi-MIR646 displayed

moderate  expression,  whereas  csi-MIR386,  csi-MIR615,  and  csi-MIR569  had  the lowest

expression.  Interestingly,  two  sequences  namely,  csi-MIR329  and  csi-MIR696  showed  almost

negligible expression. This is possible that these two pre-miRNA candidates express themselves

more in some other conditions. Thus,  this experimental validation exercise supported the findings

made  by  miWords across  the  Tea  genome.  Complete  Tea  miRNAome details  are  given in  the

Supplementary  Table  1  Sheet  12.  The  structure  and  reads  information  of  the  experimentally

validated Tea pre-miRNAs is also given there in the sheet.

Webserver and standalone implementation

miWords has been made freely available at https://scbb.ihbt.res.in/miWords/ as a very simple to use

webserver. The server has been implemented using D3JS visualization library, Python, Javascript,

PHP, and HTML5. The user needs to paste the RNA sequences in FASTA format into the text box or

upload the RNA sequences in FASTA format and then click the submit button for the identification.

After a while the result page appears from where results can be downloaded in a tabular format and

sequence wise distribution of probability score in plots is also displayed on the result page. 
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However, in actual situation like whole genome sequence scanning, web servers a practically not

suitable and one needs standalone version mainly. For heavy duty real scenario application like

genome annotation, a standalone version of miWords has also be provided via a link tab on the

same server page or can be downloaded from github. The provision to see the results in plots is also

given there.

Conclusion

miRNAs define  one  of  the  largest  regulatory  systems  of  eukaryotes.  The mature  miRNAs are

processed out of their precursors (pre-miRNAs). Though lots of software have been developed to

identify  pre-miRNAs  as  their  discovery  is  the  core  of  miRNA  biology,  in  actual  practical

application of discovery of pre-miRNAs across genomes these software remain far away from the

acceptable limits. This is much more grave when dealing with plant genomes where the generally

considered  properties  and features  to  distinguish  a  pre-miRNA regions  don’t  work as  a  strong

discriminator. The present work has approached pre-miRNAs as a sentence hidden within genome

where the relative arrangements of the words in the form of dinucleotides, trimers, pentamers, and

structural triplets define a sentence. Once the syntax is there, one also needs they are read by an

intelligent reader which could decode the relationship within the words. This was achieved by a

revolutionary deep-learning algorithm of transformers which assigned contextual attention scores to

the  words  withing  the  sentence  using  14 multi-headed  transformers  which  finally  passed  their

learning to an XGBoost classifier to generate classification scores. The next part of this system,

miWords,  applied  a  convolution  networks  system  which  learned  from the  transformer-scoring

pattern  across  the  genome and partitioned  it  into  the  pre-miRNA and non-pre-miRNA vicinity

regions to successfully  define the boundaries  and make it  possible  to run such software for its

practical utilities for genomic annotation. Total four direct and different benchmarking studies were
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carried out in this study involving more than 10 different published software to identify miRNAs,

and in all of them miWords significantly outperformed the compared tools. This also included the

class  of  software  which  are  prime  choice  for  genomic  annotation  for  miRNAs,  the  Next-gen

sequencing reads data guided software. Without using NGS reads guidance, miWords outperformed

even  that  class  of  software,  making  it  the  most  suitable  and  accessible  software  for  genome

annotation for miRNAs which can work with much higher accuracy than others even without cost

and time on running NGS experiments. Additionally, miWords, also provides an optional module to

use sRNA sequencing reads  data to  further refine the results.  As an application  demonstration,

miWords was run across the Tea genome no identify pre-miRNAs across its genome. A total of 821

pre-miRNAs were identified in the Tea genome, and for all of them sRNA-seq reads gave evidence

support.  A  randomly  selected  sample  of  10  such  pre-miRNA  candidates  were  taken  for

experimental validation, eight of which were significantly expressed and while remaining two gave

very low expression values. This experiment validated the approach of miWords and its capabilities

to annotate genomes for miRNAs. miWords appears to be the most capable tool which can solve the

long  pending  quest  for  a  software  which  could  be  reliably  used  for  genomic  annotation  for

miRNAs.
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Tables

Table  1:  Primer  list  for  10  selectedpPre-miRNAs  from  Tea  genome  taken  for  validation

through qPCR.

Pre-mi RNA sequences Primers (5’-3’)

csi-MIR018 FP CGATGTGGCTGCAAATATGA

csi-MIR018 RP TTCCGACTCCGATTCCACTA

csi-MIR099 FP CAAAATGTAAGGGTGCAAAGTG

csi-MIR099 RP ACAACCGCTAATGCCCTAAC
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csi-MIR386 FP CAGCAGAACCGGAGGAGTAA

csi-MIR386 RP ATCACCCAAATCGGATCTCA

csi-MIR454 FP TCATGTGAGTATGCTTCCGGA

csi-MIR454 RP AACCGGTCTCTCCTCATACG

csi-MIR569 FP CAAACTTTGAGACAGTGTAAGCAA

csi-MIR569 RP GAAAAATTCGGAAGAAGAAGACA

csi-MIR582 FP CTTCCGAACCCTCTTCTGTG

csi-MIR582 RP TAAAAGCCGGAGCAATAGGA

csi-MIR615 FP TCAAACAAGGCCTAAGTGTTC

csi-MIR615 RP CCCTTCCTAGGTTAGACTTTTT

csi-MIR329 FP CAAATGGTGCCACGCAAAT

csi-MIR329 RP TGTGTGGTGGTAGTAGCATACAAT

csi-MIR646 FP AACTCACCGCAAACATAGGC

csi-MIR646 RP GACCCTAAATCCTCTGAAGGTG

csi-MIR696 FP GAGTTGTTGGCCAGGTTCTG

csi-MIR696 RP TGGCCTACACTGATACTTTCTCT

18sRNAFP ACACCCTGGGAATTGGTTT

18sRNARP GTATGCGCCAATAAGACCAC

Figure legends

Figure  1: Distribution  pattern  of  traditionally  considered  properties  for  miRNA

characterization. A) Pattern of distribution comparison between animals and plants pre-miRNAs.

Values differ a lot between animals and plants as unlike animal pre-miRNAs, plants pre-miRNAs

display much more complexity and variability. B) Pattern of distribution comparison between pre-

miRNAs v/s other RNAs in plants. As can be seen clearly that most of these properties are actually

not good descriminators as lots of overlap of their values occur between pre-miRNAs and other

RNAs. 

Figure 2:  Detailed pipeline of the workflow. The image provides the brief outline of the entire

computation protocol implemented to develop  the Transformer-XGBoost based model to identify

pre-miRNAs. This illustrates how a genomic sequence can be seen as a sentence composed of
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words  and  their  related  arrangements which  can  be  efficiently  learned  through  multi-headed

transformers. The various nuclotides k-mers and RNA secondary structure triplets define the words

for any given regions (the sentence). The words and their attention scores are evaluated through

query, key, and value matrices which are then passed to different layers of deep-learning protocol to

present its learning for classification job through XGBoost.

Figure 3: Ablation analysis for five main properties in  discriminating between the negative

and positive  instances.  Impact  of  combination  of  the monomer,  dimer,  trimer,  pentamers,  and

structure triplet properties based sequence encodings. These encodings appeared highly additive and

complementary to each other as the performance in accurately identifying pre-miRNAs increased

substantially as they combined together.

Figure 4:  Comparative bench-marking results  for miWords  for two different datasets. (A)

Bechmarking result on Dataset A. Here all the comapred tools were tested on the   testing part of the

Dataset A which was totally unseen and untouched for all the compared tools including miWords.

This gives a view of how the compared software would behave in their existing form and models.

(B)  Objective Comparative Benchmarking on  Dataset B. Here, all the compared tools were first

trained on a common dataset for training and then tested on a common mutually exclusive dataset

for  their  performance.  This  gave  a  clear  view  on  the  performance  of  each  of  the  compared

algorithms.   From the plots it is clearly visible that for all these datasets, miWords consistently and

significantly outperformed the compared tools for all the compared metrics. 

Figure 5:  Comparative benchmarking for genomic annotation capability and performance.

The 2018 miRNAs discovery guidelines (6) noted that most of the existing software fail to perform

even reasonably for their actual application for genomic annotations and report a huge number of
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false positives, while on standard bench-marking datasets they claim high accuracy. In order to

assess  how  much  prone  a  software  is  towards  making  false  positive  claims,  they  should  be

benchmarked against well annotated genomes like Arabidopsis which is now not expected to have

any newer miRNAs. Any reporting of novel miRNAs on such genome should be considered as a

false  positive  case  and  accordingly the  performance  of  a  software  may  be  rated.   In  this

performance bench-marking, miWords was compared to the tools which are most preferred ones for

genomic annotation at the present, as they use sRNA sequencing reads data as help guide to reduce

their false positive predictions. As can be seen from this bench-marking plot, miWords with sRNA-

seq reads support (miWords-R) as well as without it (miWords-T) outperforms all the  compared

tools for all these performance metrics. In Arabidopsis,  miWords identified all of its pre-miRNAs

correctly except three of them, and reported only 10 false positives, the lowest of all.

Figure 6:  Details of the workflow carried out to annotate the Tea genome for pre-miRNAs. A

total  of  821 pre-miRNAs were identified  in  C. sinensis.  This  workflow also illustrate  how the

transformer-scoring (T-score) can be utilized by the next CNN modules to refine the results while

learning over the genomic context of the scoring pattern for miRNA and neighboring non-miRNA

regions. It also shows how using sRNA-seq reads based CNN module can help further refine the

result.

Figure  7:  Experimental  validation  of  the  identified  pre-miRNAs  in  C.  sinensis.  miRNA

expression  analysis  of  selected  10  pre-miRNAs  by  quantitative  real  time-PCR  in  tea  leaves

(Camellia sinensis).  Pre-miRNAs expression is presented relative to 18S rRNA. Mean ± SD of

triplicate quantitative real-time PCR from a single cDNA sample.
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Supplementary information

Supplementary Figure S1: Optimization results for hyperparameters for transformers part of

the  hybrid Transformer-XGBoost  model. A) Batch  size  optimization,  B) Dropout  rate

optimization, C) Second Dropout rate optimization, D) Learning rate, E) Number of units per dense

layer 1, F) Epoch size optimization G) Embedding size,  H) Number of units per dense layer inside

Transformer, I) Number of dense layers 2, and J) Number of Attention heads.

Supplementary Figure S2: AUC/ROC plot for Ten fold cross validation. The AUC/ROC plots

forthe hybrid models for the testset clearly showcase the robustness and highly reliable performance

of the implemented hybrid Transformer-XGBoost model.

Supplementary Figure S3:  Detailed pipeline of the scoring and RPM profile. A) The image

provides  the  outline  of  CNN  architecture  implemented  for  scoring  based  profiles  for  better

classification of pre-miRNAs.  B) Architecture of RPM based CNN model  implemented second

level classification of pre-miRNAs.
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