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Abstract

Discovering pre-miRNAs is  the core  of miRNA discovery.  Using traditional sequence/structural

features many tools have been published to discover miRNAs. However, in practical applications

like  genomic  annotations,  their  actual  performance  has  been  far  away  from  acceptable.  This

becomes more grave in plants where  unlike animals pre-miRNAs are much more complex and

difficult to identify. This is reflected by the huge gap between the available software for miRNA

discovery  and  species  specific  miRNAs  information for  animals and  plants.  Here, we  present

miWords, an attention based genomic language processing transformer and context scoring deep-

learning approach,  with an optional  sRNA-seq guided CNN module to  accurately identify pre-

miRNA regions in plant genomes. During a comprehensive bench-marking the transformer part of

miWords  alone  significantly  outperformed  the  compared published  tools  with  consistent

performance while  breaching accuracy of 98% across a large number of experimentally validated

data. Performance of miWords was also evaluated across Arabidopsis genome where also miWords,

even without  using its  sRNA-seq reads module,  outperformed those software which essentially

require sRNA-seq reads to identify miRNAs. miWords was run across the Tea genome, reporting

803 pre-miRNA regions, all validated by sRNA-seq reads from multiple samples, and 10 randomly

selected cases re-validated by qRT-PCR. 

Keywords: microRNA, Transformers, CNN, Deep learning, Genomics
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Introduction

miRNAs  are  prime  regulatory small  RNAs  (sRNAs)  having  ~21  bases length  which  post-

transcriptionally regulate  most  of  the  genes  and  stand  critical  for  most  of  the  processes  of

eukaryotic cells including their development and specialization (1).  Mature miRNAs are derived

from  longer  precursor miRNA  molecules  (pre-miRNAs)  which  are  double-stranded  RNAs

(dsRNAs) with terminal hairpin loop. Discovering these pre-miRNAs is the central to the problem

of finding miRNAs and genomic annotations for them. However, finding the pre-miRNAs remains

a challenge, and more so in plants. Unlike animals, in plants mature miRNA formation from the

precursors is a single step process. Also in terms of complexity, secondary structures of plant pre-

miRNAs are way more complex and longer than those of animal pre-miRNAs (2), making them

difficult to detect accurately. The traditionally considered sequence and structural properties and

features to identify miRNAs are also responsible  for difficulty in identifying them as they display

lots  of  variability  across  the  plant  genomes in  terms  of  sequence  composition,  structural,  and

thermodynamic properties. 

A comparison  of  these  traditional  properties  properties  like AU%,  GC%,  length  of  sequence,

number  of  bulges,  terminal  loop  length,  minimum  free  energy  (MFE),  maximum  bulge  size,

mismatches  and stem length  for pre-miRNAs in plants  and animals  display  a  good amount  of

variability and overlap with other genomic elements  for several of these properties miRNAs and

non-miRNAs regions for the same properties (Figure 1 and Supplementary Table S1 Sheet 1). This

all suggest that how they are prone to wrongly identify the miRNA regions.  

The difficulties in the identification of plant miRNAs has been so much that it could be fathomed

from the fact that it has been plagued of huge volume of false reportings, and in year 2018 miRBase

had to scrap  a large number of the reported plant miRNAs data  (3). An urgent call was made to
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critically look into the process of plant miRNA identification and annotation process, following

which in the some  important suggestions were made (4). These studies highlighted the need of

support  by sRNA-seq for  reporting novel  miRNAs and seriously questioned the capabilities  of

existing software pool to identify plant pre/miRNAs which were flooded with false predictions and

false positive reporting. The same studies, therefore, also recommended that credibility of any such

software must  be judged by using it  across some well  established and annotated genomes like

Arabidopsis and evaluate their false positive rates.

Though experimental techniques like direct cloning and quantitative real-time PCR (qRT-PCR) are

used identify miRNAs with high expression levels, they are costly and cumbersome for genomic

level identifications and remain mainly limited for experimental validation purpose or studying a

handful of miRNAs. Off-late, experiments like sRNA-seq and arrays studies have been identified as

the  main  way  to  identify  and  profile  miRNAs/pre-miRNAs  across  the  genome,  but  they  too

essentially require support from  computational approaches while using the sequencing read data

mainly  as  support  guide  while  in  actual  at  their  core  they  use  some  pre-miRNA discovery

algorithms.  These  approaches have  their  own  shortcoming  and  they  are  not  immune  to  false

identifications. First, their dependence on sRNA-seq data makes them not approachable by all and a

costlier stuff as one will have to first manage the sequencing experiments and costs related to that.

Secondly, these all methods also utilize the same old features and rules which we described above

while describing how they work as an inefficient discriminators. Third, they can capture only those

pre-miRNAs which express in any given condition, and miRNA expression is highly specific. Many

of  their  rules  are  not  suitable  and may even capture  non-miRNAs as  well  as  discard  genuine

miRNAs. 
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These pre-miRNA discovery algorithms have evolved with age.  In the identification of miRNA

precursors,  identification of secondary structure patterns, hairpin loops, and their thermodynamic

stability have been  the  most  followed  approaches.  Additionally,  homology  and  conservation

patterns were also used to locate similar kind of precursors in other genomes.  Compared  to the

conservation and rules based methods, machine-learning-based methods  are mainly anchored on

sequence  and  structure  based  features  of  pre-miRNAs  with  more  mature  automated  statistical

learning process, sans the rules based approaches. They have specially emphasized upon the RNA

secondary structure and hairpin loops identification. Although, groups like Bentwich et al suggested

that there are about 11 million hairpins in human genome, making it a daunting task to correctly

identify miRNA precursor candidates from hairpins (5). Shallow machine learning approaches like

support vector machines, tree based, Bayesian, and ensemble learnings have grossly marked the

process of machine learning based approaches  for pre-miRNA discovery.  However,  majority  of

these developed methods were specifically designed to identify animal pre-miRNAs but rarely for

plant pre-miRNAs. Only tools like Triplet-SVM (6) were tested for plant pre-miRNAs. As the plant

pre-miRNAs differ greatly from the animal pre-miRNAs and are more complicated, plant miRNA

discovery  kept  lagging  while  lots  of  software  were  developed  for  animals.  Yet,  plant  miRNA

biology  took  forward  the  Machine-learning  revolution  caused  by  Triplet-SVM with  tools  like

PlantMiRNAPred (SVM based) (2),  HuntMi (Random Forest  based) (7),  MiPlantPreMat (SVM

based) (8), and plantMirP (Random forest) (9). Table 1  highlights the various categories of core

algorithms employed to discover pre-miRNA regions across genome. As apparent grossly, the area

of  plant  miRNA discovery rarely  witnessed any major  entry  of  deep-learning based plant  pre-

miRNA discovery tools until very recently. 

Very recently, deep learning (DL) techniques have been implemented successfully to tasks such as

speech and image recognition,  largely eliminating the manual  construction of features and their
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engineering.  They have been very effectively  digging out  better  but  hidden features  for  model

building which are otherwise difficult to detect manually (32). DL approaches  like convolutional

neural networks (CNN) and  recurrent neural networks (RNN), the two dominant types of DNN

architectures which have shown huge success in image recognition and natural language processing

(NLP)  (33,  33,  34,  35).  CNN takes  input  in  the  form of  pixeled  matrices  where  it  effectively

compresses the features to detect the spatial patterns. Natural language processing approaches like

recurrent neural nets (RNN) were developed for processing sequential data (35). RNNs evolved

further into long short-term memory (LSTM) approach where short distanced associations within a

sequence could be detected and memorized.  miRNA biology has very recently witnessed some of

them for pre-miRNA discovery, which though not developed exclusively for plants, but may be

trained on the plant specific data also.

However, despite the forays into DNN based software to detect pre-miRNAs, there remains lots of

voids  to  be  filled.  First  is  the  inconsistent  performance  where  huge  gaps  were  found  when

benchmarked across different datasets. Secondly, most of them are still based on direct reading of

the input sequences and work with 4-states nucleic acid sequence inputs and 3 states secondary

structure  inputs.  Third,  barring  CNN,  DL  approaches  like  LSTM  and  RBM  deep  learning

approaches require lots of compute power, time, and resources.  They can’t be parallelized and

become very high on compute resources requirements and time to train the network. Further to this,

they fail to detect the associations effectively if the sequence length is increased or long distanced

associations are present. As already mentioned above, the plant pre-miRNAs differ significantly

from animal miRNAs from sequence to structural properties, as can be seen from the Figure 1. Plant

pre-miRNAs have much  larger  sequences  than  animals,  which  may  complicate   learning.  And

above all, the existing software pool at present still fail miserably in their practical application of

genome annotation for miRNAs, as noted by some recent studies (4). Recently, a new revolutionary
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DL architecture, Transformers, has been  introduced in the area of artificial intelligence, which has

emerged as a highly efficient architecture for language processing tasks (36).  It uses self attention

mechanism on the input  which can be processed in parallel while more effectively capturing the

long distanced associations and contexts within any sequential data. 

Inspired by these milestones in Deep Learning, the present work proposes a novel deep  learning

system where the  transformer defines  the first  phase whose sequence output  from  its   encoder

becomes  the  input  to  a  shallow learning  approach,  XGBoost,  which  makes the   classification

decision score.  The important aspect is that unlike most of the existing deep-learning approaches,

miWords sees a genome sequence as a set of sentences composed of words made from  monomers,

di-mers,  and  pentamers  capturing  sequence,  structure,  and  shape  based  information  and

communication among themselves.  Besides this, genome is also seen as a sentence pool made of

words from structural triplets from the RNA secondary structures. Context wise their association

including long ranged ones are successfully detected which is otherwise missed by the existing

software pool for miRNA discovery. A comprehensive benchmarking study was performed whose

results  showed  that  miWords outperformed  all  the  compared  software  with  highly  significant

margin, just based on this transformer part alone.

The real application of such software in genomic sequence annotation of pre-miRNA discovery has

been a challenging part where most of the existing software for pre-miRNA discovery generate lots

of wrong classification besides being lethargically slow to scan genomic sequences. The existing

software pool  hardly  considers  the  long  distanced  relative  standing  of  the  genomic regions  to

characterize pre-miRNA regions, which is one big reason why they end up producing lots of false

positives. We noticed that the regions having miRNAs generate a specific transformer scoring (T-

score)  pattern  when  compared  to  the  non-miRNA  regions,  and  this  could  work  as  a  strong
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discriminator which  could  further  boost  pragmatic  miRNA  discovery  with  genomic  context

information. The T-score generated by the transformer across the genomic region forms a scoring

plot which captures the relative standing of the scores for various regions on which  a CNN module

was trained. This CNN part can scan the regions and their T-scores in a relative and contextual

manner for the genome wide T-scoring profile. It remarkably lowers the false identifications which

is otherwise hardly seen with any existing approaches. In addition to this CNN module, one more

optional CNN module has been provided where the user can supply the sRNA-seq data to further

enhance the accuracy. Thus, a user can run miWords with and without sRNA-seq support data, and

in both the ways can get highly accurate results. 

Considering the 2018 guidelines for miRNA  discovery and annotations which asks to prove the

performance  of  such  software  across  well  annotated  genome  like  Arabidopsis,  to  measure  the

degree of false positives in the real application, we also ran miWords across the whole genome of

Arabidopsis and carried out the genomic annotation performance measure while comparing with

other existing tools. miWords outperformed  all of them with just 10 false positives. Even without

considering sRNA-seq read data, miWords outperformed all those well established software which

essentially require sRNA sequencing read data, making it much affordable besides being a better

performer. Finally, miWords was applied across the Tea genome whose miRNAs annotation is still

not well established. It identified a total of 803 pre-miRNA regions across the Tea genome, all of

which were supported by sRNA-seq reads and 10 randomly selected candidates also re-validated

with RT-qPCR for their transcriptional status. miWords has been made freely available as a source

code  as  well  as  web-server.  We expect  miWords to  drastically  improve  the  scenario  of  plant

genomes annotations and plant miRNA biology.
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Materials and Methods

Datasets Sources

In this study data was retrieved for 27 different plant species. For the 27 plants species, the positive

set  included  experimentally  validated  pre-miRNAs  and  negative  datasets  contained  mRNAs,

rRNAs, snoRNAs, snRNAs, tRNAs, and other non-coding sequences while  following the same

protocol  which we had followed in animal  pre-miRNA discovery tool miRBAG (21).  The pre-

miRNAs  sequences  and  their  co-ordinates  were  fetched  from  miRBase  version  22 for  all  the

available plant species (37). Species which had no genome information were discarded, bringing the

total number of species to 27. From Ensembl Plants (v51) and NCBI negative instance sequences

were downloaded for same selected 27 plant species.  The repeated sequences were filtered out.

After that, the same number of sequences were extracted randomly for each species with respect to

their species pre-miRNAs number. A combined positive and negative datasets were created for all

these 27 plants species to  build a  model  that  could act  as a universal classifier  for plants  pre-

miRNAs.

Dataset Generation
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Uniform  length  sequences  with  flanking  regions  were  obtained  for  every  individual  positive

instance which varied pre-miRNA-wise. For creating the positive dataset, the central base of the

terminal loop was treated as the reference point, a standard protocol (21). This placed the reference

point appropriately at constant position, providing uniformity across all possible dataset instances,

irrespective of variation in length and loop size. Considering the central base of the terminal loop as

the midpoint, genomic sequences up to 200 bp were extracted from the flanking regions. 

For the negative dataset creation, the terminal loops were identified in the hairpin structures of the

negative instances. As followed above, the central base of the terminal loop was mapped as the

reference central position for the creation of every negative instance, as in case of the precursors for

reference  position  identification.  The  negative  dataset  consisted  of  different  types  of  RNA

sequences including ribosomal RNA, small  nucleolar RNA, small  nuclear RNA, transfer RNA,

mRNA and long non-coding sequences, all taking pseudo-hairpin shapes. For all the instances, the

genomic co-ordinate of central reference position was considered for taking 200 bp sequence with

equal flanks.  With this approach, a consistent sequence length for positive and negative instances

was maintained. These sequences were used to create the training and testing datasets for all 27

species. In the entire study this dataset is known as Dataset “A”.

Some observations have been made in past that a substantial fraction of miRBase entries  may not

be a genuine miRNA. Considering such data may alter the quality of the dataset (3). Therefore, we

performed a filtering step on the above mentioned dataset  “A” to get  high confidence positive

instances. We retrieved pre-miRNAs data from sRNAanno (143 species) (38), PmiREN (87 species)

(39), and PNRD (150 species) (40). sRNAanno uses majorly three tiered stringent filtering criteria

based on sequencing reads  data,  sequence/structural  rules  and strands  expression ratio  to  filter

highly confident miRNA candidates. Very similar to sRNAanno, PmiREN also employs sequencing

reads data support to annotate a pre-miRNA while also considering their  functional potential to
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target  genes using PARE-seq data.   miRNAs annotated in PNRD are also high confidence and

filtered  one.  PNRD  uses  recurring  expression  profiles  across  various  tissues,  experimental

evidences and reportings, literature support, target support besides the sequence and structure based

characterization  to  annotate  a  miRNA candidate.  Thus,  all  the  above  mentioned  pre-miRNA

information sources provide high confidence miRNA annotations which could be used to vet the

miRBase data to zero upon the high confidence miRNA candidates. Data retrieved from these three

databases and miRBase (v22) were merged together and a cut-off of 95% similarity was applied to

remove similar sequences with CD-HIT-EST (41) in the dataset.  Later,  only those pre-miRNAs

form miRBase were  considered which had support from at least  one  of  these databases. Those

sequence’s without single support were discarded. In this way, a refined dataset was created. In the

entire study this dataset has been  called as Dataset “B”. 

We additionally constructed an independent dataset, known as Dataset “C”, for another layer of

unbiased benchamarking. This dataset  is based mainly on the  instances considered by other tools

considered for their benchmarking purpose while covering 75 plant species. Like Dataset “A”, the

positive instances were from the pre-miRNAs available at miRBase. But unlike Dataset “A” which

has positive instances from only 27 species whose coordinates  are available as discussed earlier,

Dataset  “C”  had  also  those  pre-miRNAs  from  miRBase  for  the  species  whose  genomic

coordinates/information are presently not available. Negative instances of this dataset  were also

built from the dataset for the same for the  selected tools. Redundant sequences were dropped. For

the negative instances, a total of 92,000 instances were collected for this dataset. Dataset “C” was

purely used for objective comparative bench-marking on which all compared tools were trained and

tested on common training and testing datasets. Besides these datasets, one more version of each of

the  datasets  “A”  and  “B”  were  created  where  all  sequences  from  Arabidopsis  thaliana were

removed. This was done exclusively for the benchmarking study across the Arabidopsis genome in

order to avoid any chance of memory and bias.  

11

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2022. ; https://doi.org/10.1101/2022.07.14.500029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500029
http://creativecommons.org/licenses/by/4.0/


In addition to this all, another reference dataset for  Arabidopsis was retrieved from the work of

Bugnon, et al (2021) where they had benchmarked various tools for miRNA identification recently

(42).  They had focused on the performance of the tools on the real situation data like genomes

where class imbalance is pronounced with much higher instances of non-miRNA instances. This

dataset had induced class imbalance with much larger number of negative instances (13,56,616)

than the positive one (839), collected from Arabidopsis thaliana genome.

Encoding of sequence data

The Encoder-Decoder  architecture  with  Transformer  has  emerged as  one  of  the  most effective

approaches for the neural machine translation, sequence-to-sequence, and binary classification. The

prime  importance of the method  is the potential  to  train a  single end-to-end model directly  on

source  and  target  sentences  having the  capability  to  handle  variable  length  input  and  output

sequences. However,  deep networks  like  transformers,  LSTM,  and  RNN  work  by  performing

computation on integers, passing in a group of words won't work. So these input sequences were

tokenized for further computation. Provided a character or word sequence and a defined vocabulary

set, tokenization is the procedure of cutting it up into unique numerical units, called tokens. These

tokenizers processes words from the sentence as input and output a unique numerical representation

for the tokenized word which  becomes input for the  embedding layer of the model. Tokenization

followed by embedding layer allowed to vectorize the words into a fixed sized (28 elements each)

vector of numeric values. The process of tokenization was implemented using TensorFlow (Keras)

Tokenizer class for end-to-end tokenization of  the positive and negative datasets. We created the

Tokenizer object, providing the maximum number of words as our vocabulary size, which we had
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in the training data. Tokenizing the data while mapping the words to unique numeric representation,

the vocabulary and words within the genomic sequences were encoded.

To encode  sequences, every single instance was  transliterated into  its various  words  in terms of

monomeric,  dinucleotide,  and  pentameric  sequences  in  an  overlapping  window  manner  (43).

Dinucleotides and pentamers  provide structural stacking and shape information, respectively (44).

The secondary structural  information of these RNA sequences were also used. This information of

structure  for  each  sequence  was  obtained  by  RNAfold  of  ViennaRNA Package  v2.4.18  (45).

RNAfold  determines  the secondary  structure  of  RNA and gives  an  output  in  dot-bracket  form

(“(“,”.“,”)”). To tokenize the information obtained from RNAfold,  the dot-bracket symbols were

transliterated in the following manner: (“(“−>”M”, “.”−>”O”, “N” −>” )”. For a sequence length of

200 bases, a maximum length of the input vector was  of  793 elements. The  encoded monomers,

dinucleotides,  pentameric  sequences and  secondary  structural  words were independent  of  each

another. In this way, the network would determine the  associations between the sequence derived

inputs and the structure triplets based inputs in its own way. The encoded instances were then fed as

input the transformer encoder to train and evaluate the models.

Implementation of the Transformers -XGBoost classification system

With  the  tokenized  sequences,  encoded  vectors  were  used  to  build  models  to  classify  and

distinguish pre-miRNAs from other genomic elements using a deep-shallow learning approach: The

multi-headed  attention  system  of  Transformer’s  encoder  which  derives  the  most  confident

contextual associations and places  them into a hidden space vectors, which in turn becomes the

input for the XGBoost part to classify and generate the classification score (T-score). Both were

implemented using python scikit-learn, XGBoost, Keras, and Tensorflow libraries. In addition, as

per the standard practice, the dataset was broken into 70% and 30% as train and test sets, and using
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the 70% training part the model was built and tested upon the 30% totally untouched unseen testing

part. Further, in order to assess the consistency of the approach and its observed performance, 10-

fold randomized trials were performed where 10 times the entire data-set was randomly split into

70:30 training and testing data, and new model was built and tested from the scratch every time.

Also, this was ensured that absolutely no instance overlapped between the train and test set in any

fold. This ensured fair training and testing process without any scope of memorization of instances.

The input layer consists  of embedding and position encoding layers which operate on matrices

representing  a  batch  of  sequence  samples.  Embedding  encodes  each  word  ID  (unique  token

number) into a word vector whose length is the embedding size, resulting in a (samples, sequence

length,  embedding  size)  shaped  output  matrix.  For  any  given  genomic  sequence  of  length  “l”

(sentence size) , there are “n” words in it. Embedding of these arranged words can be represented

as:

Let the sentence S = {w1, w2,……, wn}

where, wn = nth word in the sentences. Every such word in a sentence is converted into a vector of d-

dimension whose elements (Id) carry the optimized numeric weights:

Wn = [ I1, I2, …., Id] ;

Therefore, the sentence can be represented in the form of embedded words matrix X:

X = [
w 1
w 2
...
wn

][
I11 , I 12 , ... , I 1 d

I21 , I 22 , ... , I 2 d

........
I n1 , I n 2, ... , I nd

];
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where,  each row corresponds to  the  word in  “S”.  This  matrix  has,  thus  a  dimension of  n x  d

(number of  words  in  the  sentence  x the dimension used to  represent  each  word in  embedding

vector).

Each word of the matrix “X” is also combined with its corresponding positional embedding “P”.

The position embedding has same dimension “d” as is for the word embedding vector Wn :

X’ = X + P

where, P = [p1, p2,….., pd] and the values of P are derived using the following equations:

Pd = sine ( index|10000index /no . of dimensions )for all the even positions in the vector;

Pd = cos (index|10000index /no . of dimensions )for all the odd positions in the vector.

Position encoding produces a similarly shaped matrix that can be added to the embedding matrix.

Shape of the matrix (samples, sequence length, embedding size) produced by the embedding and

position encoding layers is maintained throughout the Transformer, which is finally reshaped by the

final output layers. The input embedding layer sends its outputs into the next layer. Similarly, the

output  embedding layer feeds into the next layer (encoder layer).

The encoder passes input into a multi-head attention layer. The attention module consists of one or

more attention heads. The attention module splits its query, key, and value parameters N-ways and

feds each split independently through a different head and then merged together to generate a final

attention score. This entire process of attention score generation has five major steps:

Step 1: From the above mentioned input matrix  X’ derived from the embedded words create the

Query matrix (Q), Key matrix (K), and Value matrix (V):

Q = X’.WO , where WQ is the optimizable weight matrix for the query matrix generation.
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K = X’.WK , where WK is the optimizable weight matrix for the key matrix generation.

V = X’.WV , where WV is the optimizable weight matrix for the value matrix generation.

All these three weight matrices are randomly initialized.

Step 2: Inner product between Query (Q) and Key (K) transpose matrices: Q.KT

This step establishes the weights for association between the words within a sentence and captures

their dependence.

Step 3: Scale the Query-Key inner product to stabilize the gradients:

Q . K T
/√dimension of the key vector

Step 4: Normalization through softmax function, which ensures that values are in the range of 0-1:

Softmax( Q . K T
/√dimension of the key vector)

Step 5: Compute the attention matrix “A” to get the attention score for each word in the sentence:

This is achieved by taking inner product of the above mentioned softmax normalized query and key

inner product with the Value matrix (V):

Softmax (Q . K T
/√dimension of the key vector) . V

This is a single column vector which holds the attention score for each positional word and their

relative closeness in the given sentence.
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For multi-headed attention, the same steps were repeated according to the number of heads and their

individual attention scores vectors were finally concatenated and forwarded to the block of feed-

forward network of the transformer encoder for further processing. Figure 2 provides a snapshot of

how this entire system is working. The output from multi-head attention layer passed into dropout

layer which helps to reduce over-fitting, which is followed by a layer of normalization. Afterwards,

the output  from this layer passes to a feed-forward layer, which then sends its output  to the next

dropout layer in the stack.  A feed-forward layer  was implemented gathering its  input from the

previous layer, followed by a layer of GlobalAveragePooling1D which then passes its output to the

third Dropout layer of the model. The Dropout layer passes output into the fully connected hidden

layers. 

The performance of the  Transformer  was  evaluated for a numbers of hidden layers where finally

total two hidden layers were found performing the best and the connections between the nodes were

made dense. For the model, the number of nodes across the two hidden layers were tuned. All the

component  layers  were  optimized for  their  suitable  numbers  and component  nodes  number  by

iterative  additions.  Different  activation  functions  were examined for  the  layers  from a pool  of

available activation function. The fourth Dropout layer takes from the last hidden layer and passes

its output  into  an  LeakyReLu activation  function  based single  node output  classification  layer.

Binary cross entropy loss function was used to calculate the loss. “Adadelta” optimizer was used at

this point to adjust the weights and learning rates. Adadelta adapts learning rates based on a moving

window of gradient updates instead of accumulating all past gradients even when many updates

have been done.  The learning rate was set to 0.583 for the optimizer and the model build was

trained using 20 epochs and batch size of 40 instances.  The transformer part derived the hidden

features and their relationships which got structured also, on which classification could be done in

much superior manner. Since the present problem in this study was not translation but classification,
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decoders were not  needed and instead the encoder output  were taken as input for next  step of

extreme  gradient  boosting.  For  this  purpose  the  output  of  the  transformer  was  passed  to  the

XGBoost  classification part.  The number of encoders and performance were studied and it  was

found that no significant major change in performance was observed by increasing the encoder

layers, and it only dropped after 6th encoder layers. Thus, we continued with single encoder layer to

keep it lighter while giving the similar performance. However, for Dataset “B” based learning four

encoder layers were found best performing and model based on Dataset “B” were implemented with

four encoders, while all the rest hyper-parameters remained the same. 

Optimizaiton of Tansformer-XGBoost system

A gradient  boosting framework, XGBoost,  is  a decision-tree-based ensemble Machine Learning

algorithm which has been consistently rated at the top in shallow learning approaches at Kaggle

bench-markings.  In the classification phase with XGBoost, grid search was applied for parameter

optimization using scikit-learn function RandomizedSearchCV. Following  hyper-parameters were

optimized  with  the  grid  search:   "eta/learning  rate",  "max_depth",  "objective",  "silent",

"base_score",  "gamma",  "subsample",  "eta",  "colsample_bytree",  "n_estimators",

"min_child_weight",  eval_metric",  "tree_method",  "reg_alpha",  "reg_lambda".  Gradient  boosted

decision trees learn very quickly and may overfit. To overcome this, shrinkage was used which

slows down the learning rate of gradient boosting models. Size of the decision tree were run on

different combinations of max-depth.  Values changed until stability was gained as the logloss got

stabilized and did not change thereafter. The final max_depth value was 6.

The final model obtained was saved in hierarchical data format 5 (HDF5). Since the entire system is

implemented  here  using TensorFlow  and  scikit-learn,  the  HDF5  format provided the  graph
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definition  and weights  of  the  model  to  the  TensorFlow  structure  and  saved the  model  for

classification purpose.  Each  and  every  hyper-parameter values  involved  to  finalize  this  hybrid

model were fixed using an in-house developed script which tested various combinations of values

of the hyper-parameters to pick the best ones. This entire optimization process was done using two

different approaches: Random search optimization and Bayesian optimizations. Figure 2 shows the

detailed workflow of the implemented architecture.

Performance Evaluation 

The performance of the built model was evaluated. Four classes of the confusion matrix namely true

positives (TP) , false negatives (FN), false positives (FP), and true negatives (TN) were evaluated.

The performance of the raised transformer based model was assessed the performance metrics like

sensitivity,  specificity,  accuracy,  F1-Score, and  Mathew  correlation  coefficient  (MCC).

Sensitivity/True  Positive  Rate  (TPR)  defines  the  proportion  of  positives  which  were  correctly

identified as positives.  The specificity value informs about the proportion of negative instances

correctly identified. Precision defines the proportion of positives with respect to total true and false

positives.  F1-score  measures  the  balance  between  precision  and  recall.  Besides  these  metrics,

Mathew’s Correlation Coefficient (MCC) was also considered. MCC is considered among the best

metrics  to  understand  the  performance  where  the  score  is  equally  influenced  by  all  the  four

confusion matrix classes (true positives, false negatives, true negatives, and false positives) (46). A

good MCC score is an indicator of robust and balanced model with high degree of performance

consistency. AUC/ROC and mean absolute error were also measured for the build model.

Besides this all, the consistency of performance on the developed approach was evaluated through

10-fold random independent trials of training and testing. Every time the dataset was randomly split
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into 70:30 ratio with first used to train and second part used to test, respectively. Every single time

data was shuffled and random data was selected for building new model from the scratch. Accuracy

and other performance measure were calculated for each such model. In order to avoid any sort of

imbalance, memory, and bias, it was ensured that no overlap of instances existed ever between the

train and test sets. 

Performance measures were done using the following equations:

Acc=
         TN+TP
(TN+TP+FN+FP )

Specificity (Sp )=
     TN
(TN+FP )

Precision=
    TP
(TP+FP )

Sensitivity (Sn )=
    TP
( TP+FN )

F 1−Score=2×(Precision × Recall
Precision+Recall )

AUC=∫
0

1

Pr [ TP ] ( v ) dv

MCC=
  TP× TN− FP ×FN

√ (TP+FP ) (TP+FN ) ( TN+FP ) ( TN+FN )

Where:

TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives, Acc =

Accuracy, AUC = Area Under Curve.
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CNNs based implementation of  genomic scanning capabilities  using Transformer-

XGBoost scoring profiles

Two different CNN modules were constructed for the identification of pre-miRNAs most confident

potential regions across the genomes. First one is genome wide T-scoring based CNN model and the

second one is the optional one which uses Read Per Million (RPM) based CNN to further improve

the identification of  pre-miRNA regions across the genomes while using sRNA-seq reads data as

the guide.

The first  module works with the Transformer modules scoring output for every genomic position.

Thus,  the  scanned  genomic  sequence  is  transformed  into  its  corresponding  transformer  scores

sequence for each scanned position until the last window frame. It appears like a graph plot where

the T-scoring around the pre-miRNA regions appear different than the regions not having them. This

T-scores sequence is converted into a one hot encoding acting as an input  to a convolution layer.

The scoring  profile input has a  dimension of 280×10.  If the length of  some instance was found

shorter  it  was  padded for  the empty  columns with  value of  zero.  Size  of  280 covers  the base

positions in a window, for each of which corresponding T-score exists. 10 dimensions come from 10

different ranges of T-scoring ranging from 0 to 1. To evaluate the performance of the scoring based

CNNs, various number of hidden, convolutional, maxpooling, and batch normalization layers were

tested and finally two convolutional, one maxpooling, four batch normalization, and four hidden

layers were  applied in a fully connected manner. The number of the nodes across both the dense

hidden layers were tuned based on the number of filters  used in the convolution layer.  All  the

component layers were optimized for their best numbers and component nodes number by iterative

additions. Additionally, the kernel size and strides were optimized by trying different values in an

incremental order. A sigmoid activation function based single node classification layer was used
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with  binary cross entropy loss function to calculate the loss. “Adam” optimizer was used at this

point to adjust the weights and learning rates. The batch size was set to 4 and the number of epochs

was set to 25. 

The  second  CNN based  module  is  optional  as  it  requires  availability  of  short  reads  sequence

mapping information.  It  takes  RPM value  for  each base  in  the  input  while  the  input  genomic

sequence is represented in the form of RPM value sequence.  For this RPM based second module

RPM profiles were created and transformed later into a vector of length of 280 elements, where

each element holds the scaled normalized sRNA read depth value for the position of nucleotide in

the sequence window. Here also, padding was done for the shorter input instances. Similar to the T-

scoring based CNN,  here also various numbers of hidden, convolutional, and maxpooling layers

were tested and finally one convolutional, one maxpooling, two batch normalization, and two fully

connected hidden layers were found best performing. The number of the nodes across both the

dense hidden layers, the number of filters used in the convolution layer, the kernel size and strides

were optimized by trying different values. Similar to the above mentioned T-Score CNN, a sigmoid

activation function based single node classification layer was used with binary cross entropy loss

function to calculate the loss. “Adam” optimizer was used at this point to adjust the weights and

learning rates. The batch size was set to  64 and the number of epochs was set to 25.

To train and test the T-scoring based CNN module, two different dataset were created from Dataset

“A” and “B”, respectively.  The first dataset was created from the known  pre-miRNA regions of

Oryza sativa taken in Dataset “A” and the second dataset was created from the pre-miRNA regions

of Oryza sativa, Glycine max, Arabidopsis thaliana, and Zea mays after refinement (Dataset “B”).

For both datasets, the 500 bases from their 5’ and 3’ ends were extracted from the genome, which

acted as the negative instances which could help recognize the boundaries and shift towards the
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corresponding miRNA region.  All these sequences were represented as corresponding T-score for

each base  position.  Same was done for  the  pre-miRNA regions  also.  As  discuused earlier,  the

sequence which is transformed into its corresponding probability scores appears like a graph plot

where the scorings around the pre-miRNA regions appear different than the flanking regions not

having them. For the first dataset (Derived from Dataset  “A”), the  entire data from  Oryza  was

considered, where the total number of positive instances (pre-miRNA regions) was 604, and the

total  number  of  non-pre-miRNA regions  (the  500  bases  flanking  sequences  around  the  pre-

miRNAs) was 604. Similarily, for the second dataset,  entire refined data (Dataset “B”) for  Oryza

sativa, Glycine max, Arabidopsis thaliana, and Zea mays was considered, where the total number of

positive instances (pre-miRNA regions) was 631 positive instances, and the total number of non-

pre-miRNA regions (the 500 bases flanking sequences around the pre-miRNAs) was 631 negative

instances. Later, scores were converted into one hot encoding representation, acting as the input to a

convolution layer with a dimension of 280 × 10.

Similarily, with the RPM based CNN module the extracted sequences from the genome of  Oryza

sativa,  Glycine max,  Arabidopsis thaliana, and  Zea mays  were mapped back to the genome to

calculate its reads per million (RPM) value for every single base. A total of 201 different samples

covering a total of  66  experimental conditions and a total of  seven billion sRNA-seq reads (239-

GB) were considered for raising the RPM CNN module. The fully annotated Arabidopsis thaliana

genome  version  (GCA  000001735.1  TAIR10) was  used  as  the  test  set  to  benchmark  the

performance for genomic annotation. It has to be noted that for the benchmarking on Arabidopsis

thaliana genome and associated datasets, sequences from Arabidopsis thaliana were removed from

the  models  of  both  T-scoring  based  CNN  module  and  RPM based  CNN  module.  For  these

Arabidopsis  specific  T-scoring and RPM based CNN models  two different  models  were raised
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exclusively from Dataset “A” (model “A”) and “B” (model “B”) where instances from Arabidopsis

were completely removed to avoid any chance of bias and memorization.

Optimization of CNNs

In the T-scoring based CNNs model, the T-scores are converted into a one hot encoding as the input

to a convolution layer and has the dimension of 280×10, where the various scoring bins defined the

first dimension and the base positions in the length of 280 window defined the second dimension.

The input layer was followed by a convolution layer containing 64 channels at each position with

2×2 kernel size. The input sequence was padded if the length was shorter than  280 in order to

ensure a constant size of the input matrix. The output resulted into a dimension of  279 × 9 × 64

representation after the convolution. This passes into a MaxPooling layer. This layer included 32

nodes having the kernel size of 2×2. Max-pooling helped in reducing the dimensions of convoluted

sequence into a dimension of 139×4×64 which is then flattened by the flatten layer. The output from

flatten layer passes into first dense layer which is followed by Batch Normalization. This layer was

used  to  overcome  the  over-fitting  problem during  training  process.  Likewise,  the  output  from

previous  layer  passes  into second  dense layer  and then into second Batch Normalization layer.

Similarly, the input passes through two more combinations of dense and Batch Normalization.  It

goes  finally into the output layer with 50 dimension. The output layers had a node with  sigmoid

activation function. The model was compiled by binary cross entropy loss function to calculate the

loss which was optimized  with “Adam” optimizer,  for a batch size of four and 25 epochs. The

model produced probability score for every instance passed.

In the optional RPM based CNNs model, the scaled normalized RPM values of each base became

the input  to  a  1D convolution  layer with  dimension  of 280×1. The  convolution  layer  had 32
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channels at each position with kernel dimension of of 5×1. The output from the convolution layer

passed into a Max-pooling layer whose output was flattened and converted into a flatten layer. The

output from the flattened layer passed into two fully connected dense layers. Later, it was followed

by a final output layer with a sigmoid activation function. The model was compiled by binary cross

entropy loss function to calculate the loss which was optimized by using “Adam” optimizer with a

batch size 64 and epochs of 25. The model produces probability score for every instance passed.

Another model was raised combining T-scoring based CNNs and RPM based CNNs into a bi-modal

CNN.  This  model  system unlike  the  above  one,  processes  T-score  sequence  and  RPM profile

sequence in parallel and combined manner, and has been raised when the sRNA-seq read data is

available and to be used essentially.  To construct this bi-modal CNN, previously built architecture

for T-scoring and RPM based CNN were used. Both the architectures were joined together with a

concatenate layer  after they passed  through their respective last batch normalization layer  before

connecting to the output layer. The output from the concatenation layer passes to the final output

layer with a  sigmoid activation function.  The model was compiled by  mean absolute error loss

function to calculate the loss which was optimized by using “Adam” optimizer with batch size 4

and epochs of 250. The model produces probability score for every instance passed.  To train and

test this bi-modal CNN module, the same section of dataset “B” was used from T-score and RPM

based CNN models on which they were trained and tested previously (covering seqeunces from

Oryza sativa, Glycine max, Arabidopsis thaliana, and Zea mays after refinement (Dataset “B”)).

Performance benchmarking for genomic annotations and application demonstration

To identify the pre-miRNAs on Arabdiopsis thaliana and Camellia sinesis, we downloaded both the

genomes from NCBI (‘GCA 000001735.1 TAIR10’ and ‘GCA 004153795.2 AHAU CSS 2’) for
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performance  benchmarking  for  genome  wide  pre-miRNAs  annotation  and  as  the  application

demonstration,  respectively.  The genomes  were scanned  by the  transformer  module  through an

overlapping sliding window of 200 bases up to n-200th position. The generated position-wise scores

sequence  was  scanned  through  an  overlapping  sliding  window  of  280  elements,  where  every

window becomes the input to the CNN modules as described above.  

Arabidopsis  genome annotation for miRNAs were obtained from miRBase (v22). Seven different

published tool’s annotations for  Arabidopsis (miRanalyzer (18), MIReNA (19), mirDeep-P (20),

mirDeep2 (22), mirDeep* (23), ShortStack (24), miR-PREFeR (25)) were also considered for the

corresponding comparative performance measure process (3, 4). 

Validation of the identified pre-miRNAs candidates using sRNA-seq reads

For the validation of the identified pre-miRNAs, the sRNA reads were considered by mapping them

to the genome. These sRNA-seq fastq data were collected from GEO and SRA databases which had

88 and  104  different  read  files  for  Arabdiopsis  thaliana and  Camellia  sinesis,  respectively

(Supplementary  Table  S2  Sheet  1-2).   Genomic  sequences,  annotations  and  reference  RNA

sequences were downloaded from NCBI. Trimmomatic v0.39 (47) and in house developed reads

processing tool,  filteR (48),  were used to  filter  out  poor  quality  reads,  read  trimming,  and for

adapter removal. Filtered reads were mapped back to the genome using Hisat2 (49). Complete list

of various conditions and sources is available in Supplementary Table S2 Sheet 1-2 . To remove any

bias and noise due to some random elements, two different criteria were applied: (i) Reads which

appeared more than five times in any given experiment were only considered, and (ii) only those

mapping regions were considered which got support from at least for two different experimental

conditions.  All  these reads  were  subjected  to  validation  for  identified  pre-miRNAs across  the
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genomes. The  co-ordinates of  the short reads were obtained from the mapped results and were

intersected it with results obtained from miWords utilizing bedtools (50). Since many miRNAs are

also homologous, the identified miRNAs by miWords were searched for homology support using

BLAST with already reported plant miRNAs in miRBase. Related information about sRNA reads

file is provided in Supplementary Table S2 Sheet 1-2.

Server and Stand-alone Implementation

The entire server was implemented in Apache-Linux platform using HTML5 and PHP. Majority of

the codes were developed in python and shell for data curation and back-end processing. Statistical

processing and calculations were implemented were also executed using modules developed with

python. The standalone version was developed in python and shell. The entire work was carried out

in the Open Source OS environment of Ubuntu Linux platforms.

RNA isolation and quantitative real-time analysis

Total RNA was isolated from tea leaves (Camellia sinensis) from the CSIR-Institute of Himalayan

Bioresource technology (32° 05’ 59’’N; 76° 34’ 04’’ E; 1305 m a. s. l) experimental farm (CSIR-

IHBT-269)  (51).  Approximately 10-12 plants more than eight years old were randomly selected

from three sub-populations from the same farm, thus representing three biological replicates for leaf

sampling.  Samples were harvested in liquid nitrogen and stored at -80 °C for RNA isolation.  Total

RNA was isolated from leaf tissue (100mg) using Trizol (Invitrogen, USA) according to (52).  Total

RNA was treated with RNase-free DNase I (Invitrogen, USA) as per as manufacturer’s protocol.

The  cDNA  synthesis  was  performed  using  random  hexamer  and  SuperSrcipt®  III  Reverse

Transcriptase (Invitrogen, USA), as per as manufacturer’s protocol.  Primers of 10 pre-miRNAs

were designed using primer 3 software v.0.4.0; Applied Biosystem (Table 2). Quantitative real time-
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PCR was performed using the standard protocol on Applied Biosystem, USA.  In brief, 2.5 µg of

the 1/100 dilution of cDNA with water was added to 5.5µl of SYBR green (Thermo scientific,

USA), 2.5nM each primer, and water to 10 µl reaction mixture.  Amplification was performed with

an initial denaturing at 95 °C for 7 min, followed by 40 cycles of 95 °C for 10s, 53 °C for 30 s, and

72 °C for the 30s.  Relative expression of each pre-miRNA was calculated using the equation 2 -ΔC
T

where ΔCT = (CTPre-miRNA – CT18SrRNA) (53).  18S rRNA was taken as an internal control to normalize

the variance in cDNA.  To simplify the relative presentation expression of each pre-miRNA was

multiplied by 106.   All  reactions  of qRT-PCR were performed using three biological  and three

technical replicates.

Results and Discussion

The datasets

Presently,  there  are  8,615 known  plant  pre-miRNAs  in  the  miRNA database  miRBase  v22

(http://www.mirbase.org/). After the retrieval of data, only those species sequences were kept which

had their respective genome information and those having no information were discarded from the

pool.  5,685 pre-miRNAs belonged to 27 plant species which  formed the initial positive dataset.

Supplementary Table S2 Sheet 3 shows the pre-miRNAs distribution across the 27 plant species. To

construct the negative dataset, same number of instances were collected from the species selected

for their corresponding positive dataset. For only 14 out of 27 species, various non-coding, coding

RNAs were available at Ensembl plants (v51) from which a total of 5,684 RNAs of different classes

were retrieved while eliminating the redundant sequences. This dataset has been called Dataset “A”

in the present study. 
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The dataset “B” was constructed from miRBase (v22) (37), sRNAanno (38), PmiREN (39), and

PNRD (40) for construction of a dataset with high confidence pre-miRNA instances as many entries

in miRBase have been under argument as not proven correctly as miRNAs. In material and methods

section above details about sRNAanno, pmiREN, and PNRD  has already been given and how they

ensured high confidence positive instances in the present study. By eliminating sequences of >95%

similarity with CD-HIT-EST (41) and considering sequences from miRBase only when at least any

one  of  these  three  databases  supported  a  pre-miRNA  instance,  a  total  of  3,923  pre-miRNAs

qualified  as  high  confidence  positive  instances  of  pre-miRNAs.  The equal  amount  of  negative

instances were taken randomly from the Dataset  “A”, and together this dataset formed the high

confidence Dataset “B”.

Besides the above mentioned datasets, another Dataset  “C” was built  exclusively for testing and

objective comparative bench-marking purpose. This dataset became the source for common training

and testing datasets to attain the objective comperative benchmarking where all the compared tools

have been trained and tested on this common dataset. This dataset was built from the datasets used

by the different tools like HuntMi (7), miPlantPreMat (8), PlantMiRNAPred (2), and plantMirP (9).

A total of 16,404 pre-miRNAs sequences were retreived, covering 75 plant species. After removing

similar sequence, 9,214  plant pre-miRNAs (positive instances) remained. Similarily, 92,000 RNAs

of different classes (negative instances) were retrieved after removal of the redundant sequences.

Figure 3 provides the illustrated details on all these datasets.

In addition to this, to fathom the performance on the real situation data like genomes where class

imbalance is pronounced with much higher instances of non-miRNA instances, dataset provided in

the study by Bugnon et al (2021) was also considered (42). 
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Sentences,  Words,  and Attention!  Seeing  genome as  a  pool  of  sentences  through

transformers delivers high accuracy  

Most of the existing pre-miRNA discovery tools depend upon some traditionally identified feature

sets highly focused on the hair-pin loop structures and sequence composition. They build around

properties like Minimum free energy (MFE), stem length, AU/GC content, pairing in stem, terminal

loop size etc,  most of which are inherited from miPred (17).  However,  these properties exhibit

significant  differences  between  animal  and  plant  system,  and  within  plants  themselves,  these

properties exhibit lots of variations. Figure 1 shows the distribution plots for some of such features

to build the pre-miRNA models which exhibit a lot of difference from animals as well as variation

among themselves and overlap with other types of RNAs. Also, in most of the existing tools, there

is absolutely no effort made to record their relative standing and context which largely limit their

practical application when used to annotate genomic sequences (4, 54).

One of the above cited studies clearly showed how poorly most for the existing software to detect

pre-miRNAs perform when they face real situation application of performing genomic annotation.

They recommended that compared to the traditional machine-learning approaches, it is the need of

the  time to  focus  upon the  development  of  the  methods  based  on DL approaches which may

perform better  than the  other  machine  learning methods.  Considering these  seminal  works  and

limitations of the existing machine learning approaches, the current study proposes a revolutionary

transformers deep-learning based approach  where context and relative standing of the properties

have been emphasized upon to come up with a highly accurate and practical pre-miRNA discovery

system, miWords.
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For the building of a universal model for plant pre-miRNA regions for its characterization against

the other types of RNAs, we used 13 different combinations for various sequence input encodings:

1) Monomers, 2) Dimers, 3) Trimers, 4) Pentamers, 5) Structure triplets, 6) Monomers+Dimers, 7)

Monomers+Trimers,  8)  Monomers+Dimers+Trimers,  9)  Monomers+Dimers+Pentamers,  10)

Monomers+Dimers+Pentamers+Triplets,  11)  Monomers+Dimers+Trimers+Triplets,  and  12)

Monomers+Dimers+Trimers+Pentamers+Triplets.  They  were  evaluated  for  performance through

the raised transformer encoder based model. An assessment was made for each encoding considered

where the Dataset “A” was split into 70:30 ratio to form the train and test dataset. The model was

trained with the train set and all the above mentioned properties encodings were done accordingly.

This  protocol  came in  action  as  an ablation  analysis  to  evaluate how  each of  these individual

encodings  of  the  sequence  was  contributing  towards  the  building  of  model  for  accurate

classification. The sequences  were taken in a  uniform length of 200 bases while  considering the

reference from the midpoint of the terminal loop, as described in the methods section.

At the first,  the Transformer was trained and tested without  the XGBoost  gradient  boosting to

evaluate  its performance.  First,  the  test  of  performance  was  done  with  monomeric  sequence

representation and its corresponding encodings fed into the input layer of the Transformer. The

observed accuracy for monomeric encodings was just 72.36%. This was followed by feeding of

dimeric, trimeric, and pentameric sequence representations and their encoded sequences into the

input  layer  of  the  Transformer.  This  returned an  accuracy  of  73.21%,  75.36%,  and  79.01%,

respectively, while covering a total of 199, 198, and 196 words, respectively.

The  reasoning  for  considering  monomeric  representation  was  that  they  capture  sequence

composition. While the dinucleotide densities representation has been proven very useful to reflect
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the base stacking and secondary structural tendencies (45, 55). Pentamaric sequences are reflective

of the nucleic acids shape which determine protein-nucleic acids interactions (44, 56). All these are

critical to characterize a pre-miRNAs. Besides the above mentioned sequence based properties, the

secondary structure stem-loop based features were also used for the representation and encoding, as

pre-miRNAs exist in the stem-loop hairpin form. RNAfold derived stable secondary structure of the

considered  region  was  used  for  the  structural  representation.  For  the  sequence encoding  the

extracted  dot-bracket  secondary  structure  of  these  sequences  were converted  as  following:

(“(“−>”M”, “.”−>”O”, “N” −>” )”. These were fed into the input layer in the form of triplet words

covering a total of  198  words per sentence. This  fetched an accuracy of 77.09%. As can be seen

here, individually all these properties did not score much and needed information sharing with each

other. To obtain encoding of a particular type, the sequence was broken down into sub-sequences in

an overlapping fashion to gather all the existing possible combinations which were later converted

into encodings.

Above evaluation results showed varying influences on pre-miRNA identification observed for the

different encodings.  The next step was observing the influence of combining these sequence and

structure derived words encodings and learning on them. Combining of the encodings was done in a

gradual  manner  in  order  to  see  their  additive  effect  on  the  classification  performance.  These

combination  of  encodings  yielded  a  better  result  than  using  any  single  encoding.  Combining

monomers with dinucleotides (399 words) yielded an accuracy of 81.23% while the combination of

monomers + trimers (398 words) yielded an accuracy of 84.06%. In addition, the combination of

monomers  +  dimers  +  trimers  (597  words)  and  monmers  +  dimers  +  pentamers  (595  words)

achieved the accuracy of 87.63% and 89.32%, respectively. As we know, secondary structure holds

critical  role  in  miRNA  biogenesis,  combining  these  encodings  with  structure  triplets  based

encodings led to  further superior result. Monomers+dinucleotides+trinucleotides+structure triplets
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(795  words),  Monomers+dinucleotides+trinucleotides+pentanucleotides+structure  triplets  (991

words),  and  monomers+dinucleotides+pentamers+structure  triplets  (793  words)  combinations

yielded the accuracy of 93.67%, 93.84%, and 93.96%, respectively, with the latter one having the

better  balance  between  the  sensitivity  and  specificity  values.  Thus,  combinations  of  different

representations  and  encoding  for  the  genomic sequence  markedly improved  the  performance

through the natural language processing approach of transformers.  Figure 4 presents the plots for

the accuracy, sensitivity and specificity values distribution observed for the various combinations of

the sequence encodings.

The  Transformers  built from  the combination  of  monomer+dimer+pentamer+structure  triplet

encodings delivered a good accuracy of 93.96%. There was a gap of 0.9% between sensitivity and

specificity, though not a big gap, yet we tried to reduce it further. In doing so, the output layer of the

transformer  having  the  LeakyReLu  activation  function  was  replaced  by  XGBoost  for  the

classification purpose. XGBoost was the choice as it has come consistently at the top along with

deep learning approaches in Kaggle benchmarkings, and performs exceptionally good on structured

data and manually extracted features input sets. In our case, the Transformer’s encoder became the

feature feeder to XGBoost. This also strengthened the performance further while leveraging from

the two best and different approaches of machine learning. This hybrid deep-shallow model reduced

the performance gap between the sensitivity and specificity to just 0.46% while also increased the

accuracy  slightly  to  94.08%  (Supplementary  Table  S3  Sheet  1).  Likewise,  another  model  was

derived form Dataset “B” which was based on  high confidence positive instances.   This model

attained an accuracy of 98.04% on its test set along with specificity of 98.56% and sensitivity of

97.54%. This all became the first part of the transformer based pre-miRNA identification system,

which can even work independently and can be used directly for pre-miRNA regions identification.
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It was further enhanced for pragmatic genomic scanning and annotation purpose which is discussed

in the upcoming sections.

Optimization of the Transformer-XGBoost system

Optimization of the hyper-parameters is an important step to derive the best possible model.  The

transformer part had encoder role which learned across the hidden space of features and presented it

to  the  classification  part  done  by  XGBoost  part.  The  transformer  encoders had multi-headed

attention layer  where a  total  of 14 self  attention heads  were found best performing.  Multihead

attentions help a transformer to avoid misunderstanding the relationships between the words by

multiple  vetting  by  the  different  transformer  heads  for  the  derived  attention  scores.  The  input

sequence was padded if the length was shorter than 200 bases in order to ensure a constant size of

the input matrix. This output was passed into a dropout layer with dropout fraction 0.1. By passing -

dropout fraction, 10% of the hidden units were randomly dropped during the training process of the

model. This layer helped to reduce over-fitting. Later, this output was normalized by the second

layer called  normalization layer. This layer was followed by a third layer called Feed Forward layer

with 14 nodes and followed by second Dropout layer with dropout fraction of 0.1 and second Feed

Forward  layer  with  14  nodes.  The  output  from  Feed  forward  layer  passed  into

GlobalAveragePooling1D layer, followed by the third dropout layer with dropout fraction of 0.16.

Next to this layer, pooled feature maps were passed to two fully connected layer. The hidden layers

in the present study had two dense layers with both having 38 and 12 hidden nodes with RELU and

SELU activation function, respectively. The hidden layer output was passed into the fourth dropout

layer in the stack with dropout fraction of 0.17 which passed its output into the last layer. Finally,

the output of the dense layer with 12 dimension was passed to the last and final output layer, a node

with LeakyReLu activation function. The model was compiled by binary cross entropy loss function
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to calculate the loss which was optimized by using the “Adadelta” optimizer with learning rate of

0.583.  An accuracy of 94.08% and 98.05% was observed for the test sets from Dataset “A” and

“B”, respectively.

In the classification part of the hybrid Transformer-XGBoost, XGBoost takes input from the second

fully  connected  layer  of  the  Transformers  stack.  Grid  search  was  applied  for  hyperparameter

optimization using scikit-learn function RandomizedSearchCV. Following hyperparameters  were

finalized after the grid search: params = {"eta/learning rate": 0.22, "max_depth": 6, "objective":

"binary:logistic", "silent": 1, "base_score": np.mean(yt), "gamma": 6.4, "subsample": 0.6, "eta": 0.4,

"colsample_bytree":  0.83,  "n_estimators":  1400,  "min_child_weight":  4.76,  "eval_metric":

"logloss", "reg_alpha": 149.468151996443, "reg_lambda": 0.02399001301159498, "tree_method":

'approx'}.  To overcome  over-fitting shrinkage was used which slows down the learning rate  of

gradient boosting models. At the value of 6, stability was gained as the logloss got stabilized and

did not change thereafter. The output from the XGBoost returned the probability score (T-Score) for

each input sequence. The probability score indicated the confidence of each instance as non-pre-

miRNA or pre-miRNA. If the T-Score >0.50,  the corresponding input sequence was identified as

pre-miRNA else a non-pre-miRNA. 

The final hyperparameters set for the output layer of the implemented model was: {“Activation

function”: LeakyReLu, “Loss function”: binary crossentropy, “Optimizer”: Adadelta}. The related

information about optimization towards the final model is listed in Supplementary Table S3 Sheet

2-3 and illustrated in Supplementary Figure S1.
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Consistent  performance across different validated datasets reinforces  miWords as a

universal classifier for plant pre-miRNAs

As mentioned in the Methods section, for performance testing  three different datasets, “A”, “B”,

and “C” were  created.  Dataset  “A”  had 5,684 positive  instances  and  5,684  negative  instances,

totalling 11,368 instances. Dataset “B” had 3,923 positive instances and 3,923 negative instances,

totalling 7,846 instances. 70% of dataset A and B were used for training purpose and 30% was kept

aside  as  a  totally  unseen  test  set  instances  in  mutually  exclusive  manner  to  ensure  unbiased

performance testing with no scope for memory from data instances. 

Besides  raising the trained models  and testing it,  as  mentioned in  the  above section,  10 times

random train-test trails have also been done to evaluate the consistency of the transformer approach

on Dataset “A” and “B”.  For every such trial, a total of 3,978 and 2,746 plant pre-miRNAs and

equal number of negative  instances,  respectively, formed  the training datasets.  A total  of 3,412

(Dataset “A”) and 2,354 (Dataset “B”) instances formed the testing datasets. In this entire study this

was also ensured at every stage that no instances overlapped between train and test sets in order to

avoid any chance of bias and memory. 10 folds random trials were performed where the train and

tests  instances from Dataset “A” and “B” were selected randomly and in mutually exclusive non-

overlapping manner. Every time the model was built from the scratch using the training data and

was tested upon the corresponding test set.  This 10-fold random trials concurred with the above

observed performance level and scored in the same range consistently.  The difference between train

and test mean absolute error (MAE) across 10-fold random validation trials was in the range of

0.009 to 0.0132 (Dataset “A”) and 0.007 to 0.0106 (Dataset “B”) which indicates the model was

trained well  with no significant overfitting.  All of them achieved good quality ROC curves with

high AUC values in the range of 0.9294 to 0.9436 (Dataset “A”) and 0.9734 to 0.9779 (Dataset

“B”)  while maintaining  reasonable balance  between  specificity  and  sensitivity.  (Supplementary
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Table S3 Sheet 4-5). As emerges from the performance metrics evaluation for the build model and

their  AUC/ROC plots  (Supplementary  Figure S2a and b), the developed  transformer based pre-

miRNA  classification  approach  scored high  on  performance  with  consistent  and  reliable

performance. 

Integrating Transformer as a trainable feature extractor works better  with higher dimensions and

instances to learn from. In the input layer combined encodings for sequence and structure derived

words  were  used  on which  the Transformer block gave  remarkable  results.  The 14 multi-head

attention  system ensured  proper  attention  to  each word  while  mitigating  any chance  of  wrong

weighting and association mapping between the words while taking care of right context in the

sentence.  

miWords consistently outperforms all the compared tools for pre-miRNA discovery

This  study  has  performed  a  series  of  different  comparative benchmarkings.  The  first  two are

covered in this section.  In this comparative benchmarking, the performances of eight compared

software were studied across the Datasets  “A”, “B”, and “C”.  The compared tools covered the

classical machine learning as well as recently developed Deep Learning approaches for pre-miRNA

discovery:  miPlantPreMat  (SVM based), HuntMi  (Ensemble  method  of  Random  Forest),

PlantmirP-Rice (Ensembl method of Random Forest)  (57), microPred (SVM based), plantMiRP

(SVM  based),  mirDNN  (convolutional  deep  residual  networks),  deepMir  (CNN  based)  and

deepSOM (deep learning based SOM).   Besides this, the benchmarking has also considered  three

different datasets to carry out a  fully unbiased assessment of performance of these tools  across

different datasets. The first dataset considered was the testing dataset part of Dataset “A” and “B”.

Besides measuring the performance of miWords of this neutral and totally unseen testing part of
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Dataset “A” and “B”, performance of the other eight tools was also benchmarked. The performance

measure on the test set of Dataset “A” and “B” gave an idea how the compared algorithms in their

existing form perform.

The third dataset “C” was used to carry out objective comparative benchmarking, where each of the

compared software was trained as well tested across a common dataset in order to fathom exactly

how their learning algorithms differed in their comparative performance.  

All these  eight software were tested across both the datasets  which covered more than 27 plant

species considered where miWords outperformed all of them across both the datasets, “A” and “B”,

for all the performance metrics considered (Figure 5a and b). As already reported above for the

Dataset “A” and “B” test set, miWords scored the accuracy of 94.08% and 98.04% with MCC value

of 0.88816 and 0.9609, respectively, while displaying a very good balance between sensitivity and

specificity with  difference of just 0.4% on  Dataset “A” and 1.0%  on Dataset “B”. On the same

Dataset  “A”  and  “B”,  the  second  best  performing  tool  was  plantmiRP-Rice  which  scored  an

accuracy of 87.89% and 92.56%, respectively, and MCC values of 0.75 and 0.8560, respectively,

values far behind the values observed for miWords. It displayed a gap of just 0.76 (Dataset “A”)

between sensitivity and specificity, a gap which is slightly higher than miWords, but yet a good

balance between sensitivity and specificity. A Chi-square test confirmed that miWords significantly

outperformed  the  second  best  performing  tool  on  Dataset  “A”  comparative  benchmarking  (p-

value<<0.01 ).

On the Dataset  “C”, all these tools were trained on the same common training dataset and tested

across the common testing dataset in order to achieve the objective comparative benchmarking of

the algorithms. However, two tools, microPred and miPlantPreMat could not be included in this part
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of bench-marking as both these tools don’t give provision to train on another dataset and rebuild

models. Thus, in this part of benchmarking, the remaining six tools and miWords were trained and

tested on the common dataset. In this benchmarking also miWords outperformed all the compared

tools with significant margin with the similar level of performance (Figure 5c). miWords clocked an

accuracy of 93.6% and MCC of 0.87, while displaying a good balance between sensitivity and

specificity where gap of only 0.94% was observed. The second best performing tool was HuntMi

which attained an accuracy of 90.5% and MCC value of 0.81 but displayed much higher gap of

~7% between sensitivity and specificity scores, exhibiting significant performance imbalance. A

Chi-square test done here also confirmed that miWords significantly outperformed the second best

performing tool, HuntMi (p-value<<0.01 ).

Besides this all, one more interesting objective comparative benchmarking analysis was done on an

imbalanced dataset recently provided by Bungan et al, 2021 (42). In their benchmarking study, they

knowingly created an imbalanced dataset with much higher negative instances to mimic the actual

genome condition where class imbalance is pronounced. There they strongly attracted the attention

on the fact that how most of the existing pre-miRNA discovery software performed very poorely. 

This dataset contains 839 pre-miRNA (positive) and 13,56,616 (negative), utilizing this dataset an

imbalanced dataset was created in the ratio of 1:1616. The dataset was split into 70:30 ratio to train

and  test  the  model  for  miWords,  maintaing  1:1616  ratio  of  positive  and  negative  instances.

miWords’s performance was compared fot this dataset also where the compared tools were also

trained  and  tested  on  this  common  dataset.  Here  too  miWords  scored  the  highest  for  all  the

performance metrics with big lead margin than the rest of the compared six software. miWords

achieved an MCC of 98.18%. (Figure 5d). 
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Also this needs to be noted in both the bench-marking tests, miWords scored much higher MCC

values  which suggests  consistent  and robust  performance.  MCC gives  high  score only when a

software  scores  high on all  the four  performance parameters  (true positive,  false  positive,  true

negative, false negative). As it is visible from the score distribution for all the metrics (Figure 5),

miWords also exhibited least dispersion among all. miWords’s performance points out that more

appropriate  features may be learned through training on syntax of words,  and their  subsequent

efficient encoding with multi-headed attention using Transformer as an encoder. The full details and

data for this benchmarking study are given in Supplementary Table S4 Sheet 1-4.

Genomic context learning on transformer scores delivers extremely good results on

genome wide annotaitons of pre-miRNAs 

Performance over standard testing datasets may be claimed good, as has been done by most of the

published software in the past. But in actual application of genome annotation, huge performance

gaps exist and far below the acceptable limits. Some recent reports have highlighted that how much

poor  performing most  of  the  existing  pri-miRNA discovery  tools  become in  the  real  situation

applications like genomic annotations where most of them end up reporting very high proportion of

false positives (3, 42). This has also led to one of the rare event of mass withdrawal of entries of

plant miRNAs from databases like miRBase, recently. Taking note of such extreme events in plant

miRNA biology,  a  very  insightful commentary  was  made  (4).  There  they  recommended  some

protocols to identify genuine pre/miRNAs candidates and suggested a necessary run against some

well  studied  established  genome  like  Arabidopsis to  compare  how  much  false  positive

identifications were made by any plant miRNA discovery tool. It has become the standard protocol

to assess the success  of such tools in  real  application of  locating pre-miRNA regions across  a

genome.  Most  of  the  existing  tools  perform highly  unreliably  in  genome annotation.  The  best

performing tools were found to be necessarily dependent on sRNA sequencing read data to identify
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pre/miRNAs and yet they end up with lots of false identifications as transpires in discussion below

also.

One important problematic factor about all these existing tools is that they hardly acknowledge the

role  of relative information from the flanking non-miRNA regions  in accurate  identification of

miRNA regions  during  genome  scanning.  Their  core  pre-miRNA discovery  algorithms  hardly

consider such factors. While in actual  the relative  scoring patterns between miRNA regions and

neighbourhood non-miRNA  regions  can  become  a  highly  informative for  more  accurate

discrimination. We hardly found any study which performed genomic scanning and tried to further

learn on the scoring patterns for pre-miRNA regions and non pre-miRNA regions. A high scoring

pre-miRNA region is expected to display higher scoring distribution across  its bases along with

gradual decline when compared to its non-miRNA flanking regions where scoring is also expected

to exhibit random and sharper trend. Doing so would also help in detecting boundaries of the pre-

miRNA regions. A t-test between the flanking regions T-score distribution and pre-miRNA regions

supported this view (p-value < 0.05). Thus, it became another important aspect of miRNA regions

and to refine their discovery in genomic context.  Therefore, for the first time we conducted such

study and trained another deep learning CNN based module on the obtained T-scoring profiles in

actual run across the genomes. 

For T-scoring based CNN  two different models were raised from the Dataset “A” ( called Model

“A” for T-Score CNN) and “B” (Called Model “B” for T-Score CNN). In model “A”, a total of 604

Oryza sativa pre-miRNAs regions were considered for raising T-scoring CNN model. In model “B”,

a  total  of  631 pre-miRNAs regions  were  considered  from species  Arabidopsis  thaliana,  Oryza

sativa, Zea mays, and Glycine max for raising T-scoring based CNN model. 
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In this process, the transformers, which were  trained and raised in the previous step,  were run

across  the annotated genome of Arabidopsis thaliana, Oryza Sativa, Zea mays, and Glycine max

where the transformer’s scoring patterns was recorded for the annotated pre-miRNAs regions and

the  non-pre-miRNA regions.  This  was  done  with  a  sliding  window  of  size  200  bases,  which

generated  vectors  of  transformer  scores  per  base  for  the  pre-miRNA regions  and  non-miRNA

regions.  The  obtained  scoring  profiles  for  pre-miRNA regions  constituted  the  positive  datasets

while the T-score distribution per base for the flanking 500 bases both sides of pre-miRNA regions

having no pre-miRNAs constituted the negative dataset. In the methods section above, full details of

implementation  for  this  module  is  already  given.  The  position  specific  scoring  profiles  were

converted into a matrix of 280×10 dimension, where the rows contained the scoring values in the

range of 0-1 in  a discrete  manner,  while  the columns captured the base position for  the given

window size. One-hot encoding was done in this matrix where for any given base position, the

corresponding value was assigned value from the range of 0-1. This mimicked a pixeled image

which now could be passed through Convolution neural nets (CNN). CNN has been brilliant in

recognizing spatial  patterns,  and we expected them to capture the assumption that  pre-miRNA

regions display a significantly different scoring pattern for the bases than those belonging to non-

miRNA regions. This way for model A, a total of 604 experimentally validated Oryza sativa pre-

miRNA instances belonged to the positive instances dataset, and a total of 604 non-miRNA regions

(comprised  of  randomly  selected  5’ and  3’ flanking  non-miRNA neighbors)  belonged  to  the

negative dataset. This dataset was split into a ratio of 70:30 to train and test the CNN. Likewise, for

Dataset “B” derived model, a total of 631 pre-miRNAs from Arabidopsis thaliana,  Oryza sativa,

Zea mays, and Glycine max belonged to the positive instances dataset, and an equal number of non-

miRNA regions  (comprised  of  randomly  selected  5’ and  3’ flanking  non-miRNA neighbors)

belonged to the negative dataset. This data too was split in the ratio of 70:30 on which the CNN was

trained and tested. For Model “A”, an accuracy of 78.6% with sensitivity 79.21% and specificity

42

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2022. ; https://doi.org/10.1101/2022.07.14.500029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500029
http://creativecommons.org/licenses/by/4.0/


77.99% was observed. When the same test was carried out for the Model “B”, which had more

refined  high  confidence  data-set,  the  accuracy  of  T-Score  CNN  attained  90.76%  with  89%

sensitivity and 92.73% specificity.  The clear  benefit  of having the high-confidence instances in

Dataset  “B”  reflected  here  too.  Also,  from here  it  transpires  that  if  the  Transformer-XGBoost

classification system’s scoring scheme is learned with genomic context using the above mentioned

T-Score CNN, the actual application in genomic annotations would benefit a lot.

Therefore,  now the real test  was to check the raised model’s performance was on its  ability to

correctly identify the miRNAs and non-miRNA regions in some very well annotated and studied

genome.  This  would provide the clear  picture about  the performance of such software in  their

practical application of discovery of miRNA regions across genomes. For this, the  Arabidospsis

genome was taken with its full annotations. Arabidopsis has genome size of 119.763 MB and a total

of 326 pre-miRNAs are reported for Arabdiopsis thaliana in miRBase version 22 (37).  Also, this

needs to be noted that in order to attain an unbiased assessment of the raised model on Arabidopsis

genome, all the above mentioned model generation steps of Transformers-XGBoost and T-Score

CNN were redone from the scratch with Arabidopsis data completely removed from Dataset “A”

and “B” entries. The performances being discussed below for Arabidopsis genome, therefore, are

from the learning which never witnessed any data from Arabidopsis previously. In the first phase,

for  the  entire  genome  for  each  base  the  transformer  score  (T-score)  was  generated  from  two

different models which were derived from the datasets “A” and “B”. This became the input to the T-

scoring based CNN. 

A total  of  323  and  322  out  of the  annotated  326  pre-miRNAs  of  Arabidopsis were  detected

successfully from the build model derived from Dataset “A” and “B”, respectively. Hence, it was

clear that discovering miRNA regions by the above mentioned system was highly accurate.  The
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next and bigger important question was that how much novel miRNAs were identified across this

genome,  which  could  be  most  probably  the  false  positive cases?  A total  of  771 and 759 pre-

miRNAs regions were suggested by the transformers, which meant that a total of 448 and 437 false

positives were called pre-miRNA regions by the transformers derived from Dataset “A” and “B”,

respectively. Though this number is very much lesser than what the currently existing pre-miRNA

discovery tools and approaches report (including some NGS sRNA-seq data dependent tools) (26),

but even this number may be considered substantially high. However, we got an exceedingly good

and surprising result when the transformers scores were passed through the above mentioned T-

scoring based CNN. Just 29 (model “A”) and 43  (model “B”) novel candidates, the potentially false

positive cases, were obtained for the entire  Arabidopsis genome. This was an exceptionally good

result, especially when considering the fact that it was not given even any sRNA-seq data guidance. 

The existing tools which were run across Arabidsopsis genome with sRNA-seq read data supports

identified at  least  11  false  positive  pre-miRNA candidates  and  went  predicting  up  to  12,306

miRNAs despite having sRNA-seq reads support.  This clearly underlines that despite of having

sRNA-seq reads data as their guide, due to inefficiency in their existing core algorithms to identify

pre-miRNA regions, in actually these tools don’t benefit significantly from sRNA-seq reads data

guidance and end up identifying large number of false positive instances.  Also, in general they

grossly missed to identify a big number of actual miRNAs with their sensitivity value ranging from

3% to utmost 86%. Figure 6 provides one such comparative benchmarking map between some of

these sRNA-read data guided software performance on Arabidopsis genome and miWords’s relative

standing with  its  different  forms.  Even without  using sRNA  sequencing read data  unlike these

category  of  software,  miWords was  found  outperforming  them  by  big  margin.  Thus,  the

implications of our developed software, miWords, are going to be high. It can identify pre-miRNA

regions across the genomes highly accurately even without getting any help from sRNA sequencing
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experiments,  directly cutting the cost of experiments,  time, and efforts.  miWords’s performance

with sRNA-seq reads data support improved further, as transpires from the discussion below. 

And then  naturally comes the next question: How good it would perform if some one provides

sRNA sequencing data too? To answer this, miWords has implemented two different modules: 1) A

serially connected CNN module, and 2) a bi-modal CNN. Both of them take Reads per  million

(RPM) normalized value representation per base of the sequences. As done with T-Score CNN, here

also the pre-miRNA regions form the positive instances and their  flanking non-miRNA regions

work as the negative instances. Thus, same datasets were used here also which were used to train

the T-Score CNN. T-Score CNN represented them in the form of transformer score per base, while

the RPM-profile CNN here represented them in the form of normalized base coverage through

sRNA-seq read data. The first one works as an additional filter to improve the result of T-Score

CNN while the second one collaborates with T-Score CNN and parallelly contributes in taking the

collective decision.   Both of them have been trained on the above mentioned Datasets “A” and “B”.

First  model  (model  “A”)  was  raised  on a total  of  604 (433+171)  positive  and 604 (433+171)

negative instances from Oryza sativa where 70% of the dataset was used to train it and 30% was

used to test it. This model achieved an accuracy of 76.64% with sensitivity 77.29% and specificity

75.99%. The second model (model “B”) was raised on a total of 631 (442+189) positive and 631

(442+189) negative instance from Arabidopsis thaliana, Oryza sativa, Zea mays, and Glycine max.

The model achieved an accuracy of 86.44% with sensitivity 84.75% and specificity 88.14%. Effect

of high-confidence datasets was visible here also. Like in this entire study, here also it was ensured

that no instances overlapped between training and testing to avoid any memory and bias in the

learning.  Details  of  this  module  is  already  provided  in  the  methods  section  above  and

Supplementary Figure S3b.
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The raised RPM based CNN modules were tested across the Arabidopsis genome sequences to

measure how much they contribute to improve the results. As done in the previous steps of T-Score

CNN, here also the Arabidopsis sequences were completely removed from the training and testing

datasets to ensure totally unbiased measure of the performance without any scope of memorization

of instances and data from Arabidopsis. On passing through this optional and  serially connected

RPM-CNN module  the false positive identification further decreased to just 10 cases (model “A”)

and 12 (model “B”), a number much lesser than the number of 28 false positive cases reported by

best  performing  software,  miR-PREFeR  after  taking  support  from  sRNA-seq  data.  Figure  6

provides  the  comparative benchmarking  of  miWords  and  its  various  versions  with  seven best

performing  tools  which  use  sRNA-seq  data,  clearly  suggesting  the  top  notch  performance  by

miWords. 

This also may be noted that in a previous bench-marking study on these compared software, it was

found that they are sensitive towards the size of sRNA-seq data and number of studies included. As

this data volume and number of studies increases, the number of potential false positives by these

software was reported to increase also (25). The reported total number of total novel 28 miRNAs by

the best performing tool, miR-PREFeR, was when only two experimental conditions sRNA-seq data

were considered. As soon as they considered higher number of  samples (6), their reported novel

miRNAs number shot up to 49. The same trend was observed for almost all of the compared tools

with much higher off-shooting. In the present study we had considered comparatively much bigger

sRNA-seq data for Arabidopsis, a total of 88 samples, and yet did not see such overshooting effect

and reported only 10 and 12 novel pre-miRNAs for the RPM based CNN module derived from

Dataset “A” and “B”, respectively, as mentioned above. Even without sRNA-seq data support and

just based on its Transformer scoring CNN module, miWords outperformed all of those compared

46

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2022. ; https://doi.org/10.1101/2022.07.14.500029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500029
http://creativecommons.org/licenses/by/4.0/


software which  needed sRNA-seq data essentially.  As already shown above, the core transformer

based part of miWords, outperformed all the compared software with large margins, which only

further  improved with  addition  of  T-Score  CNN and sRNA-seq data  guided RPM-CNN which

incorporated relative genomic context information and transcriptional information.

The above mentioned sRNA-seq RPM based module was implemented serially where output from

the T-score CNN is passed on to further filter and refine the result in optional manner, depending

upon the availability of sRNA-seq data. Additionally, a bi-modal CNN was also implemented which

takes the inputs in the two forms parallelly: genomic T-scoring values and sRNA-seq derived RPM

sequence representation of the corresponding sequence. The same training and testing datasets were

used as mentioned above, while keeping the same splitting approach. It differed from the above

mentioned sequential approach that here it is not an optional approach and it works along with the

transformer  scoring  sequences  to  directly  classify  the  pre-miRNA regions  in  genomic  context,

instead of being an additional refinement/filtering step. The model achieves an accuracy of 88.54%

with sensitivity 87.67% and specificity 89.41% while training and testing on the above mentioned

Dataset “B”, performance 2% higher than the serial mode. Like done before, here also this model

was retrained on the dataset where all instances from Arabidopsis were removed, in order to ensure

unbiased performance without any scope of memorization of  Arabidopsis instances.  This parallel

bi-modal CNN performed slightly better than model “B” serial mode while detecting 323 out of 326

pre-miRNAs  and  just  10  novel  pre-miRNAs  across  the  Arabidopsis  genome,  showcasing  the

combined parallel learning on T-scores sequences with sRNA-seq derived RPM sequences delivers

better performance than the serial filtering arrangement as described above. However, to run this bi-

modal CNN, one would essentially require sRNA-seq data and generate the RPM representation for

each base, while the previous one gives flexibility to work even without the sRNA-seq read data,
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while achieving far superior result than the existing pool of those software which essentially require

sRNA-seq data to identify miRNA regions.

Thus, miWords emerged not only as the best performing software, but has exceptionally exceeding

performance with much stability and reliability. It has emerged as the  most suitable software to

annotate plant genomes for miRNA encoding regions. 

Application: Using miWords to annotate pre-miRNA regions across Tea genome

To exhibit the applicability of miWords in practical scenario of genome scanning for pre-miRNA

discovery, miWords was run across the C. sinensis genome whose size is 3.06 GB. Tea is the most

consumed beverage, a highly important commercial crop with medicinal values also, and which is

also highly sensitive to climate change. Though its genome has been revealed, to this date there is

no entries  for Tea miRNAs in miRBase.  Thus,  reporting miRNAs of  Tea here would not  only

exhibit  the application demonstration of  miWords in genome annotations for miRNAs, but also

benefit the research groups working on Tea to understand its molecular systems. 

The first run of miWords, which was the transformer part (Dataset “A” and “B”), identified 17,044

and  16,676  pre-miRNA regions  in  the  tea  genome  while  basing  upon  Dataset  “A”  and  “B”,

respectively. For model “A” (derived from Dataset “A”), scoring for all these regions were passed

to the T-scoring profile based CNN module, which screened them and reported a total of 3,194 pre-

miRNA candidates. Finally, the sRNA-seq data supported RPM-CNN module was run on it, which

reported a total of 821 pre-miRNA candidates. For this part of the run, we had collected sRNA-seq

reads from 104 samples while covering 34 different conditions. This is not necessary that all other

discarded pre-miRNA candidates reported by the previous step were false positive, as sRNA-seq

data are highly condition specific, and many conditions may not have been captured by the existing

48

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 1, 2022. ; https://doi.org/10.1101/2022.07.14.500029doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500029
http://creativecommons.org/licenses/by/4.0/


sRNA-seq  experiments  done  on  Tea.  Yet,  these  821  pre-miRNAs  from  Tea  genome  may  be

considered as the most confident cases. 

Likewise, 16,676 pre-miRNA regions in the tea genome which were detected from transformers

(Dataset “B”) were scanned through the  bi-modal CNN system too. bi-modal CNN reported a bit

lesser number of 803 pre-miRNAs candidates in Tea (Figure 7).  Between the serially arranged

RPM-CNN’s  identified  821  pre-miRNAs  and  803  pre-miRNAs  detected  through  the  bi-modal

CNN,  788 regions were common. All of these potential pre-miRNA regions exhibited sRNA-seq

reads data  mapping to  them across multiple  samples  where at  least  five reads  mapped in each

condition. 10 of these pre-miRNA regions were also re-validated using qRT-PCR for their being

transcriptional status where almost all of them were found expressing. Figure 8 shows their qRT-

PCR expression  levels,  their  secondary  structures,  and  the  highlighted  box  regions  for  which

dominant sRNA-seq reads data were found mapping. Complete Tea miRNAome details are given in

the Supplementary Table S4 Sheet 5.  All this gave strong support evidence to the identified pre-

miRNAs.

Webserver and standalone implementation

miWords has been made freely available at https://scbb.ihbt.res.in/miWords/ as a very simple to use

webserver. The server has been implemented using Plotly visualization library, Python, Javascript,

PHP, Shell, and HTML5. The user needs to paste the RNA/DNA sequences in FASTA format into

the text box or upload the RNA/DNA sequences in FASTA format and then click the submit button

for the identification. After a while the result page appears from where results can be downloaded in

a tabular format. 
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However, in actual situation like whole genome sequence scanning, web servers are practically not

suitable and one needs standalone version mainly. For heavy duty real scenario application like

genome annotation, a standalone version of miWords has also be provided via a link tab on the

same server page or can be downloaded from github. The provision to see the results in plots is also

given there.

Conclusion

miRNAs define  one  of  the  largest  regulatory  systems  of  eukaryotes.  The mature  miRNAs are

processed out of their precursors (pre-miRNAs). Though lots of software have been developed to

identify  pre-miRNAs  as  their  discovery  is  the  core  of  miRNA  biology,  in  actual  practical

application of discovery of pre-miRNAs across genomes these software remain far away from the

acceptable limits. This is much more grave when dealing with plant genomes where the generally

considered  properties  and features  to  distinguish  a  pre-miRNA regions  don’t  work as  a  strong

discriminator. The present work has approached pre-miRNA regions as a sentence hidden within

genome  where  the  relative  arrangements  of  the  words  in  the  form  of  dinucleotides,  trimers,

pentamers, and structural triplets define a sentence. Once the syntax is there, one also needs they are

read  by  an  intelligent  reader  which  could  decode  the  relationship  within  the  words.  This  was

achieved by a  revolutionary  deep-learning algorithm of  transformers  which assigned contextual

attention scores to the words withing the sentence using 14 multi-headed transformers which finally

passed their learning to an XGBoost classifier to generate classification scores. The next part of this

system,  miWords,  applied  a  convolution  networks  system which learned from the  transformer-

scoring  pattern  across  the  genome and  partitioned  it  into  the  pre-miRNA and non-pre-miRNA

vicinity regions to successfully define the boundaries and make it possible to run such software for

its practical utilities for genomic annotation. Total four direct and different benchmarking studies
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were carried  out  in  this  study involving  more  than  10 different  published software  to  identify

miRNA regions, and in all of them miWords significantly outperformed the compared tools. This

also included the class of software which are prime choice for genomic annotation for miRNAs, the

Next-gen sequencing reads data guided software. Even without using its sRNA-seq guided module,

miWords outperformed software which essentially need sRNA-seq guidance, making it the most

suitable and accessible software for genome annotation for miRNAs which can work with much

higher accuracy than others even without cost and time on running NGS experiments. Additionally,

miWords, also provides an optional module to use sRNA sequencing reads data to further refine the

results. As an application demonstration, miWords was run across the Tea genome no identify pre-

miRNAs across its genome where it reported 803 pre-miRNA regions, all supported by sRNA-seq

reads  for  multiple  conditions  as  well  as  found  transcriptionally  active  through  qRT-PCR

experiemnts also.  This all has validated the approach of miWords and its capabilities to annotate

genomes for miRNAs. miWords appears to be the most capable tool which can solve the long

pending quest for a software which could be reliably used for genomic annotation for miRNAs.
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Tables

Table 1: List of software for pre-miRNAs identification.

S. No. Software Algorithm Year sRNA-Seq Webserver (W)/Standalone (S)

1 MiRFinder SVM 2004
(10)

N S

2 MIRcheck Target
Identification

2004
(11)

N S

3 FindMiRNA Kmer based
sequence
similarity

2005
(12)

N S

4 MiMatcher SVM 2005
(13)

N S

5 PalGrade Scoring
hairpins by

thermodynami
c stability and

structural
features

2005
(5)

N -

6 Triplet-SVM SVM 2005
(6)

N S

7 MicroHARVESTOR Sequence
similarity

2006
(14)

N S

8 RNAmicro SVM 2006
(15)

N S

9 miPred Random forest 2007
(16)

N W/S

10 microPred SMOTE 2009
(17)

N W/S

11 miRanalyzer sRNA-Seq
based filtering

2009
(18)

Y W/S
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12 MIReNA sRNA-Seq
based filtering

2010
(19)

Y S

13 mirDeep-P sRNA-Seq
based filtering

2011
(20)

Y S

14 PlantMiRNAPred SVM 2011
(2)

N S

15 miR-BAG Bagging
ensemble

(SVM, BF-
Tree and

Naive Bayes)

2012
(21)

Y W/S

16 mirDeep2 sRNA-Seq
based filtering

2012
(22)

Y S

17 mirDeep* sRNA-Seq
based filtering

2013
(23)

Y W/S

18 HuntMi Random forest 2013
(7)

N S

19 ShortStack sRNA-Seq
based filtering

2013
(24)

Y S

20 MiPlantPreMat SVM 2014
(8)

N S

21 miR-PREFeR sRNA-Seq
based filtering

2014
(25)

Y S

22 plantMirP Random forest 2016
(9)

N S

23 DP-miRNA Boltzman

machines

based deep

learning

2017
(26)

N S

24 deepSOM DL based self

organizing

maps

2017
(27)

N W/S

25 deepMiRGene LSTM 2017
(28)

N S

26 miRNAss Semi-
supervised

and

2018
(29)

N S
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transductive
learning

27 DeepMiR CNN 2019
(30)

N S

28 mirDNN Convolutional

deep residual

networks

2021
(31)

N S

Table 2:  Primer list  for 10 selected  Pre-miRNAs from Tea genome taken for revalidation

through qPCR.

Pre-mi RNA sequences Primers (5’-3’)

csi-MIR018 FP CGATGTGGCTGCAAATATGA

csi-MIR018 RP TTCCGACTCCGATTCCACTA

csi-MIR099 FP CAAAATGTAAGGGTGCAAAGTG

csi-MIR099 RP ACAACCGCTAATGCCCTAAC

csi-MIR386 FP CAGCAGAACCGGAGGAGTAA

csi-MIR386 RP ATCACCCAAATCGGATCTCA

csi-MIR454 FP TCATGTGAGTATGCTTCCGGA

csi-MIR454 RP AACCGGTCTCTCCTCATACG

csi-MIR569 FP CAAACTTTGAGACAGTGTAAGCAA

csi-MIR569 RP GAAAAATTCGGAAGAAGAAGACA

csi-MIR582 FP CTTCCGAACCCTCTTCTGTG

csi-MIR582 RP TAAAAGCCGGAGCAATAGGA

csi-MIR615 FP TCAAACAAGGCCTAAGTGTTC

csi-MIR615 RP CCCTTCCTAGGTTAGACTTTTT

csi-MIR329 FP CAAATGGTGCCACGCAAAT

csi-MIR329 RP TGTGTGGTGGTAGTAGCATACAAT

csi-MIR646 FP AACTCACCGCAAACATAGGC

csi-MIR646 RP GACCCTAAATCCTCTGAAGGTG

csi-MIR696 FP GAGTTGTTGGCCAGGTTCTG

csi-MIR696 RP TGGCCTACACTGATACTTTCTCT

18sRNAFP ACACCCTGGGAATTGGTTT

18sRNARP GTATGCGCCAATAAGACCAC
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Figure legends

Figure  1: Distribution  pattern  of  traditionally  considered  properties  for  miRNA

characterization. A) Pattern of distribution comparison between animals and plants pre-miRNAs.

Values differ a lot between animals and plants as unlike animal pre-miRNAs, plants pre-miRNAs

display much more complexity and variability. B) Pattern of distribution comparison between pre-

miRNAs v/s other RNAs in plants. As can be seen clearly that most of these properties are actually

not  strong discriminators as lots of overlap  in their values occur between pre-miRNAs and other

RNAs. 

Figure  2:  Implementation  of  the  transformer based  module  to  identify  pre-miRNAs. The

image provides the brief outline of the entire computation protocol implemented to develop  the

Transformer-XGBoost based  model to  identify pre-miRNAs.  This  illustrates  how  a  genomic

sequence can be seen as a sentence composed of words and their related arrangements which can be

efficiently learned through multi-headed transformers. The various nucleotides k-mers and RNA

secondary structure triplets define the words for any given regions (the sentence). The words and

their attention scores are evaluated through query, key, and value matrices which are then passed to

different  layers  of  deep-learning  protocol  to  present  its  learning  for  classification job  through

XGBoost.

Figure  3: Flowchart  representation  of  dataset  processing  and  formation. a)  The  protocol

followed for Dataset "A" creation, b) Protocol followed for Dataset "B" creation, and c) Protocol

followed for Dataset "C" creation.
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Figure 4:  Ablation analysis for five main properties in  discriminating between the negative

and positive  instances.  Impact  of  combination  of  the monomer,  dimer,  trimer,  pentamers,  and

structure triplet properties based sequence encodings. These encodings appeared highly additive and

complementary to each other as the performance in accurately identifying pre-miRNAs increased

substantially as they combined together.

Figure 5:  Comparative bench-marking results  for miWords  for three different datasets. a)

Bechmarking result on Dataset “A”. Here all the compared tools were tested on the testing dataset

part  of  the  Dataset  “A”  which  was  totally  unseen  and  untouched  for  all  the  compared  tools

including miWords. This gives a view of how the compared software would behave in their existing

form  and  models. b) Bechmarking  result  on  Dataset  “B”.   This  datasets  contained  the  high

confidence refined and filtered entries from miRBase while taking support and evidences from three

other databases (sRNAanno, PmiREN, and PNRD).  c)  Objective comparative benchmarking on

Dataset ”C”. Here, all the compared tools were first trained on a common dataset for training and

then tested on a common mutually exclusive dataset for their performance. This gave a clear view

on the performance of each of the compared algorithms.  (d) Comparative benchmarking done on

the imbalanced dataset introduced by Bugnon et al (46). All the compared tools were trained and

tested  on  this  common data-set  for  objective  comprative  benchmarking  for  imbalanced  dataset

performance. The logic for such dataset is that in usual genomic annotation conditions, the negative

instances are manifold higher than the pre-miRNA regions. A capable software should perform good

on such imbalanced dataset. Here also miWords outperformed all the compared software. From the

plots  it  is  clearly  visible  that  for  all  these  datasets  and  associated  benchmarkings,  miWords

consistently and significantly outperformed the compared tools for all the compared metrics. 
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Figure 6:  Comparative benchmarking for genomic annotation capability and performance.

Most of the existing software perform poorely in the actual application of genome annotation and

end  up  reporting  large  number  of  false  positive  cases.  It  has  been  recommended  to  assess

performance of any such tool across well annotated genomes like Arabidopsis.  Any reporting of

novel miRNAs on such genome should be considered as a false positive case and accordingly the

performance  of  a  software  may  be  rated.   In  this  performance  bench-marking,  miWords was

compared to  the  tools  which  are  presently  most  preferred  ones  for  genomic  annotation at  the

present,  as  they  use  sRNA sequencing  reads  data  as  help  guide  to  reduce  their  false  positive

predictions.  As  can  be  seen  from  this  bench-marking  plot,  all  the  three  forms of  miWords

(miWords-R: Working with serially connected sRNA-seq RPM CNN; miWords-T: Working without

any sRNA-seq reads help and directly with genomic T-Score CNN; miWords-Bi:  The bi-modal

CNN form where T-score and sRNA-seq derived per base RPM representations of sequences is

jointly learned outperformed all the compared tools for all these performance metrics. “A” and “B”

are  for  the  data-sets  used  in  the  present  study to  derive  the  models. In  Arabidopsis,  miWords

identified all of its pre-miRNAs correctly except three of them, and reported only 10 false positives,

the lowest of all.

Figure 7:  Details of the workflow carried out to annotate the Tea genome for pre-miRNAs. A

total of 803 pre-miRNAs were identified in C. sinensis using the bi-modal CNN form which used

the Transformer scoring for each base and sRNA-seq reads mapping information in the form of

RPM per base.  All of the identified miRNA regions had sRNA-seq reads supports from multiple

experimental conditions. 

Figure 8: Experimental re-validation of the identified pre-miRNA regions in  C. sinensis  for

their  transcriptional  activity. miRNA  expression  analysis  of  selected  10  pre-miRNAs  by
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quantitative real time-PCR in tea leaves (Camellia sinensis). pre-miRNAs expression is presented

relative to 18S rRNA. Mean ± SD of triplicate quantitative real-time PCR from a single cDNA

sample. The upper part shows the corresponding  secondary structure for the sequence, while the

colored box shows the region for which sRNA-seq reads were found mapping dominantly. 

Supplementary information

Supplementary Figure S1: Optimization results for hyperparameters for transformers part of

the  hybrid Transformer-XGBoost  model. A) Batch  size  optimization,  B) Dropout  rate

optimization, C) Second Dropout rate optimization, D) Learning rate, E) Number of units per dense

layer 1, F) Epoch size optimization G) Embedding size,  H) Number of units per dense layer inside

Transformer, I) Number of dense layers 2, and J) Number of Attention heads.

Supplementary Figure S2: AUC/ROC plot for Ten fold cross validation. The AUC/ROC plots

for  the  hybrid  models  for  the  testset  clearly  showcase  the  robustness  and  highly  reliable

performance of the implemented hybrid Transformer-XGBoost model.  a)  AUC/ROC plot for the

hybrid models for the Dataset “A” testset and  b)  AUC/ROC plot for the hybrid models for the

Dataset “B” testset.

Supplementary Figure S3:  Detailed pipeline of the scoring and RPM profile. A) The image

provides  the  outline  of  CNN  architecture  implemented  for  scoring  based  profiles  for  better

classification of pre-miRNAs.  B) Architecture of RPM based CNN model  implemented second

level classification of pre-miRNAs.
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Supplementary  Table  S1:  Stats  of  different  properties  of  pre-miRNAs between  plant  and

animal species.

Supplementary Table S2: sRNA-seq data description for  Arabidopsis thaliana and  Camellia

sinesis and species wise breakup for Dataset A.

Supplementary  Table  S3:  Evaluation  and  optimization  of  hybrid  Transformers-XGBoost

model.

Supplementary Table S4:  Comparative benchmarking results of miWords.
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