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Abstract

Background: Neurons demonstrate very distinct nonlinear activation dynamics, influenced by the neuron type, mor-
phology, ion channel expression, and various other factors. The measurement of the activation dynamics can identify
the neural target of stimulation and detect deviations, e.g., for diagnosis. This paper describes a tool for closed-loop
sequential parameter estimation (SPE) of the activation dynamics through transcranial magnetic stimulation (TMS).
The proposed SPE method operates in real time, selects ideal stimulus parameters, detects and processes the response,
and concurrently estimates the input–output (IO) curve and the first-order approximation of the activated neural target.
Objective: To develop a SPE method to concurrently estimate the first-order activation dynamics and IO curve in
closed-loop electromyography-guided (EMG-guided) TMS.
Method: First, identifiability of the integrated model of the first-order neural activation dynamics and IO curve is as-
sessed, demonstrating that at least two IO curves need to be acquired with different pulse widths. Then, a two-stage
SPE method is proposed. It estimates the IO curve by using Fisher information matrix optimization in the first stage
and subsequently estimates the membrane time constant as well as the coupling gain in the second stage. The procedure
continues in a sequential manner until a stopping rule is satisfied.
Results: The results of 73 simulation cases confirm the satisfactory estimation of the membrane time constant and
coupling gain with average absolute relative errors (AREs) of 6.2% and 5.3%, respectively, with an average of 344 pulses
(172 pulses for each IO curve or pulse width). The method estimates the IO curves’ lower and upper plateaus, mid-point,
and slope with average AREs of 0.2%, 0.7%, 0.9%, and 14.5%, respectively.
Conclusions: SPE of the activation dynamics requires acquiring at least two IO curves with different pulse widths, which
needs a TMS device with adjustable pulse duration.
Significance: The proposed SPE method enhances the cTMS functionality, which can contribute novel insights in TMS
studies.

Keywords: Controllable transcranial magnetic stimulation (cTMS), closed-loop EMG-guided TMS, neural membrane
dynamics, input–output (IO) curve, estimation

1. Introduction

Transcranial magnetic stimulation is a noninvasive
method for activating neurons in the brain [1, 2]. It
has been approved for diagnosis as well as various ther-
apeutic applications and has become an essential tool in
experimental brain research [3]. Most of these applica-
tions desire a high stimulation selectivity to activate spe-
cific circuits [4]. While the achievable coil focality has
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physical limits [5], modifications of the pulse shape were
found to address differences in the activation dynamics
of various neuron populations for stimulation specificity
[6, 7, 8, 9, 10, 11, 12, 13].

Changing the pulse shape does not only allow shift-
ing the activation between different neural elements but
also the analysis of the activation dynamics of the stim-
ulated neural target [14, 15, 16, 17]. Although the neu-
ron activation dynamics is highly nonlinear and therefore
complicated to measure, a linear first-order approximation
can already disclose differences between targets [10]. As
this first-order linearization typically converges to a low-
pass filter, the key parameters that can be extracted in
such system identification are the time constant and the
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static gain, also called coupling gain or coupling factor
here [17, 18]. In addition to identifying and differenti-
ating various stimulation targets, the activation dynam-
ics of neurons are furthermore very sensitive to the envi-
ronment of the neuron, genetic deviations, and diseases.
Therefore, it is studied and tested for diagnostic purposes
[19, 20, 21, 22, 23, 24, 25, 26, 27].

The approximate identification of the activation dynam-
ics through the measurement of the time constant of the
activated neural elements is typically performed in targets
with readily detectable response, such as the primary mo-
tor cortex or rarer the visual cortex [6, 7, 28, 29]. In the
primary motor cortex, strong stimulation pulses lead to
muscle contraction in the periphery, which can be detected
as motor evoked potentials (MEP), with latest methods
even below the noise floor of background activity in elec-
tromyographic (EMG) recordings [30, 31, 32, 33].

Conventionally, the time constant is estimated off-line,
which requires stimulation at various pulse widths and de-
tection of the motor thresholds. Real-time estimation of
the neural time constant and the coupling factor is a ma-
jor challenging issue and requires closed-loop stimulation,
analysis of the response, and decision about the parame-
ters of the subsequent stimulus [18]. Furthermore, various
technologies to change the pulse shape with a sufficiently
wide range during operation have been proposed and de-
veloped to enable such closed-loop estimation of the time
constant [34, 35, 36, 37, 38, 39].

Closed-loop TMS refers to the automatic and real-time
adjustment of TMS parameters based on measurements,
e.g., to maximize the desired plastic effects by using the
brain/neural data in a feedback system or to speed up the
detection of a biomarker [40, 41]. Among the simplest
closed-loop TMS procedures are motor threshold estima-
tion methods [42, 43, 44]. Closed-loop TMS is an area of
active research using both EEG- [41, 45, 46, 47, 48] and
EMG-guided TMS [18, 49, 50].

We previously proposed to use real-time parameter esti-
mation of the neural membrane time constant and recruit-
ment input–output (IO) curve and developed the necessary
analytical relationships for a fixed coupling gain and TMS
[18]. In sequential parameter estimation (SPE), a number
of TMS pulses is administered, the estimation is updated
after each stimulus, and the estimation continues until sat-
isfying a stopping rule based on the the convergence of
the model parameters [49]. The coupling gain depends
on the neurostimulation technology including the coil, the
geometric conditions, for instance, coil-to-cortex distance,
head size, and neural population type as well as orienta-
tion relative to the induced electric field in transcranial
magnetic stimulation (TMS) [17, 51].

As the key objective, this paper presents a tool for con-
current sequential parameter estimation of the membrane
time constant and IO curve parameters including the cou-
pling gain in closed-loop EMG-guided TMS. To achieve
this goal, an integrated model of the full first-order neu-
ral membrane dynamics and IO curve is firstly developed.

The identifiability analysis demonstrates that at least two
IO curves with different pulse widths are required for con-
current sequential parameter estimation of the membrane
time constant and coupling gain. This emphasizes the need
for controllable TMS (cTMS) devices with adjustable pulse
width. Then, we propose a two-stage sequential parame-
ter estimation method which estimates the IO curve in
the first stage and the membrane time constant as well
as the coupling gain in the second stage. The IO curve
is estimated by optimizing the Fisher information matrix
[49]. The proposed method enhances the methodology and
functionality of TMS and promises novel insights in the
physiology and clinical applications.

The contributions of this paper are highlighted as
follows:

– Formal identifiability analysis of the integrated model
of the full first-order neural membrane dynamics and
IO curve, which underlines that at least two IO curves
at different pulse widths need to be acquired for con-
current sequential parameter estimation of the mem-
brane time constant and coupling gain.

– Concurrent sequential parameter estimation of a full
first-order dynamical model of the neural membrane
(including the time constant and coupling gain) and
pulse-width-dependent IO curve in closed-loop EMG-
guided TMS.

2. Neural system model

Fig. 1 shows the overall structure of the neural system
model, from the TMS pulse w to the MEP size y. The
MEP size can be represented by various metrics, such as
peak-to-peak voltage, area, or similar features [32]. h(t)
represents the dynamics of the neural membrane. This pa-
per focuses on the first-order linear approximation model
with the impulse-response function

h(t) =
g

τ
e−t/τ , (1)

where τ is the membrane time constant and g is the cou-
pling gain between the TMS coil and the directly stimu-
lated neurons, which can depend on factors such as the
coil including shape and number of turns, coil-to-cortex
distance and specific coil position, anatomy, properties of
the neurons in the focus, including morphology and ion-
channel expression, and orientation relative to the induced
electric field [17, 52].
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Figure 1: The overall structure of the neural system model, from the
TMS pulse w to the MEP size y.
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r(t) denotes the membrane response to the stimulus w.
Any TMS technology that can vary the pulse duration suf-
ficiently can serve for this time-constant determination.
Without loss of generality, this paper uses the original
cTMS design [35] as an example, with

w(t) =

δ VC

L

(
cosωt− σ

ω sinωt
)
e−σt if t ≤ tp,

−δ
VC(R+r) sinωtp

ωL2 e−
(t−tp)(R+r)

L −σtp if t > tp,

(2)

where VC is the normalized pulse voltage amplitude, ad-
justable between VC(min) = 0 and VC(max) = 1. tp is the
pulse width, which is assumed to be adjustable between
tp(min) = 10 µs and tp(max) = 200 µs. Other parameters
include the stimulating coil L, the energy dissipation re-
sistor R of the free-wheeling path that generates the decay
of the second pulse phase, the resistor r which represents
the combined resistance of the capacitor, semiconductor
switch, cables, and stimulation coil. Following the origi-
nal cTMS design, the following parameter values are used
in this paper: L = 16 µH, C = 716 µF, R = 0.1 Ω,
r = 20 mΩ, δ = 3.2 × 10−6 (V/m)(A/s). The parameters
ω and σ are defined as

ω =

√
1

LC
−
( r

2L

)2

, and σ =
r

2L
.

The parameter δ is a proportionality coefficient.
The stimulus response r(t) is obtained by the convolu-

tion of w and h [18] and results in

r(t) =



k1gVC

ατ2−2στ+1

[
− ωe−t/τ+(

(ατ − σ) sinωt+ ω cosωt
)
e−σt

]
if t ≤ tp

r(tp)e
−(t−tp)/τ +

(
e−(t−tp)/τ−tpσ

−e−(t−tp)(R+r)/L−tpσ
)
k2gVC if t > tp

(3)

where r(tp) is the neural membrane response at time t =
tp, and

α = ω2 + σ2, k1 =
δ

Lω
, k2 =

k1(R+ r) sinωtp
τL(1/τ − (R+ r)/L)

.

We define the depolarization factor as the peak of r as

rp(t
∗, τ, g) = max

t=t∗
r(t)

=
k1gVC

ατ2 − 2στ + 1

[
− ωe−t∗/τ+(

(ατ − σ) sinωt∗ + ω cosωt∗
)
e−σt∗

] (4)

where t∗ is the peak time.
An MEP is generated when the depolarization factor

rp reaches a certain threshold. Thus, the relationship be-
tween the depolarization factor and the MEP is modeled

as a sigmoid function

y = yh +
yl − yh

1 +
(
rp

)s , (5)

where y is the MEP size and yl as well as yh represent the
lower and upper plateaus of the IO curve.

By defining the parameter vector

θθθ = [ θ1 θ2 θ3 θ4 ] = [ yl yh VC

rp(t∗,τ,g)
s ], (6)

an integrated model of the TMS neural system is obtained
as

y = θ2 +
θ1 − θ2

1 +
(

VC

θ3

)θ4
. (7)

The mid point and slope of the IO curve are given by θ3
and θ4, respectively.

Fig. 2 presents a sample cTMS pulse w(t), the first-order
linear neural response r(t), and the depolarization factor
rp.

Figure 2: Sample cTMS pulse w(t), first-order linear neural response
r(t), and depolarization factor rp.

3. Problem Statement

The problem is to estimate the integrated model param-
eters, i.e., neural membrane time constant τ , gain g, and
the IO curve parameters θi, i = 1, . . . , 4 in a closed-loop
system. Most importantly, all those parameters need to be
estimated concurrently. This paper will discuss the iden-
tifiability conditions for such a concurrent estimation to
subsequently provide a method.

4. Identifiability analysis

The proposed method is based on a two-stage sequential
parameter estimation technique, where the estimation of
the parameter vector θθθ is firstly updated after each stimu-
lus. Then, the estimation of the membrane time constant
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and the coupling gain are updated by using the relation-
ship between the IO curve’s mid-point θ3 and these pa-
rameters as follows:

θ3 =
VC

rp(t∗, τ, g)
=

ατ2 − 2στ + 1

gk1
×

1

−ωe−t∗/τ +
(
(ατ − σ) sinωt∗ + ω cosωt∗

)
e−σt∗

(8)

Be reminded that t∗ denotes the time at which r(t) reaches
its maximum. It is assumed here that the pulse width is
shorter than the critical pulse width t∗p [18]. Thus, the
depolarization factor lies at the end of the pulse as shown
in Fig. 2, i.e.,

t∗ = tp, for tp ≤ t∗p. (9)

There are two unknown parameters g and τ on the right
side of (8). Thus, it is required to acquire at least two IO
curves at different pulse widths to estimate τ and g. Since
stimulation at two pulse widths is in principle sufficient for
the estimation of these parameters, this paper focuses on
two IO curves. In this case, Eq. (8) is re-written as

θ3i =
ατ2 − 2στ + 1

k1
×

1

−ωe−tpi/τ +
(
(ατ − σ) sinωtpi

+ ω cosωtpi

)
e−σtpi

,

(10)

where θ3i and tpi are the mid point and pulse width of the
i−th IO curve with i = 1, 2.

The membrane time constant τ is obtained by solving
θ31/θ32 as follows:

θ31
θ32

=
−ωe−tp2/τ +

(
(ατ − σ) sinωtp2 + ω cosωtp2

)
e−σtp2

−ωe−tp1/τ +
(
(ατ − σ) sinωtp1

+ ω cosωtp1

)
e−σtp1

(11)

After the estimation of τ , the gain g is then computed
by solving (10) for i = 1 or 2.

5. Sequential parameter estimation

As discussed earlier, at least two IO curves with different
pulse widths tp1

and tp2
are required. Denote the param-

eter vectors of the first and second IO curves separately
as

θθθ1 = [ θ11 θ21 θ31 θ41 ] and (12)

θθθ2 = [ θ12 θ22 θ32 θ42 ]. (13)

The sequential parameter estimation starts by taking
samples from the baseline.

Subsequently, the pulse width of the cTMS device is set
to tp1

, three initial pulse amplitudes are chosen randomly

between VC(min) and VC(max), and the corresponding
MEPs are measured. Then, the pulse width of the cTMS
device is set to tp2

, three initial pulse amplitudes are cho-
sen randomly between VC(min) and VC(max), and the cor-
responding MEPs are measured. The initial stimuli can
be performed at the same pulse amplitudes for both pulse
widths.

In the next step, initial estimations of θθθ1 and θθθ2 are
obtained by fitting the sigmoid model (7) to the baseline
and initial stimuli-response data. The membrane time con-
stant and gain g are then computed by using the estimated
θ31 and θ32 as described in the previous section.

The next pulse amplitudes, VC1,n+1 for IO curve estima-
tion with pulse width tp1

and VC2,n+1 for IO curve estima-
tion with pulse width tp2

, are computed and administered
by solving the FIM optimization problem

minimize
VCi,n+1

− det
(
F̃i,n+1(VCi,n+1, θ̂θθi,n)

)
subject to VC(min) ≤ VCi,n+1 ≤ VC(max)

for i = 1, 2, and n ≥ 3.

(14)

where F̃i,n+1 is the FIM of the i−th IO curve at the (n+

1)−th stimulus, and θ̂θθi,n is the estimate of the i−th IO
curve’s parameter vector at the n−th stimulus. Details of
such optimization have been discussed previously [49].

The MEP characteristics are measured, and the data
sets are updated for both IO curves. The estimations of
θθθ1 and θθθ2 are updated by fitting the sigmoid model (7)
to the baseline and updated stimuli-response data. The
estimation of τ and g are then updated by using the most
recent estimates of θ31 and θ32 as described in the previous
section. This process is continued until the convergence
criterion ∣∣∣∣ ẑn − ẑn−1

ẑn−1

∣∣∣∣ < ϵz (15)

is satisfied for T consecutive times, T ≥ 1, for all parame-
ters z = {θji , τ, g}, j = 1, . . . , 4, i = 1, 2. ẑn denotes the
estimate of z after the n−th stimulus. ϵz denotes the con-
vergence tolerance. The estimation accuracy is adjustable
by ϵz and T values. The larger the T value and the smaller
the ϵz values, the more the accurate estimation is obtained
at the cost of more pulses, [49].

6. Simulation Results

The effectiveness of the proposed sequential parameter
estimation method is evaluated through 73 simulation runs
in Matlab R2021a (The MathWorks, Inc.).

In each run, a true membrane dynamics h(t) is generated
with the time constant randomly chosen between 90 and
220 µs. The critical pulse width is obtained by using the
following equation [53]:

t∗p = 97.54e1206τ − 80.57e−25000τ (16)
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Two pulse widths tp1 and tp2 are randomly selected be-
tween 10 µs and t∗p. If no prior approximate information
about the neural membrane time constant is available, it
is suggested to choose short pulse widths.

By randomly choosing g between 30 and 50, the true val-
ues of the IO curve’s mid points θ31 and θ32 are computed,
which are real scalars between 0 and 1. Without loss of
generality, the lower and upper plateaus are assumed to be
the same for both IO curves, i.e., y1 = θ1i , and yh = θ2i ,
i = 1, 2. The true value of yl is randomly chosen between
–6.5 and –5.5 (corresponding to 0.32 and 3.2 µV), and
the true value of yh is randomly selected between –3 and
–2 (corresponding to 1 and 10 mV). True values of the
slopes, θ41 and θ42 , are randomly chosen between 1 and
100. The reference IO curves are generated by using these
random data for all 73 runs. The stimulus–response pairs
are generated by applying Gaussian noise with standard
deviations of 0.05 and 0.1 to the x and y axes, respectively
[54, 55].

The problem in this section is to concurrently estimate
the true values of the membrane time constant, coupling
factor, and IO curves’ parameters by using the proposed
sequential parameter estimation (SPE) method.

Fifty baseline samples are arbitrarily taken for all IO
curves in all runs.

Every time the estimation of the IO curves and param-
eter vectors is updated, the trust-region curve fitting algo-
rithm is run with lower and upper limits on the parameter
vector as follows:

θθθi(min) = [−7 − 3 0 1]

θθθi(max) = [−5 − 2 1 100]

i = 1, 2

The curve fitting is performed on the logarithmic scale to
mitigate the highly skewed variabilities’ effects [17, 10]. A
bad-fit detection and removal technique is used to avoid
sudden estimation jumps.

The estimation of the time constant is updated by solv-
ing (11) using fmincon and the global search interior-point
algorithm with a random initial guesses, and minimum and
maximum limits of 90 µs and 220 µs, respectively.

The optimization problem (14) is solved by using fmin-
con and the global search interior-point algorithm with a
random initial guesses, and minimum and maximum limits
of 0.01 and 1, respectively.

For each IO curve, the maximum number of pulses is ar-
bitrarily set to nmax = 500, which means that 1000 stimuli
can be administered in total.

The stopping rule is based on T = 5 successive satisfac-
tion of the the convergence criterion (15) with the toler-
ance ϵz set to 0.01 for all parameters.

6.1. The results of a representative run

Fig. 3 shows the stimulus–response pairs (‘×’ signs) and
reference IO curves (solid lines) for a representative run

0 0.2 0.4 0.6 0.8 1

10
-6

10
-4

10
-2

a

Ref. data
Ref. IO curve
Baseline
Samples
Estimation
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-6
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-2

b

0 0.2 0.4 0.6 0.8 1
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-6
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-4

10
-2

c

Figure 3: Sample simulation run: (a) reference data and IO curves,
estimation by using the proposed method at (b) n = nf = 240 and
(c) n = nmax = 500.

with the following arbitrarily chosen true values:

τ true = 92.05 µs

gtrue = 32.44

ttruep1
= 29 µs

ttruep2
= 87 µs

θθθtrue1 = [ −6.00 −2.65 0.59 9.49 ]

θθθtrue2 = [ −6.00 −2.65 0.31 15.97 ]

The critical pulse width t∗p = 100.93 µs is obtained by
solving by using (16) for τ true = 92.05 µs. For the formal-
ism simplifications, the pulse widths should be be shorter
than t∗p. The sequential parameter estimation method sat-
isfies the stopping rule at n = nf = 240 for each IO curve,
for this representative run. This means that the parame-
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ters have been estimated after administering 2×240=480
stimuli.

Fig. 3-b and Fig. 3-c summarize the stimulus–response
pairs as well as the estimated IO curves at nf = 240 and
nmax for a randomly chosen case. As discussed in [49],
it is seen that the FIM optimization administers stimuli,
mainly from sectors which contain the maximum informa-
tion for curve fitting. Fig. 4 shows the conversion behavior
of the the IO curves’ parameter estimates with increasing
number of pulses. Fig. 5 presents the correspondingly es-
timated time constant and Fig. 6 the estimate of g. The
results confirm satisfactory estimation of the membrane
time constant τ , g, and the reference IO curves with their
parameters.

6.2. The results of 73 runs

All 73 runs satisfied the stopping rule with an average
of nf = 172 stimuli for each IO curve, which means that
2×172=344 stimuli were administered in average for the
estimation of all parameters and the IO curves.

For all parameters, the absolute relative estimation er-
rors (AREs) after the stimulation of the n−th stimulus for
each IO curve are computed per

e =
∣∣∣ ẑn − ztrue

ztrue

∣∣∣, (17)

where z = {θji , τ, g}, j = 1, . . . , 4, i = 1, 2; ẑn denotes
the estimation of z after n−th stimulus.
When the stopping rule is satisfied, the IO curves’ pa-

rameters θ1, θ2, θ3, and θ4 are estimated with average
AREs of 0.2%, 0.7%, 0.9%, and 14.5%, respectively. The
membrane time constant τ and gain g are estimated with
average AREs of 6.2% and 5.3%, respectively.

At n = nmax = 500, the IO curves’ parameters θ1, θ2, θ3,
and θ4 are estimated with average AREs of 0.2%, 0.4%,
0.6%, and 8.7%, respectively. The membrane time con-
stant τ and gain g are estimated with average AREs of
5.2% and 4.3%, respectively, at n = nmax.
It is noted that the estimation performance of at n = nf

could be improved further by reducing the convergence tol-
erance ϵz or by increasing the number of successive times
the convergence criteria must be satisfied.

7. Conclusions and future works

TMS devices with adjustable pulse duration, such as
cTMS, allow closed-loop sequential parameter estimation
of the linearized neural membrane time constant, the
input–output (IO) curve, as well as coupling and scal-
ing gains. Stimulation at two pulse widths is in prin-
ciple sufficient for the estimation of these parameters in
electromyography-guided (EMG-guided) TMS. The pro-
posed two-stage sequential parameter estimation method
demonstrates satisfactory estimation performance over 70
simulation case studies with around 5% average absolute
relative estimation error (ARE) for 500 pulses.
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