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ABSTRACT 33 

  34 

The “cocktail party” problem – how a listener perceives speech in noisy environments – is 35 
typically studied using speech (multi-talker babble) or noise maskers. However, realistic cocktail 36 
party scenarios often include background music (e.g., coffee shops, concerts). Studies 37 
investigating music’s effects on concurrent speech perception have predominantly used highly 38 
controlled synthetic music or shaped noise which do not reflect naturalistic listening 39 
environments. Behaviorally, familiar background music and songs with vocals/lyrics inhibit 40 
concurrent speech recognition. Here, we investigated the neural bases of these effects. While 41 
recording multichannel EEG, participants listened to an audiobook while popular songs (or 42 
silence) played in the background at 0 dB signal-to-noise ratio. Songs were either familiar or 43 
unfamiliar to listeners and featured either vocals or isolated instrumentals from the original audio 44 
recordings. Comprehension questions probed task engagement. We used temporal response 45 
functions (TRFs) to isolate cortical tracking to the target speech envelope and analyzed neural 46 
responses around 100 ms (i.e., auditory N1 wave). We found that speech comprehension was, 47 
expectedly, impaired during background music(s) compared to silence. Target speech tracking 48 
was further hindered by the presence of vocals. When masked by familiar music, response 49 
latencies to speech were less susceptible to informational masking, suggesting concurrent neural 50 
tracking of speech was easier during music known to the listener. These differential effects of 51 
music familiarity were further exacerbated in listeners with less musical ability. Our 52 
neuroimaging results and their dependence on listening skills are consistent with early attentional 53 
gain mechanisms where familiar music is easier to tune out (listeners already know the song’s 54 
expectancies) and thus can allocate fewer attentional resources to the background music to better 55 
monitor concurrent speech material.  56 
 57 

 58 

 59 

 60 

 61 

Keywords: auditory evoked potentials (ERPs); speech in noise (SIN); familiarity; temporal response 62 

function (TRF); music perception 63 

 64 

 65 

  66 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.14.500126doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500126
http://creativecommons.org/licenses/by/4.0/


3 
 

INTRODUCTION  67 

Listeners are constantly faced with the challenge of listening to speech in noisy environments. 68 

This so-called “cocktail party” problem is often studied using noise or multi-talker babble maskers. 69 

However, many realistic cocktail party scenarios also involve music (e.g., coffee shops, concerts), which 70 

is not often considered in studies of auditory scene analysis. The effect of background music on 71 

concurrent speech/linguistic tasks is mixed and dependent on many factors, including type of music, 72 

participant characteristics, and task structure (reviewed by (Kämpfe et al., 2011).  Music presented 73 

concurrently with a memorization task impairs performance, but only for listeners who prefer to study 74 

without background music (Crawford & Strapp, 1994). Fast-tempo background music increases spatial 75 

processing speed and linguistic processing accuracy (Angel et al., 2010), but at the same time, can disrupt 76 

reading comprehension (Thompson et al., 2011).  However, it is clear that music with vocals more 77 

negatively affects concurrent tasks across various cognitive modalities (Brown & Bidelman, 2022; 78 

Crawford & Strapp, 1994; Darrow et al., 2006; Lee et al., 2020; Martin et al., 1988; Perham & Currie, 79 

2014; Vasilev et al., 2018). Linguistic content in the masker introduces informational masking, which in 80 

turn interferes with cognitive resources needed to complete the task.  81 

In typical (i.e., speech-on-speech) cocktail party tasks, the familiarity of a talker can be 82 

advantageous for speech recognition (Souza et al., 2013; Yonan & Sommers, 2000) when the familiar 83 

voice is either the target or the masker (Johnsrude et al., 2013). A familiar voice is retained implicitly 84 

(Yonan & Sommers, 2000), which allows for more efficient processing of novel words or sentences 85 

spoken in that voice (Pisoni, 1993). However, the role of familiarity for music in perceptual-cognitive 86 

tasks is not well known. It is also worth noting that many studies define “familiarity” differently (e.g., 87 

exposure training of naïve listeners versus songs that listeners already know), which limits comparisons 88 

between results. Still, familiar music maskers can improve various linguistic behavioral measures (Feng 89 

& Bidelman, 2015; Russo & Pichora-Fuller, 2008), but may be detrimental to foreign language learning 90 

(De Groot & Smedinga, 2014). Previous work from our lab (Brown & Bidelman, 2022) has shown a 91 

negative familiarity effect of background noise on concurrent speech recognition. In a music-on-speech 92 

cocktail party task, we found speech recognition performance was worse during familiar compared to 93 

unfamiliar music maskers, likely due to the increased cognitive load of the familiar music (i.e., those 94 

songs were more distracting). However, that prior work was solely behavioral and did not provide insight 95 

into the neural underpinnings of those perceptual-cognitive effects.  96 

Besides indexical attributes of the signal, demographic properties of the listener also modulate 97 

cocktail party perception (Bidelman & Dexter, 2015). In particular, musicality has been widely shown to 98 

alter auditory-cognitive brain structure and function, providing a “musician advantage” in various 99 
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listening skills (Strait & Kraus, 2011). This is especially evident in speech-in-noise tasks where musicians 100 

show better degraded speech perception and more successful suppression of acoustic distractors 101 

(Bidelman & Krishnan, 2010; Bidelman & Yoo, 2020; Coffey et al., 2017; Parbery-Clark, Skoe, & Kraus, 102 

2009; Yoo & Bidelman, 2019). Musicians’ improved speech-in-noise abilities might result from their 103 

superiority juggling multiple auditory streams (Bidelman & Yoo, 2020; Zendel & Alain, 2009) and lesser 104 

susceptibility to informational masking than their non-musician peers (Oxenham et al., 2003; Yoo & 105 

Bidelman, 2019). Musicians have more experience with auditory stream segregation (e.g., parsing a 106 

melody from harmonies, hearing one’s own melody in an orchestra), which in turn seems to enhance the 107 

parsing of degraded speech (Parbery-Clark, Skoe, Lam, et al., 2009). However, in contrast to speech-on-108 

speech, musicians are more affected by background music than non-musicians (Patston & Tippett, 2011). 109 

Importantly, the “musician advantage” for speech-in-noise listening is not dependent on formal musical 110 

training. Mankel and Bidelman (2018) demonstrated similar effects in highly musical people without 111 

formal musical training, indicating that superior cocktail party skills may be attributed more to general 112 

listening abilities rather than music experiences/training, per se.    113 

Extending this prior work, the current study sought to further investigate the role of background 114 

music familiarity and presence of vocals on concurrent speech perception. In a variant of the cocktail 115 

party task, participants listened to an audiobook (speech) in the presence of popular music maskers that 116 

varied in their familiarity to the listener and content of the original audio recording (e.g., isolated vocal or 117 

instrumentals). Our design departs from previous studies investigating the effects of music on speech 118 

intelligibility which have predominantly used synthesized music or music-like stimuli (Ekström & Borg, 119 

2011; Eskridge et al., 2012) which, though easier to control, are not as ecologically valid as the popular 120 

music used here. Participants answered comprehension questions about the story to ensure task 121 

engagement with target speech material. We simultaneously recorded multichannel EEG and measured 122 

neural tracking to the speech envelopes using temporal response functions (TRFs) (Crosse et al., 2016). In 123 

accordance with our previous behavioral work (Brown & Bidelman, 2022), we hypothesized that the 124 

perception and neural tracking of speech would diminish (i.e., lower comprehension scores, TRFs with 125 

weaker amplitudes and longer latencies) when concurrent background music was familiar to listeners and 126 

when it contained vocals. These findings would suggest that speech perception suffers from a concurrent 127 

linguistic masker even from a different domain (i.e., music), as well as stronger attentional (mis)allocation 128 

to background music when it is familiar to the listener. 129 

MATERIALS & METHODS  130 

Participants 131 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 14, 2022. ; https://doi.org/10.1101/2022.07.14.500126doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.14.500126
http://creativecommons.org/licenses/by/4.0/


5 
 

The sample included N=17 young adults ages 21-32 (M=25, SD=2.6 years, 4 male). This sample size is 132 

comparable with previous studies investigating continuous speech processing with TRFs (Ding et al., 133 

2014; Forte et al., 2017; Lalor et al., 2009). 12 participants reported having musical training (M=10.25 134 

years, SD=5.1). All participants showed audiometric thresholds better than 20 dB HL (octave frequencies, 135 

250-8000 Hz) and reported English as their native language. Listeners were primarily right-handed (mean 136 

75% laterality using the Edinburgh Handedness Inventory (Oldfield, 1971)). Each was paid for their time 137 

and gave written informed consent in compliance with a protocol approved by the IRB at the University 138 

of Memphis. 139 

Stimuli & task 140 

 During EEG recording, we measured neural speech tracking and comprehension by presenting a 141 

continuous audiobook in different background music conditions. The audiobook (taken from librivox.org) 142 

was Doctor by Murray Leinster, read by a male speaker. Silences > 300 ms were shortened to decrease 143 

extended silence in the stimulus while still sounding like natural speech (Ding & Simon, 2012b). The 144 

speech signal was RMS amplitude normalized and separated into 20 successive 2-minute segments.  145 

 Music stimuli were a subset of those used in Brown and Bidelman (2022), which had been 146 

previously identified as being familiar (“Just Dance” by Lady Gaga”) or unfamiliar (“Play with Fire” by 147 

Hilary Duff) to a cohort of young, normal-hearing listeners. We used a machine learning algorithm 148 

trained to separate instrumental and vocal tracks (lalal.ai) to isolate the instrumentals from the full 149 

unprocessed song (Brown & Bidelman, 2022). All music files (two songs each with the full song and 150 

isolated instrumentals) were sampled at 44100 Hz, converted to mono for diotic presentation, and RMS 151 

amplitude normalized after silences to equate the sound level across clips.  152 

 For each participant, the 20 audiobook segments were presented sequentially, separated into 4 153 

runs (totaling 8 minutes of listening per condition). Each run contained five audiobook segments 154 

presented with each song condition (familiar with vocals, familiar without vocals, unfamiliar with vocals, 155 

and unfamiliar without vocals) and in silence. Participants were instructed to listen to the audiobook and 156 

ignore the background music. Each trial was 2 min, after which participants answered one comprehension 157 

question presented on a computer screen (20 questions total across the full experiment).  158 

 After completing the EEG task, participants completed the Profile of Music Perception Skills 159 

(PROMS) (Law & Zentner, 2012) to measure their musical listening skills. We have previously shown 160 

that high-PROMS-scoring individuals (“musical sleepers”) have enhanced speech processing akin to 161 

trained musicians despite having no formal musical training (Mankel & Bidelman, 2018). The PROMS 162 

contains 8 subtests focusing on different musical domains (e.g., rhythm, melody, timbre, etc.). For each 163 

subtest, participants heard two tokens (e.g., two melodies) and indicated whether they were the same or 164 

different. The scores were on a 5-point Likert scale, where correctly identifying “definitely 165 
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same/different” was given one point and “probably same/different” was worth one-half point. The 166 

maximum possible test score was 80 (8 subtests, 10 items each).  167 

 After completing the experiment proper, participants rated each song on a scale from 1 (“Not at 168 

all familiar”) to 5 (“Extremely familiar”) to gauge their prior familiarity with the music stimuli.   169 

 170 

EEG recording procedures 171 

Participants were seated in an electrically shielded, sound-attenuated booth for the duration of the 172 

experiment. Continuous EEG recordings were obtained from 64 channels aligned in the 10-10 system 173 

(Oostenveld & Praamstra, 2001) and digitized using a sample rate of 500 Hz (SynAmps RT amplifiers; 174 

Compumedics Neuroscan, Charlotte, NC). Contact impedances were maintained <10 kΩ.  Music and 175 

speech stimuli were each presented diotically at 70 dB SPL through electromagnetically-shielded ER-2 176 

insert headphones (Etymotic Research), resulting in a signal-to-noise ratio of 0 dB. Stimulus presentation 177 

was controlled with a custom MATLAB program (MathWorks, Natick, MA) and routed through a TDT 178 

RZ6 digital signal processor (Tucker-Davis Technologies, Alachua, FL). EEGs were re-referenced to 179 

average mastoids for further analysis. Data from 0-1000 ms after the onset of each 2-minute epoch were 180 

discarded to avoid transient brain responses in the subsequent analysis (Crosse et al., 2021). Epochs were 181 

then concatenated for each of the five conditions, resulting in 8 min of continuous data per condition.  182 

 183 

Behavioral data analysis 184 

We logged the comprehension question response at the end of each presentation. Questions were scored 185 

as a binary “correct” or “incorrect” label.  186 

 187 

Electrophysiological data analysis: Temporal response functions (TRFs) 188 

We analyzed continuous neural tracking to the speech signal using the Temporal Response Function 189 

toolbox in MATLAB (Crosse et al., 2016). The TRF is a linear function representing the (deconvolved) 190 

impulse response to a continuous stimulus. To measure EEG tracking to the speech, we extracted the 191 

temporal envelope of the audiobook via the Hilbert transform. EEG data were down-sampled to 250 Hz, 192 

then filtered between 1 and 30 Hz to isolate cortical activity to the low-frequency speech envelope. EEG 193 

and stimulus signals were both z-score normalized. As with conventional event-related potentials (ERPs), 194 

TRFs were computed for each participant to account for inherent inter-subject variability in neural 195 

response tracking (Crosse et al., 2021). We used 6-fold cross-validation to derive TRFs per condition. 196 

Ridge regression (Kulasingham & Simon, 2022) was used to identify the optimal λ smoothing parameter 197 

of the forward model for the speech-only condition. Model tuning was conducted using the speech-only 198 

condition to optimize the TRF to the clean (unmasked) speech. We used a fronto-central channel cluster 199 
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(F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2) to further optimize the model fit to canonical topography of 200 

auditory ERPs. For each participant, the optimal λ was taken as the ridge parameter yielding the highest 201 

reconstruction of simulated neural response (i.e., correlation r-value between actual EEG and TRF-202 

derived responses). We then used each participant’s optimal λ parameter to derive TRFs for all other 203 

conditions. This approach preserves response consistency within subjects while avoiding model 204 

overfitting (Crosse et al., 2021). The resulting TRF waveforms represents the time-varying weights how 205 

the EEG signal at each electrode changes in response to a unit change in the speech stimulus envelope.  206 

We analyzed TRFs (i.e., RMS amplitude and latency) between 100-150 ms corresponding to the 207 

“N1” wave of the canonical auditory ERPs (see Figure 1). The N1 was selected as it reflects the early 208 

arrival of sound information in auditory cortex and is also modulated by attention (Hillyard et al., 1973; 209 

Näätänen & Picton, 1987; Picton et al., 1978). Previous EEG studies have also demonstrated noise has the 210 

largest effect on speech TRFs within this time window (Muncke et al., 2022). To further investigate 211 

possible hemisphere differences, we created two homologous channel clusters over front right (Fz, F2, F4, 212 

F6, F8, FC6, FT8) and front left (Fz, F1, F3, F5, F7, FC5, FT7) scalp regions.     213 

 Statistical analyses 214 

Statistics were run in R using the lme4 package (Bates et al., 2015). For all analyses, we used mixed-215 

effects models with fixed factors of familiarity (2 levels: familiar, unfamiliar) and song condition (2 216 

levels; with vocals, without vocals). Subjects and trial served as random factors (where applicable). 217 

Because the behavioral response was a binary score (correct vs. incorrect), we analyzed those data using a 218 

generalized linear mixed-effects model ANOVA with binomial link function. Note that the Wald statistic 219 

is used to determine significant factor(s) effects for these models instead of conventional F-statistics (used 220 

in lme4 package; Bates et al., 2015). Peak amplitudes and latencies were normally distributed and thus 221 

analyzed using conventional linear mixed models and F-statistics. Multiple comparisons were corrected 222 

with Tukey adjustments. For all measures (score, latency, and amplitude), there were no hemisphere 223 

differences (all ps > 0.17), so subsequent analyses used data pooled between the two electrode clusters. 224 
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 225 

 226 

Figure 1. TRF waveforms (plotted at channel FCz) from a representative subject across music masker 227 

conditions. The model was trained using a fronto-central cluster of electrodes (left). Red circle = region of 228 

interest for analysis corresponding to the auditory N1. Bold black lines represent the TRF in each 229 

condition, and the grey lines show individual fits while training the model.  230 

 231 

RESULTS 232 

Behavioral data 233 

Participants showed stark differences in their familiarity ratings across music selections (t(16)=19.13, 234 

p<0.001), validating our first stimulus manipulation. Speech comprehension scores were subject to a 235 

strong masking effect; comprehension was (expectedly) better for speech presented in silence compared 236 

to all other music-masked conditions (t(338)=3.23, p=0.001). An ANOVA based on the generalized 237 

binomial model showed no interaction between familiarity and song condition (χ2(1, N=17) = 1.26, 238 

p=0.26). There was no main effect of familiarity (χ2(1, N=17)=0.41, p=0.52). There was, however, a 239 

significant effect of song condition (χ2(1, N=17) = 5.42, p=0.02), whereby behavioral performance was 240 

overall poorer during vocal vs. non-vocal music maskers (Figure 2). These results confirm the 241 

effectiveness of music in masking target speech recognition as well as the added hinderance of music 242 

containing vocal (linguistic) information (cf. Brown & Bidelman, 2022). 243 

 244 

 245 
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 246 

Figure 2. Speech comprehension scores during background music as a function of music familiarity and 247 

vocal condition. Speech recognition was poorer during concurrent vocal vs. non-vocal music.  Error bars= 248 

± 1 s.e.m.  249 

 250 

 251 

Electrophysiological data 252 

TRF latency and amplitude are shown across conditions in Figure 3. Music-masked speech showed 253 

longer latencies than speech presented in silence (t(83)=3.40, p=0.001). An ANOVA conducted on TRF 254 

latencies revealed an interaction between familiarity and condition (F(1,48)=6.18, p=0.016, η2=0.11). 255 

Post hoc tests showed this interaction was attributable to longer speech-evoked TRF latencies in music 256 

with vocals than instrumentals alone (t(48)=2.54, p=0.015), but only in unfamiliar music. This vocal vs. 257 

instrumental latency differences was not observed for familiar music (p=0.32). 258 

In contrast to latency measures, TRF amplitudes were less affected by masking and concurrent 259 

music (masking effect: t(83)=0.11, p=0.91). An ANOVA conducted on TRF RMS amplitudes, indicating 260 

the strength of speech tracking, showed a sole main effect of condition (F(1,48)=5.13, p=0.028, η2=0.10); 261 

responses were larger in music with vocals as compared to instrumentals. There was no effect of 262 

familiarity (F(1,48)=1.45, p=0.23) nor a condition*familiarity interaction (F(1,48)=1.28, p=0.26).   263 

 264 

 265 

 266 
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 267 

Figure 3. TRF N1 latencies and magnitudes across music masking conditions. (A) Latencies were longer 268 

for songs with vocals than instrumentals only during unfamiliar music. (B) Neural tracking of target 269 

speech was also stronger during music with vocals across the board. Error bars = ±1 s.e.m.  270 

 271 

We ran Spearman’s correlations to determine the relationship between our electrophysiological 272 

and behavioral results. We found a negative association between TRF latency and speech comprehension 273 

scores (rs=-0.31, n=85, p=0.004) when aggregating data across all listeners and conditions. This indicates 274 

that longer TRF latencies corresponded with poorer speech comprehension. There was no correlation 275 

between behavior and TRF N1 amplitudes (rs=0.13, n=85, p=0.228). These data reveal the behavioral 276 

relevance of the TRF data: more delayed neural tracking of target speech is predictive of worse speech 277 

recognition performance.  278 

 279 

 280 

Neural speech tracking as a function of listeners’ musicality 281 

We next asked whether speech-envelope tracking amidst music (as indexed via TRFs) varied as a 282 

function of listeners’ music-listening skills (as indexed by their PROMS scores). Previous studies 283 

demonstrate that individuals who lack formal music training but who nonetheless have superior auditory 284 

skills show advantages with speech identification and cocktail party processing (Mankel et al., 2020; 285 

Mankel & Bidelman, 2018). As in Mankel and Bidelman (2018), we divided our participants into two 286 

groups – “high PROMS” and “low PROMS” - using a median split of their PROMs musicality scores. 287 

The groups did not differ in age (t(15)=1.28, p=0.22), years of education (t(15)=0.82, p=0.43), or sex 288 
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(Fisher’s exact test; p=0.294). The high PROMS group had 11.4 (SD=5.1) years of musical training as 289 

compared to the low PROMS group (M=3.6, SD=5.2 years; t(15)=3.13, p=0.01). To account for this 290 

difference in training, we ran our omnibus ANOVA models with the three factors of interest (familiarity, 291 

vocals condition, and PROMS level), and years of training as a covariate. In addition to dichotomizing the 292 

musicality variable (cf. MacCallum et al., 2002), we also ran models treating PROMS score as a 293 

continuous variable. 294 

 295 

Behavior 296 

We first tested for differences between PROMS scores and familiarity ratings to assess whether high vs. 297 

low musicality listeners were more/less familiar with the stimuli used in our experiment. There was no 298 

group difference for either the familiar (t(15)=1.63, p=0.125) or unfamiliar (t(15)=1.24, p=0.236) stimuli, 299 

indicating listeners were similarly (un)familiar with our song selections. 300 

Analysis of speech comprehension during the EEG task revealed a significant condition*group 301 

interaction (χ2(1) = 4.12, p=0.042), as well as a marginal familiarity*condition*group interaction (χ2(1) = 302 

3.63, p=0.056) (Figure 4). Group differences were also partially driven by years of musical training 303 

(χ2(1)=11.15, p=0.001). To help interpret these complex interactions, we conducted separate 2-way 304 

ANOVAs by group to assess the impact of music familiarity and condition on speech recognition in low 305 

vs. high PROMS listeners. High PROMS listeners’ comprehension was invariant to condition and 306 

familiarity effects (ps>0.065). However, the low PROMS group showed a familiarity*condition 307 

interaction (χ2(1)=3.63, p=0.042). Low musicality listeners showed poorer comprehension in music with 308 

vocals than without vocals but only during unfamiliar music (z=2.44, p=0.01). This vocal effect was not 309 

present for familiar music (z=2.20, p=0.69). When musicality was treated as continuous variable, there 310 

were no significant effects of any variable of interest on comprehension score (all ps > 0.311).  311 
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 312 

Figure 4. Speech comprehension performance varies with listeners’ musical skill level. Less musical 313 

listeners performed worse in music with vocals only in the unfamiliar music condition. However, more 314 

musical listeners did not show any effects of familiarity or song condition. PROMS = profile of music 315 

perception skills test. Error bars = ±1 s.e.m. 316 

 317 

Neural TRFs 318 

TRF latencies showed a significant interaction between familiarity and condition (F(1,45)=6.00, p=0.018, 319 

η2=0.12), where latencies for vocals were longer than instrumentals for only the unfamiliar music. There 320 

was no effect of musicality (F(1,15)=1.85, p=0.194). However, when treating musicality as a continuous 321 

variable, there was a familiarity*musicality interaction (F(1,45)=10.17, p=0.003, η2=0.18). TRF latencies 322 

were longer for unfamiliar music (t(45)=2.60, p=0.013) for the less musical listeners (i.e., lower PROMS 323 

scores) but were longer for familiar songs in higher PROMS scoring individuals (t(45)=2.63, p=0.012).  324 

 325 

 326 

 327 

 328 

 329 

 330 
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 331 
Figure 5. Speech TRFs vary as a function of musical aptitude (controlling for musical training). (A) 332 

Latencies were shorter for instrumental music than vocals only in the unfamiliar condition. (B) 333 

Instrumental music produced smaller speech responses than songs with vocals in both groups.  334 

 335 

For TRF amplitudes, the omnibus ANOVA revealed an overall effect of condition (F(1,45)=4.88, 336 

p=0.032), where all listeners showed larger amplitudes for music with vocals (Figure 5B). There were no 337 

effects of familiarity or PROMS group (all ps > 0.1). There was also not an effect of musical training 338 

(F(1,15)=0.03, p=0.88), indicating again that the condition effect is not driven by experience. Treating 339 

musicality as a continuous variable showed no significant effects for any of the variables of interest (all ps 340 

>0.067). 341 

 342 

DISCUSSION  343 

As an innovative extension of the cocktail party problem, we compared speech comprehension and neural 344 

tracking of target speech amidst various music backdrops. We also manipulated the familiarity and vocals 345 

(i.e., song with lyrics or only instrumentals) of the music to evaluate how content and listeners’ 346 

familiarity of concurrent music backgrounds affect concurrent speech perception and its neural 347 

processing. Perception and neural encoding of speech was worse during music with vocals than purely 348 

instrumentals. However, more interestingly, the impact of vocals on speech coding varied based on the 349 

(un)familiarity of the background music. These findings indicate the monitoring of speech concurrent 350 

with music containing vocals might be more challenging for unfamiliar tunes. Our data suggest it is more 351 

difficult (i.e., harder for the brain to suppress the music masker) during certain types (unfamiliar, vocal) 352 

of music backdrops, likely through increased susceptibility to linguistic interference and/or misallocation 353 

of attention between speech and music streams. Moreover, these effects were exacerbated when 354 
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accounting for musicality, suggesting listeners’ inherent auditory skills also impact their cocktail party 355 

speech processing.  356 

In accordance with our previous behavioral study (Brown & Bidelman, 2022), we found speech 357 

comprehension was further impaired in music with vocals than in instrumental music. We attribute this 358 

decline to the informational masking introduced by the linguistic content of the vocals (Brouwer et al., 359 

2021; Kidd & Colburn, 2017; Scharenborg & Larson, 2018). However, we previously found that 360 

comprehension was worse in unfamiliar music. If unfamiliar music is more distracting, suppression of the 361 

distractor (the background music) is impaired, thus decreasing the available cognitive resources needed to 362 

focus on the target speech (Lavie et al., 2004). Though the two studies used the same music maskers, the 363 

task here was more complex, assessing speech comprehension rather than target word recognition (as in 364 

Brown & Bidelman, 2022). These differences may contribute to the contradictory findings on familiarity. 365 

Indeed, the specific nature of the task can yield differential effects of music on concurrent speech 366 

processing, sometimes with opposite directions of effects (Brown & Bidelman, 2022; De Groot & 367 

Smedinga, 2014; Dong et al., 2022; Feng & Bidelman, 2015; Russo & Pichora-Fuller, 2008).  368 

 At the neural level, TRFs showed that brain tracking of speech was modulated by both familiarity 369 

and song condition. Overall, the presence of music prolonged TRF latencies to speech indicative of well-370 

known masking effects observed in previous auditory EEG studies (Bidelman & Howell, 2016; Muncke 371 

et al., 2022). More critically, we found that condition and familiarity had an interactive effect on speech-372 

evoked TRFs; neural latencies were strongly modulated by vocals relative to instrumental music but only 373 

for unfamiliar music. Responses were also larger during concurrent vocal compared to instrumental 374 

music. Intuitively, larger evoked responses are typically associated with a stronger representation or 375 

encoding of the speech signal (i.e., “bigger is better”) (Key et al., 2005). However, we found here that 376 

songs with vocals showed worse comprehension and longer neural latencies in conjunction with larger N1 377 

responses. Indeed, TRF latencies were negatively correlated with speech recognition performance. It is 378 

well-established that larger N1 amplitudes are a marker of increased attention (Hillyard et al., 1973), 379 

analogous to the M100 peak in TRFs derived from neuromagnetic recordings (Ding & Simon, 2012a). 380 

Thus, the larger N1 responses to target speech we find in these difficult music conditions may reflect 381 

attentional load due to the increased listening demand of parsing speech from concurrent (especially 382 

unfamiliar) music. Larger N1 may also reflect increased listening effort (Strauss et al., 2010). Indeed, 383 

overexaggerated N1 to speech is also indicative of increased listening effort during speech processing, as 384 

observed in older adults with cognitive impairments (Bidelman et al., 2017). It is possible that neural 385 

speech tracking strength changed with attention and/or listening effort, where more distracting music 386 

maskers (i.e., unfamiliar/vocal songs) led to worse suppression of the masker, thus making it more 387 
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difficult to maintain focus on the target. The stronger effects on speech processing we observe during 388 

unfamiliar vocal music might therefore reflect the influences of selective attention (Hillyard et al., 1973), 389 

with increased effort in maintaining that attention in more difficult listening conditions. This may also be 390 

comparable to a recent study that found a larger N400 during reading comprehension masked by music, 391 

reflecting increased semantic processing effort (Du et al., 2020). Still, the latency of neural effects 392 

observed here (~100 ms) suggest music challenges speech perception much earlier in the processing 393 

hierarchy.  394 

 Interestingly, we show that speech tracking at the “cocktail party” varies depending on the 395 

inherent musical skills of the listener. We found that low PROMS listeners were more impacted by 396 

unfamiliar music than the high PROMS group. Several studies have showed that more familiar music 397 

facilitates concurrent linguistic tasks by increasing arousal (Weiss et al., 2016) and generating 398 

expectancies (Bendixen, 2014; Russo & Pichora-Fuller, 2008). Musical ability is associated not only with 399 

speech-in-noise processing advantages (Hennessy et al., 2022; Mankel & Bidelman, 2018; Yoo & 400 

Bidelman, 2019), but also parsing complex auditory scenes (Johnson et al., 2021; Zendel & Alain, 2009). 401 

Indeed, there is some evidence that trained musicians also more successfully deploy attention in auditory 402 

and even non-auditory perceptual tasks (Bialystok & DePape, 2009; Román-Caballero et al., 2020; Yoo 403 

& Bidelman, 2019), including those related to cocktail party listening (Bidelman & Yoo, 2020).  404 

Moreover, non-musicians are more susceptible to informational and linguistic masking (Bidelman & Yoo, 405 

2020; Oxenham et al., 2003)—though see Madsen et al. (2019). Here, low PROMS listeners may have 406 

been more distracted by the unfamiliar background music as a more challenging listening condition, 407 

which then becomes exacerbated by the presence of vocals. In this sense, less musical listeners (i.e., those 408 

with poorer auditory perceptual skills) might experience increased informational masking compared to 409 

their more musical peers. Our findings thus support notions that musical ability impacts cocktail party 410 

speech listening and one’s susceptibility to informational masking (Bidelman & Yoo, 2020; Oxenham et 411 

al., 2003; Swaminathan et al., 2015) but extend prior work by demonstrating such effects are not 412 

necessarily attributable to musicianship, per se, but instead depend on inherent listening abilities. 413 

 It is of note that most prior studies used years of formal music training (self-reported) as a metric 414 

for defining musicians and non-musicians, while we solely used aptitude scores. Though high- and low-415 

PROMS groups were separable based on their years of music training, musicality group differences 416 

remained significant while controlling for training, meaning that the effects found in this study likely 417 

results from some combination of experience and natural auditory skills. Our data are consistent with 418 

emerging notions that listeners’ inherent rather than acquired musicality, per se, affect their speech-in-419 

noise processing abilities (Mankel et al., 2020; Mankel & Bidelman, 2018).  420 
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 In summary, our combined behavioral and neuroimaging results demonstrate that speech tracking 421 

is negatively affected both by familiarity and the presence of vocals in concurrent music. Furthermore, we 422 

show that these effects are modulated by musical ability, whereby less-musical listeners are more 423 

susceptible to these different background music characteristics. By using naturalistic, continuous stimuli, 424 

we simulated a realistic listening scenario, thus further adding to our understanding of the cocktail party 425 

phenomenon. Our findings also qualify prior studies (e.g., Dabaghi Varnosfaderani et al., 2021; 426 

Thompson et al., 2011) by suggesting that in addition to general arousal, familiarity and internal structure 427 

of music (e.g., presence or absence of vocals) might affect concurrent cognitive-linguistic processing. 428 

 429 

Data are available on request from the authors. 430 
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