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Abstract Humans make a number of choices when they walk, such as how fast and for how8

long. The preferred steady walking speed seems chosen to minimize energy expenditure per9

distance traveled. But the speed of actual walking bouts is not only steady, but rather a10

time-varying trajectory, which can also be modulated by task urgency or an individual’s11

movement vigor. Here we show that speed trajectories and durations of human walking bouts12

are explained better by an objective to minimize Energy and Time, meaning the total work or13

energy to reach destination, plus a cost proportional to bout duration. Applied to a14

computational model of walking dynamics, this objective predicts speed vs. time trajectories with15

inverted U shapes. Model and human experiment (𝑁 = 10) show that shorter bouts are unsteady16

and dominated by the time and effort of accelerating, and longer ones are steadier and faster17

due to energy-per-distance. Individual-dependent vigor is characterized by the energy one is18

willing to spend to save a unit of time, which explains why some may walk faster than others, but19

everyone has similar-shaped trajectories due to similar walking dynamics. Tradeoffs between20

energy and time costs predict transient, steady, and vigor-related aspects of walking.21

22

Introduction23

Many aspects of human walking are determined byminimization of metabolic energy expenditure.24

For example, the preferred step length (Atzler and Herbst, 1927) and step width (Donelan et al.,25

2001) minimize energy expenditure for a given steady speed, and the preferred steady speed ap-26

proximately coincides with minimum energy expenditure per distance traveled (Fig. 1A, Ralston,27

1958). This speed, as well as the economy of walking, both decline with age, disability, or poor28

health. As such, preferred speed is widely employed as a clinically useful indicator of overall mobil-29

ity (Afilalo et al., 2010; Studenski et al., 2011). However, there are naturallymany other factors that30

also influencewalking. All walking tasks have a beginning and end, and somemay spend little or no31

time at steady speed. Some tasks may also occur with a degree of urgency, and some individuals32

may habitually walk faster than others, for reasons not obviously explained by economy. Energy33

economy is a powerful and objective explanation for steady walking speed, but it does not readily34

accommodate these everyday observations. Realistic walking tasks must therefore be governed35

by more than energy economy alone.36

The specific energy measure thought to govern steady walking speed is the gross metabolic37

cost of transport (COT). Defined as energy expended per distance travelled and body weight (or38

mass), it has a convex dependency on speed. Itsminimum (termedmin-COT here) seems to predict39

the steady preferred speed, as reported extensively in the literature (Ralston, 1976; Martin et al.,40
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Figure 1. Humans prefer an economical speed for steady walking, but not all walking is steady. (A.) The
preferred steady walking speed 𝑣∗ coincides with minimum metabolic cost of transport (“min COT”), which
has a convex dependence on speed (after Ralston, 1958). (B.) The distribution of human walking bouts during
daily living, plotted as percentage of observed bouts vs. number of steps (in bins of ±1), as reported by
Orendurff et al. (2008). About 50% of bouts were less than 16 steps (shaded area), observed from ten adults
over fourteen days. (C.) A typical walking task is to walk a given distance 𝐷, starting and ending at rest. (D.)
Walking speed is therefore expected to be a trajectory that starts and ends at zero, potentially differs from
steady 𝑣∗, and has a finite duration 𝑇 . Hypothetical trajectories are shown as dashed lines.

1992; Willis et al., 2005; Browning and Kram, 2005; Browning et al., 2006; Rose et al., 2006; Entin41

et al., 2010). The same appears to be true for horses and other animals (Hoyt and Taylor, 1981).42

However, much of daily living also involves relatively short bouts of walking (Fig. 1B), with about43

half of daily bouts taking less than 16 steps as reported by Orendurff et al. (2008). Such bouts, say44

of distance 𝐷 (Fig. 1C), may spend substantial time and energy on starting from and stopping at45

rest, and relatively little time at steady speed. For example, in short bouts of walking up to about a46

dozen steps, peak speed is slower than the steady optimum, and only attains that value with more47

steps (Seethapathi and Srinivasan, 2015). There is a substantial energetic cost to changing speeds48

that could account for 4-8% of daily walking energy budget (Seethapathi and Srinivasan, 2015). If49

energy economy is important for walking, it should apply to an entire walking bout or task, and not50

only to steady speed.51

Another important factor for walking is time. Time is valuable in part because energy is always52

expended even when one is at rest (Jetté et al., 1990), and because walking faster can save time53
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to reach destination, but at greater energy cost (Ralston, 1958). Time is also subjectively valuable,54

because the urgency of a task, or even of an individual’s personality, surroundings, or culture, could55

influence their speed. It has long been observed that people walk faster in big cities than in small56

towns, by a factor of more than two-fold (about 0.75 – 1.75 ms−1), or about ±40% of 1.25 ms−157

(Bornstein and Bornstein, 1976). Perhaps population density affects a person’s valuation of time58

(Bornstein, 1979; Levine and Bartlett, 1984; Li and Cao, 2019). Time is certainly a factor in deciding59

whether to walk or run (Summerside et al., 2018), and is considered an important factor in the60

general vigor of movements, beyond walking alone (Labaune et al., 2019). It is clearly worthwhile61

to expend more energy if time is of essence.62

There are, however, challenges to incorporating time into walking. One method is to factor63

time into the equivalent of temporally discounted reward (Shadmehr et al., 2010), which refers64

to offering a reduced reward for longer durations, typically employed in fields such as movement65

vigor, foraging theory (Green and Myerson, 1996), and reinforcement learning (Sutton and Barto,66

2018). Another is to express time as a cost that increases for longer movement durations, trading67

off against greater energy cost for shorter durations. Both the energy cost for an entire walking68

bout, plus a cost for time duration, could thus be combined into a single objective function to be69

minimized (Wong et al., 2021). This presents a second challenge, which is how to determine the op-70

timum. Unlike the case of steady walking at a single speed (Fig. 1A), an entire walking bout requires71

a time-varying trajectory of walking speed. This cannot be determined from the cost of transport72

curve, but can potentially be predicted by a quantitative, dynamical model. Simple models of walk-73

ing (Fig. 7), based on the pendulum-like dynamics of walking, can predict aspects such as optimal74

step length and step width (Kuo et al., 2005) for a steady speed, and optimal speed fluctuations75

for uneven steps (Darici et al., 2020). It remains to be determined whether they can predict the76

energetics and timing of walking bouts with transient conditions.77

The purpose of the present study was to test whether the combined costs of energy and time78

can predict dynamic variation in walking speed. We propose a basic quantitative objective function79

called the Energy-Time hypothesis, which includes a cost for total energy expenditure or mechan-80

ical work for a walking bout, plus a penalty increasing with the bout’s time duration. We apply81

this objective to a computational walking model, using dynamic optimization to predict dynamic82

speed profiles for walking bouts of varying distance (Fig. 1D). For relatively short walking bouts,83

this hypothesis predicts speeds that vary within a bout, and speed profiles that vary across bout84

distances. For longer distances, it predicts a steady walking speed, not as an explicit outcome but85

rather as an emergent behavior. To test these predictions, we performed a human subjects experi-86

ment, comparing empirical speed profiles against model predictions. If themodel is able to predict87

human speed profiles, it may suggest that a valuation of time and energy can influence walking,88

and thus be compatible with walking bouts of any distance and any degree of urgency.89

Results90

Model Predictions91

A simple model of walking dynamics predicts theoretically optimal speed trajectories and walking92

bout durations. The Energy-Time hypothesis is that humans perform walking bouts that minimize93

an objective including the total energy and time expended for the bout. The dynamic optimization94

problem may be summarized as95

minimize (Energy expenditure) + 𝐶𝑇 (Time duration)96

subject to: starting and ending at rest97

with 𝑁 steps of pendulum-like walking dynamics98

where the total metabolic energy expenditure is evaluated for the entire walking task, and the99

time duration is weighted by a metabolic energy coefficient 𝐶𝑇 (in units of energy per time). In the100

model, positive mechanical work is used as a proportional indicator of human energy expenditure,101

with (lower-case) work coefficient 𝑐𝑇 . This coefficient is a valuation of time, andmay be interpreted102
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Figure 2. A computational model of walking predicts that a rounded speed profile is most economical for a
short walking bout of fixed time and distance. (A.) Predicted speed profiles for a walking bout of ten steps,
comparing minimization of Energy and Time (Energy-Time, solid line) against maintaining steady speed
(min-COT, dotted line) or steady acceleration and deceleration (steady accel, dashed line). Energy-Time
minimizes the total push-off (PO) work plus time expended for a walking bout, for a model with
pendulum-like legs (inset). Steady min-COT walks at the steady speed that minimizes cost of transport, by
accelerating immediately to that speed. Steady acceleration walks with linearly increasing speed until
mid-point, then decelerates linearly back to rest. Energy-Time predicts a gently rounded speed profile,
min-COT a trapezoidal profile, and steady acceleration a triangular profile. Speeds are sampled once per step
(filled dots), starting with an initiation impulse to accelerate from standing and a termination impulse to
decelerate at the end (gray dots). (B.) Positive work inputs for each hypothesis, including initiation work (gray
dots) and push-off work (colored dots, one per step). Energy-time hypothesis predicts the least total work,
whereas steady min-COT and steady acceleration require more overall work. Predictions are for a dynamic
walking model with pendulum-like legs (inset, see Methods). All predictions are designed for the same
duration based on steady min-COT speed as a reference, resulting in cost of Time 𝑐𝑇 = 0.020. Predictions are
plotted in terms of normalized units based on body mass𝑀 , leg length 𝐿, and gravitational acceleration 𝑔;
scale for typical human also shown, mass 70 kg, leg length 1 m.

as the energy or work one is willing to expend to save a unit of time. The overall objective is to103

be minimized with an appropriate trajectory of the body’s speed, which is the outcome of the104

human’s active control actions. The optimal control actions are subject to constraints, namely105

the specified distance of a walking bout and the governing walking dynamics (see Methods for106

details). Walking dynamics refers to the dynamics of the body, where the stance leg behaves like107

an inverted pendulum and the swing leg like a swinging pendulum. These dynamics also describe108

the mechanical work and energy associated with a speed trajectory, and how long each step takes.109

The time duration 𝑇 of a bout is the outcome of the optimization, where greater valuation of time110

𝐶𝑇 favors shorter duration.111

The optimization predicts the speed profiles for a representative, ten-step task (Fig. 2A). To112

focus on Energy first, the duration is kept fixed here. The Energy-Time objective (predicts a gradual113

increase in speed, with a gently rounded profile that peaks mid-way through the bout. For this114

relatively short distance, little or no time is spent at steady speed. This contrasts with two other115

possibilities, to maintain steady speed at min-COT, or to maintain steady acceleration. The steady116

min-COT objective produces a speed profile resembling a trapezoid, accelerating immediately to117

attain steady speed, maintained throughout the bout, before terminating just as quickly. Steady118

acceleration causes speed to increase linearly over timeuntil peakingmid-bout, followedby a linear119

decrease back to rest. Here, all three alternatives are directed to walk the same distance in the120

same time, but at different costs.121

Examination of the positive work inputs reveals why Energy-Time is least costly (Fig. 2B). Its gen-122

tle acceleration requires moderate push-offs, which trail off over time as the model nearly coasts123
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to a stop at destination, taking advantage of each step’s collision loss to reduce speed at little cost.124

In contrast, the steady min-COT objective pays a high cost to initiate gait, and then amoderate and125

constant amount of work for all push-offs. It does not take advantage of coasting to a stop, and is126

ultimately about 13% more costly than Energy-Time. Steady acceleration pays a high cost to peak127

at a high speed, which is not made up for by greatly reduced push-offs as it comes to a stop. Some128

intuition may be gained by considering the analogous situation of a vehicle driving a short fixed129

distance between two stop signs, in fixed time. It is generally economical to accelerate and decel-130

erate gradually, and not necessarily maintain steady speed except beyond a certain distance. A131

trapezoidal (min-COT) speed profile is not recommended, because considerable energy is spent in132

fast acceleration, and braking maximally at the end is more wasteful than lifting off the accelerator133

early and coasting. A triangular (steady acceleration) profile is also not recommended, due to the134

work needed to briefly attain a high speed. Of course, walking and driving have different dynamics,135

but both have similar energetic loss rates that increase approximately with the cube of speed. The136

higher losses incurred at greater speeds is an important reason for the Energy-time optimality of137

a rounded speed profile.138
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Figure 3. Energy-Time hypothesis predicts a family of speed profiles. (A.) Predicted speed profiles vs. time for
a range of walking distances, time valuations, and step lengths. In main plot, multiple predictions are scaled
and superimposed on each other to emphasize self-similarity. Original, unscaled traces are shown in
surrounding insets. (Horizontal insets, bottom:) Three different step lengths, including shorter (0.59 m),
longer (0.79 m, and human preferred step length relationship. (Vertical insets, right:) Varying valuation of time
𝑐𝑇 results in two-fold variation in peak speeds (labeled) and walk durations. The time cost and step length
therefore affect only how quickly the task is completed, and not the shape of the family of speed profiles. (B.)
Peak speeds are predicted to increase sharply with distance, approaching an asymptote for distances of
about 12 m or more. Again, despite different peak speeds, the curves are self-similar and can be scaled to a
single shape (thick lines). (C.) Walking durations increase with distance, with slightly curvilinear relationship
(also scaled to a single shape, thick lines). In (A.), time cost 𝑐𝑇 is varied between 0.006 and 0.06 (in units of
𝑀𝑔1.5𝐿0.5), and distances range from 2 to 20 steps. Model predictions are plotted in dimensionless units,
using body mass𝑀 , leg length 𝐿, and gravitational acceleration 𝑔 as base units; scale for typical human also
shown, mass 70 kg, leg length 1 m.

Having established the energetic advantages of the Energy-Time hypothesis, we next examine139

how the optimal speed profiles vary with Time and other model parameters (Fig. 3). Here there140

are three parameters of interest: the value of time 𝑐𝑇 , step length, and walking bout distance.141

We considered step lengths 𝑠 fixed at nominal (0.68 m), at a slightly longer length (0.78 m), and142

increasing with speed according to the human preferred step length relationship (see Methods for143
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details). We also considered bouts of one to twenty steps, or about 0.68 m to 13.7 m, as well as144

time valuations 𝑐𝑇 ranging ten-fold, 0.006 to 0.06 (dimensionless). Examining many combinations145

of these parameters, a few characteristics emerge. The speed profiles generally retain a gently146

rounded profile (Fig. 3A), smoothly accelerating from rest and leveling off at a peak speed before147

decelerating back to rest. Unlike the trapezoidal profile, the speed profiles are always peaked,148

particularly for short bouts. The longer the distance, the more evident a middle section of steady149

speed, and the shorter the distance, the more rounded the speed profile. The acceleration and150

deceleration slopes increase slightly with longer bouts, and only for distances of about 10 m or151

more is there a steady gait near peak speed. The peak speed also initially increases sharply with152

walking distance (Fig. 3B), but then approaches an asymptote for greater distances, as the cost of153

acceleration and deceleration becomes inconsequential to overall cost 𝐽 . In fact, the asymptotic154

peak speed for long walks is a steady speed, not unlike the minimum-COT speed. But for finite155

walk distances, the speed profile generally does not agree with the steady min-COT hypothesis,156

because it varies dynamically within a bout of walking, and across different bout distances.157

Another feature of the Energy-Time prediction is consistency with respect to parameter values158

(Fig. 3A). The main free parameter is the time valuation 𝑐𝑇 , for which higher values call for higher159

peak speeds, and therefore shorter walking durations. But with peak speeds ranging more than160

two-fold (Fig. 3A, inset), the speed profiles all had similar shape. In fact, scaling each of the profiles161

in time and amplitude yielded a very similar family of trajectories regardless of parameter values162

(Fig. 3A). This is also the case for variation in step length, with nominal, long, and preferred hu-163

man step lengths all producing similar trajectories. Similarly, the peak speed vs. distance curves164

resembled a saturating exponential regardless of parameter values (Fig. 3B), and these were also165

scalable in amplitude to yield a single family of curves. Walking durations vs. distance (Fig. 3C),166

also had similar, scalable and curvilinear shape for all parameters. Similar profiles are produced167

regardless of whether the model takes step lengths that are fixed, or that scale according to the168

empirical step length vs. walking speed relationship for steady walking (insets, Fig. 3A). We there-169

fore subsequently keep step length fixed (equivalent of 0.68m for human) for simplicity. As a result,170

the time cost coefficient 𝑐𝑇 is effectively the model’s sole free parameter, and the predicted speed171

profile shapes scale very consistently with respect to that parameter.172

There are thus three main predictions from the model that can be tested in human. First, the173

speedprofiles should fall within a single consistent family, which includesmore rounded shapes for174

short walks, and flatter for longer walks (Fig. 3A). These profiles should exhibit self-similarity, and175

be scalable in peak speed and time to resemble a single, relatively uniform family of profiles. Sec-176

ond, the peak speed should increase with distance, with an approximately exponential saturation177

toward an asymptote (Fig. 3B). Again, that relationship is expected to be scalable by peak speed,178

and testable by a single saturating exponential. And third, walking durations should increase with179

distance, in a slightly curvilinear relationship (Fig. 3C) approaching a straight-line asymptote for180

longer distances. For shorter distances, substantial time should be spent accelerating and decel-181

erating, compared to relatively brief cruising periods. We thus treat the time valuation 𝑐𝑇 as an182

empirical parameter that mainly affects the scale, but not the shape of the speed profiles and183

dependency on distance.184

Experimental Results185

The human speed profiles for all trials and all distances were found to exhibit consistent profiles186

between subjects and between individual trials (Fig. 4. These profiles resembled predictions from187

the Energy-Time hypothesis. Qualitatively, humans produced inverted U profiles similar to model,188

with sharper and lower peak speeds for shorter bouts. Longer bouts had higher and flatter peaks,189

where a steady speed could be discerned. Each individual subject walked at a somewhat different190

speed and for a somewhat different time (Fig. 4A). For example, the range of peak speeds across191

subjects, observed for the longest (12.7 m) bout, was 1.21 to 1.78 ms−1, and the corresponding192

range of durationswas 8.51 to 11.86 s. Nevertheless, the profile shapeswere all quite similar across193
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subjects. In contrast, the speed trajectories did not resemble the trapezoidal profiles expected194

from the Steady min-COT hypothesis.195
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Figure 4. Human speed profiles vs. time for (A.) all subjects (𝑁 = 10), and (B.) all subjects normalized to the
average. Body speeds are plotted for all ten walking bout distances (colored lines). In (A.), one representative
subject is highlighted (thicker lines) to show a typical person’s variability between trials. In (B.), all traces for
each subject are normalized by that person’s average peak speed (“Speed norm”) for the longest distance,
and by their average time for that bout (“Timing norm”). Also shown are the mean walking bouts across
subjects (thick black lines, 𝑁 = 10) for each distance, to illustrate how different subjects resemble each other
despite varying in how fast they walk. Averages were computed by resampling each trial to the most common
step count for each distance, averaging across such profiles for each distance, and then rescaling time to
reflect the average duration for each distance.

The experimental speed trajectories were scalable in speed and time, to yield a self-similar fam-196

ily of trajectories (Fig. 4B). Each individual’s trajectories were normalized in time by the duration197

for that subject’s longest bout, and in speed by the maximum speed of their longest bout. These198

were then re-scaled to match the average duration and peak seed across subjects, to yield a nor-199

malized set of speed profiles for all subjects (Fig. 4B). The resulting normalized trajectories reveals200

considerable similarity between individuals, with a single, relatively uniform family of profiles for201

all subjects. Thus, the peak speed and duration of a walking bout of 2 m was consistently related202

to one of 12 m, and vice versa.203

This scalability may be quantified in terms of peak speeds and durations. Examining the peak204
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speed for each distance reveals a consistent pattern (Fig. 5A). Peak speeds increased with distance,205

sharply for short distances and then saturating for longer distances. The overall pattern resem-206

bled a saturating exponential, similar to model predictions. The overall maximum speed was 1.52207

± 0.14 ms−1(mean ± s.d. across subjects), almost always for the longest distance. We normalized208

each individual’s peak speed by their own maximum, and found the resulting peak speed vs. dis-209

tance curves to be scalable into a single normalized curve across subjects. With normalization, the210

variability (s.d. across individuals) of peak speeds was reduced significantly (𝑃 = 1.6 × 10−6), by211

0.07 ± 0.02m s−1 (mean ± s.d.) across all bout distances or about 54% compared to un-normalized.212

Thus, even though each individual walked at their own pace, that tendency was consistent across213

all distances. Much of the inter-subject variability was reduced by normalizing the peak speeds,214

revealing a common relationship between peak speed and bout distance.215

There was a similarly consistent pattern for walking durations across distances (Fig. 5B). Walk-216

ing durations increased with distance in a slightly curvilinear fashion. Again, we normalized each217

individual’s durations by the duration for the longest bout (9.86 ± 0.75s), and found the duration218

vs. distances to be scalable into a single normalized curve across subjects. With normalization,219

the variability of durations was also reduced significantly (𝑃 = 0.03), by 0.10 ± 0.13s across all bout220

distances, or about 18% compared to un-normalized. Similar to peak speeds, much of the inter-221

subject variability was reduced by normalizing. There was a common and consistent relationship222

between different walking bouts, similar to model predictions.223

The change in peakiness or flatness of speed profiles was indicated by the time spent accelerat-224

ing, decelerating, or at approximately constant speed (Fig. 5B). Rise time is defined as the time to225

accelerate from 0% to 90% of peak speed, cruise time as the time spent 90% of peak speed ormore,226

and fall time as the time to decelerate between 90% and 0% of peak speed (Fig. 5B). These mea-227

sures of time increased with bout distance. As a fraction of each bout’s duration, the rise and fall228

times appeared to take up a greater proportion for shorter bouts, and only a very small proportion229

was spent at steady speed. Conversely, cruise time took up a greater proportion of the time for230

longer bouts. These behaviors were consistent with predictions from the Energy-Time hypothesis.231

The peak speed was described reasonably well by a saturating exponential (Fig. 5A). A least-232

squares nonlinear fit to the normalized data yielded a saturating exponential curve233

𝑣(𝐷) = 𝑐𝑣(1 − 𝑒−𝐷∕𝑑𝑣 ) (1)

where 𝑣(𝐷) is the peak speed as a function of total walking distance 𝐷, and fitted values were234

𝑐𝑣 = 1.516m s−1 (1.496, 1.536 CI, 95% confidence interval) and 𝑑𝑣 = 1.877m (1.798, 1.955 CI), for a235

statistically significant fit (𝑃 < 0.05) with 𝑅2 = 0.86. The curve fit shows that there was considerable236

consistency in maximum speed; even short walking bouts of slow peak speed were still consistent237

with longer bouts of higher speed.238

Similarly, walking duration increased with walking distance (Fig. 5B), with a slightly curvilinear239

relationship. The total walk duration 𝑇 (𝐷)may be treated as a saturating exponential approaching240

a straight asymptote, equal to distance𝐷 divided by preferred steady walking speed plus an offset241

𝑇0. The curve was of the form242

𝑇 (𝐷) = 𝐷
𝑣𝑇

+ 𝑇0(1 − 𝑒−𝐷∕𝑑𝑇 ). (2)

where fitted coefficients were 𝑣𝑇 = 1.494m s−1 (1.466, 1.521 CI), 𝑇0 = 1.470 s (1.375, 1.565 CI), and243

𝑑𝑇 = 0.790m (0.610, 0.970 CI).244

We also performed similar analyses on a grass walking surface to test for sensitivity to slightly245

uneven terrain. An identical set of conditions was collected on short grass outdoors. The fit of peak246

speed vs. bout distance yielded 𝑐𝑣 = 1.446m s−1, 𝑑𝑣 = 1.822m s−1 (𝑅2 = 0.85), and for duration versus247

distance 𝑣𝑇 = 1.426m s−1, 𝑇0 = 1.336 s, and 𝑑𝑇 = 0.503m (𝑅2 = 0.98). These relationships were quite248

similar to those obtained on sidewalk.249

Wenext estimated the relationship between human valuation of time and steadywalking speed250

(Fig. 6). Here, the empirical humanmetabolic power curve increasingwith speed (Fig. 6A), was used251
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Figure 5. Human walking bouts show increases in (A.) peak speed and (B.) walking duration vs. distance. (A.)
Peak speeds are shown for each walking distance, averaged across subjects (filled symbols, 𝑁 = 10). A
saturating exponential fit is shown for each subject (thin lines), as well as for overall data (thick solid line,
𝑅2 = 0.86). Variability in peak speeds is shown between all trials (standard deviation, gray error bars), and
after normalization of peak speed (thin black error bars), showing reduced variability in normalized speeds.
(B.) Walking durations are shown (after normalization for duration of longest bout) for each walking distance,
along with a saturating exponential fit (𝑅2 = 0.98). Shaded areas denote rise time (0% to 90% of peak speed),
cruise time (90% of peak and greater), and fall time (90% to 0%). Rise and fall times appear to dominate
shorter walking bouts, and cruise time for longer walking bouts. Filled black dots denote mean data, error
bars denote s.d. The entire range of unnormalized peak speeds and durations for all subjects is shown in Fig.
4.

to predict how steady walking speed should increase with metabolic value of time 𝐶𝑇 (Fig. 6B), and252

how the energetic cost of transport vs. steady walking speed (Fig. 6C) may be regarded in terms of253

competing costs for Energy and Time. This was accomplished by fitting the human power curve to254

the model, to facilitate scaling the model’s mechanical energy into human metabolic energy. The255

optimal steady walking speed emerges from that curve (Srinivasan, 2009), as a function of 𝐶𝑇 (Fig.256

6A). A time valuation of zero yields the same optimal speed 𝑣∗ of 1.25 ms−1 as min COT, and close257

to the minimum steady speed (among subjects) of 1.21 ms−1 observed here. It is instructive to258

increment 𝐶𝑇 by multiples of the metabolic equivalent (MET), a standard physiological resting rate259

of about 1.23Wkg−1 (Jetté et al., 1990). An increment of 1 or 2 MET yields optimal speeds of 1.54260

ms−1or 1.75 ms−1, respectively, quite close to the observed mean and maximum steady speeds261

(among subjects), respectively (of 1.52 ms−1 and 1.75 ms−1). Thus, if the same metabolic power262

curve were applicable to all, the slowest subject would have valued time at about zero MET, the263

mean subject at +1MET, and the fastest at +2MET. This also suggests that most subjects preferred264

faster steady speeds than min-COT. Examining the continuous relationship between the two (Fig.265
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Figure 6. Prediction of steady walking speed emerges from Energy-Time hypothesis. (A.) Human metabolic
power vs. speed for steady walking (adapted from Elftman, 1966), along with a model-based curve fit
(𝑅2 = 0.999; see Eq. 15). Faster walking can be produced by valuing time more, with metabolic 𝐶𝑇 = 1MET
yielding 1.54 ms−1and 2MET yielding 1.75 ms−1. (MET is metabolic resting rate, serving as a standard
reference value.) (B.) Model steady speed vs. value of time 𝐶𝑇 increases such that each increment of 𝐶𝑇 in
model yields a diminishing increase in speed, due to the increasingly high energetic cost of walking faster.
Walking speeds observed in experiment (“Exp” range) may be interpreted as human 𝐶𝑇 ranging from about 0
– 2 MET above resting. (C.) Model energetic cost of transport (COT) may be regarded as the sum of two
competing costs: a physiological cost for Walking and a scalable, virtual cost for the Time expended. Steady
walking speed is optimized where the two costs have equal and opposite slope. As the valuation of time 𝐶𝑇
increases, preferred steady speed increases. The valuation of time is a virtual cost, and does not affect the
human’s actual energy expenditure curve. Rather, valuation 𝐶𝑇 represents how much metabolic energy an
individual is willing to spend to save a unit of time. The three marked speeds (asterisks ‘*’) are for a gross
valuation of time starting at a resting rate, and incremented by one or two MET.

6B), there are diminishing returns in speed to incrementing 𝐶𝑇 , because it is increasingly costly to266

walk faster. One interpretation afforded by the Energy-Time hypothesis is that there is an effective267

cost of transport that may be separated into two terms (6C), Walking and Time): one for the net268

metabolic cost for walking alone (due to push-off work), the other a cost of time that lumps the269

resting rate together with 𝐶𝑇 . This reveals a trade-off, where the cost of walking increases with270

speed, and the cost of time decreases (hyperbolically with speed), such that the two opposing271

curves (or rather their opposing slopes) determine an optimum. A greater valuation of time adds272

to this effective cost of transport, equal to the actual metabolic energy plus the virtual cost of time,273

per distance traveled. This shows how the effective Energy-Time cost per distance is minimized at274

higher speeds for greater 𝐶𝑇 .275

Discussion276

We had sought to test whether humans optimize not only metabolic energy but also a valuation277

of time spent walking. Although the prevailing theory of minimizing the energetic COT explains278

steady walking, it does not explain shorter walks that lack a steady speed, nor does it readily ac-279

commodate individual tendencies toward faster or slower speeds. We found that humans walk280

bouts of finite distance with a trajectory of speeds varying with distance. These bouts fall within a281

consistent family of trajectories across subjects, despite individual differences in overall speed or282

duration. These results are in agreement with a simple mechanistic model of walking, governed283

by optimization. The findings suggest that humans optimize a combined objective that trades off284

the energy to arrive at destination against the time it takes to get there.285

Each walking bout consisted of a dynamically varying trajectory of speed with an inverted U286

shape. Many of these bouts included a period of steady walking, at speed similar to min-COT287

(Ralston, 1958), but mainly for the longer distances (Fig. 4). Bouts of say 10m or less exhibited a288

relatively brief peak slower than the typicalmin-COT speed (Fig. 5B). Short distances such as this are289
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quite common, and account for about half of the daily living walking bouts reported by Orendurff290

et al. (2008). All such bouts spend substantial time and energy in acceleration and deceleration (Fig.291

5B), which could account for 4-8% of daily walking energy budget (Seethapathi and Srinivasan,292

2015). We also consider finite walking bouts to be ecological, because people usually walk to a293

destination of known distance. It is more sensible to minimize the total energy for that distance,294

as opposed to the energy per distance. This is not to dismiss the energy spent for steady walking,295

but to recognize that considerable time and energy are spent for accelerating, decelerating, or296

walking relatively short and known distances.297

Even though there were considerable differences between individuals, each subject was quite298

consistent within their own walking bouts. Those with a slower or faster peak speed during longer299

bouts were also consistently so during shorter, non-steady bouts (Fig. 5), as evidenced by the 54%300

reduced variability after normalizing peak speeds by the longest bout. Moreover, the bouts across301

all subjects were scalable to a single, self-similar family of trajectories (Fig. 4). These trajectories302

were not consistent with a fixed acceleration or deceleration profile (Fig. 2A), and instead exhibited303

a greater peak speed and longer time to that peak with greater distance (Fig. 4B). This pattern sug-304

gests that there are systematic criteria or principles that govern walking bouts of finite distance.305

Even though some individuals are faster than others (Fig. 4A), they all seem to follow similar prin-306

ciples.307

These observations agree with the primary hypothesis that humans optimize for energy and308

time. A key aspect of this hypothesis is that given a fixed bout distance, the entire speed trajectory309

including accelerating, decelerating, and steady walking (if any), is specified by optimization. Mini-310

mizing the total cost per walking bout contrasts with minimizing the cost per distance (COT), which311

considers only steady walking of unspecified distance and duration. The proposed model not only312

predicts the human speed trajectories, but also their scalability to a single family of trajectories313

(Fig. 3), despite individual-specific step lengths and time valuations. The model suggests how peak314

speeds, and time to peak, and durations should increase with distance (Fig. 3, similar to human315

data. The primary free parameter is the individual-specific valuation of time (𝑐𝑇 in terms of model316

work, 𝐶𝑇 in terms of human metabolic cost). That valuation may depend on complex physiological317

and socio-psychological traits, but it nonetheless appears to have predictive value for a given con-318

text. Not tested here is the presumption that different contexts, for example changing the saliency319

of a task or adding time pressure, will also lead to systematic changes in walking bouts. If an in-320

dividual’s valuation of time can be estimated empirically, our hypothesis provides an operational321

means of integrating it into a quantitative model.322

These predictions are produced by a mechanistic model governed almost entirely by dynamics.323

The timing comes from the dynamics of pendulum-like walking, and the energetics from the step-324

to-step transition between pendulum-like steps. The step-to-step transition requires mechanical325

work to accelerate and to restore collision losses, such that for short walks it is uneconomical both326

to accelerate quickly to min-COT speed and to maintain that speed (Fig. 2). The model favors accel-327

eratingmore gently to a slower and continuously varying speedwith an inverted U shape. Separate328

studies have found step-to-step transition work to predict human metabolic energy expenditure329

as a function of step length (Donelan et al., 2002) and changing speed (Seethapathi and Srinivasan,330

2015). Here we have constrained the pendulum-like dynamics so that there is only one free phys-331

ical parameter, step length, which in any case has very little effect on the characteristic shape of332

speed trajectories (Fig. 3). As such, there are no opportunities to fit the model to data, making it333

truly predictive. Of course, the human body has many degrees of freedom capable of far different334

motions, butmodel analysis suggests that pendulum-like walking is themost economical means to335

move the COM at slow to moderate speeds (Srinivasan and Ruina, 2006), and that push-off during336

the step-to-step transition is the most economical means of powering such pendulum-like walking337

(Kuo, 2001). These models are predicated on mechanical work as the major cost, and the COM as338

the major inertia in the system. We did not explore more complex models here, but would expect339

similar predictions to result if similar principles of work and energetic cost apply.340
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This model is optimized with an additional control parameter, for the valuation of time. Time341

has long been recognized as a factor in the pace of life (Levine and Bartlett, 1984), and in reward342

and vigor in motor control (Shadmehr et al., 2010). It is typically expressed as a temporal discount-343

ing of reward, which appears key to human decisionmaking and the theory of reinforcement learn-344

ing. Here we expressed it as a trade-off equivalency between energy and time. This was mainly345

due to the need for compatibility with our energetics model, but also because neither model nor346

experiment included an explicit reward to be discounted. We used a simple, linear valuation of347

time in terms of energy, rather than a nonlinear, exponential or hyperbolic temporal discounting348

factor (Green and Myerson, 1996). Energy is a physiological cost endemic to life, that is not ob-349

viously more or less valuable at different points in time. It is sufficient to predict and explain the350

present results, and there is currently insufficient evidence to favor a nonlinear cost over our linear351

valuation. But regardless of the particular formulation, it appears that a valuation of timemay be a352

fairly consistent individualistic trait, generalizable to other tasks such as hand and eye movements353

(Labaune et al., 2019). Indeed, we have found a similar valuation of time to explain how reaching354

durations and speed trajectories vary with reaching distance (Wong et al., 2021). Another implica-355

tion of ourmodel is that humansmay incorporate prediction of timewithin central nervous system356

internal models. Suchmodels have long been proposed to explain humans predict and adapt their357

movement trajectories, for example to novel dynamics (Todorov, 2004). If movement duration is358

also part of human planning, it suggests the ability to predict not only movement trajectories and359

energetics, but also time.360

Valuation of time offers another perspective on minimizing the gross cost of transport. Actual361

walking tasks are not purely steady, and are probably planned with consideration of what hap-362

pens at the destination. Long and Srinivasan (2013) proposed a task to minimize the total energy363

expended to walk to destination within a more than ample allocation of time. They showed that364

total energy should be optimized by mixing resting and walking (and running if necessary). Sup-365

pose the task is extended to an indefinite duration, where a considerable amount of time is spent366

resting. The optimal total energy and walking duration may be found by applying our Energy-Time367

objective with time valuation (𝐶𝑇 ) equal to zero (Fig. 6). Walking faster than optimal would yield368

more time to rest, but at a greater total energy cost for walking. Walking slower would cost less369

energy for the walking motion alone, but at a greater total cost due to less time available to rest.370

After all, 𝐶𝑇 is the energy one is willing to expend to save a unit of time, and the resting rate is the371

energy expended to rest for a unit of time. This may seem like a trivial restatement of the min-COT372

hypothesis, but it differs in two important ways. First, it can predict both the duration of walking373

and the entire speed trajectory, even for short bouts where there is no steady portion. Second, it374

considers how valuable time is at the destination. Minimizing the gross cost of transport is most375

sensible for maximizing the survivable range distance (Srinivasan, 2009), which may not be a con-376

cern in modern life where survival rates are high and calories plentiful. Rather, it may be a sensible377

default to value time at close to the resting rate, and to vary the valuation depending context. One378

may thus rush toward a long-lost friend or a hurry in a big city, because the time spent at destina-379

tion is far more valuable than resting. Similarly, we do not consider walking slowly to be a waste380

of energy per distance, but rather a waste of time. Even then, there are cases when humans might381

wish to waste time, for example to avoid an odious task, according to the expression “the slow382

march to the gallows.”383

The consistency of individual walking trajectories may have practical implications. Although384

walking speed is used as a clinical indicator of mobility, it is difficult to standardize (Middleton385

et al., 2015), because evaluations may be confined to the length of the available walkway, which386

may be too short (e.g., less than 10m) for a steady speed to be reached. But given the time to walk387

a fixed distance, it may be possible to predict the duration and steady speed for another distance,388

referenced from a universal family of walking trajectories. It is also possible that some clinical389

conditions might be manifested by a deviance from that family, perhaps in the acceleration or de-390

celeration phases, or in how the trajectories vary with distance. The methodology employed here391
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does not require specialized equipment beyond inertial measurement units, and the characteri-392

zation of speed trajectories can potentially provide more information than available from steady393

speed alone.394

The Energy-Time hypothesis could be tested by further inquiries. We have thus far regarded the395

valuation of time as a relatively fixed parameter for each subject. That valuation is likely influenced,396

and therefore testable, bymany contextual factors, including physiological and socio-psychological397

variables and task constraints. For example, caffeine intake, feeding status (e.g., Taylor and Faisal,398

2018), or monetary reward could be used make time more valuable as a trade-off against energy.399

Conversely, energy may be helpful for assessing the valuation of time (or temporally discounted400

reward), which is not easy tomeasure other than indirectly. Walking has a well-characterized physi-401

ological energy cost, and could serve as a useful trade-off against time or reward. The hypothesized402

optimal gait is the point at which the costs of energy and time have equal and opposite slopes (i.e.,403

partial derivatives) with respect to an independent variable such as speed (e.g., Fig. 6C), carried404

load, or incline. There are thus a variety of opportunities to manipulate the energetic cost of walk-405

ing, as a means to assess the proposed valuation of time.406

There are a number of limitations to this study. Although we testingmodel predictions in terms407

of speed trajectories, we did not measuremechanical work or metabolic energy expenditure in hu-408

man subjects, which would provide greater insight regarding the proposed trade-offs against time.409

Wealso did not evaluate each individual’smetabolic cost of transport vs. speed, whichwould reveal410

more precise differences between the min-COT speed and the actual self-selected speed. Nor did411

we evaluate gait kinematics or kinetics, which may be helpful for detailing other ways that walking412

bouts vary with distance. The simple walking model also only includes a crude representation of413

step-to-step transitions, and not other factors such as forced leg motion (Doke et al., 2005), stabil-414

ity (Bauby and Kuo, 2000; Donelan et al., 2004; Rebula et al., 2017), and three-dimensional motion415

(Donelan et al., 2001) that likely also affect energetic cost, and could therefore be used to test the416

valuation of time. We also did not include an explicit reward, which could facilitate assessment417

of energy and time in terms of other trade-offs such as money or food. In fact, the Energy-Time418

hypothesis should be regarded as a subset of the many factors that should govern human actions,419

rendered here in a simple but quantitative form.420

Conclusion421

Humans appear to select walking speed dynamically to minimize a combination of energy and422

time expenditure. This is both compatible with and extends the traditional hypothesis that hu-423

mans minimize gross energy expenditure per unit distance. We found it more general to minimize424

the total cost of a walking bout, due to the ability to predict an entire speed trajectory, with the425

optimal steady speed as an emergent property. By including a cost for time expenditure, we intro-426

duce a quantitative and operational means to make walking models compatible with the study of427

movement vigor. Tasks may also be broadened beyond walking, to include consideration of the428

reward to be gained or further energy to be expended once the destination is reached. Walking429

may thus be integrated into broader questions of how and why humans take the actions they do.430

As a modification to the tradional adage about money, we suggest that “Time is energy.”431

Methods432

We experimentally tested how human walking speed varies with walking distance. The speed tra-433

jectories observed fromhuman subjects were compared against predictions from the Energy-Time434

hypothesis and against the minimum-COT speed. To formulate the hypothesis andmake quantita-435

tive predictions, we expressed it as an optimal control problem including both energy and time. We436

first state the hypothesis for human walking, and describe how it is adapted for a simple walking437

model to yield predicted speed trajectories. This is then followed by description of the experiment438

regarding humanwalking speed, and finally an analysis of steady speed as a property of themodel.439
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Walking model440

We use the “simplest walking model” (Kuo, 2002) to operationalize this optimization problem (Fig.441

7A). The model treats the stance leg as an inverted pendulum and requires mechanical work to442

power the gait. The body center of mass (COM) is modeled as a point mass supported by the443

stance leg, so that each pendulum-like step follows an arc, which itself requires no energy input.444

Work is performed during the step-to-step transition (Fig. 7B), to redirect the COM velocity from445

forward-and-downward the end of one arc, and forward-and-upward at the beginning of the next.446

This is accomplished most economically with an active, impulsive push-off along the axis of the447

trailing leg, immediately followed by an impulsive, dissipative collision between the rigid leading448

leg and ground. In steady gait, the optimal push-off restores the collision losses, with mutually449

canceling impulses of equal magnitude. Speeding up is a matter of a greater push-off than colli-450

sion, and a net increase in COM velocity during the step-to-step transition (Fig. 7C). Positive and451

negative work are proportional to the square of the push-off and collision impulses, respectively452

(Kuo, 2002), so that speeding up also dissipates less collision energy than steady gait. Slowing down453

is the same in reverse, with collisions exceeding push-offs. This model predicts how step-to-step454

transition work for steady walking should increase as a function of step length and step width455

(Donelan et al., 2002). The model mainly predicts mechanical work for push-off, which appears456

to be a proportional predictor of the majority of human metabolic energy during steady walking457

(Donelan et al., 2002). That work also yields a mechanical cost of transport that varies curvilin-458

early with steady speed, similar to the empirical metabolic curve (Fig. 1a; Ralston, 1958). There459

are of course other contributions to the metabolic cost of walking such as to move the swing leg460

(Kuo, 2001), but of smaller magnitude than step-to-step transitions, which are to be tested alone461

for their predictive value. Details of this model have been described in greater detail previously462

(Darici et al., 2020; Kuo, 2002), and are recounted only briefly here.463

A walking bout consists of a sequence of 𝑁 steps, starting and ending at rest. It may be de-464

scribed by the discrete sequence of body speeds 𝑣𝑖 (𝑖 = 1, 2, ..., 𝑁 ), each equal to the distance trav-465

eled for step 𝑖 divided by that step’s time duration 𝜏𝑖. Themodel begins at rest in an upright position466

(Fig. 7D), and is set into motion by a forward initiation impulse acting on the pelvis. In humans, the467

torso can serve as an inertia that the hip muscles can act against, but for simplicity this action is468

represented as a translational impulse at the pelvis, summarized by the associated positive work 𝑢0.469

The total positive work performed by themodel consists of the work from initiation and the succes-470

sive push-offs, a sequence 𝑢𝑖 (𝑖 = 0, 1, ..., 𝑁 ). There is also a corresponding sequence of dissipative471

collision impulses by the leading leg, and a dissipative gait termination to end at upright.472

B. Step-to-step transition C. Speeding up D. Gait initiationA. Model
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Figure 7. Simple optimization model of walking. (A.) Walking dynamics modeled as a point center-of-mass
(COM, mass𝑀 ), supported by an inverted-pendulum stance leg (length 𝐿). (B.) The inverted pendulum stance
phase is punctuated by a step-to-step transition, modeled with an impulsive push-off (PO) from the trailing
leg, followed by impulsive, inelastic collision (CO) with leading leg and ground. The COM velocity is 𝑣− at end
of stance, then is redirected by PO and CO to yield velocity 𝑣+ at end of step-to-step transition, beginning the
next stance phase. (C.) For the model to speed up, the magnitude of PO must exceed that of CO, and 𝑣+ must
have greater magnitude than 𝑣−. (D.) The walking bout is initiated by a forward impulse applied at the pelvis,
described by positive work 𝑢0.

The step-to-step transition starts just before leading leg ground contact contact, and consists of473
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a perfectly impulsive push-off from the trailing leg, followed in immediate succession by a perfectly474

inelastic and impulsive collision of the leading leg with ground. The COM velocity at the end of one475

stance phase is 𝑣−𝑖 , directed forward and downward according to the pendulum arc. Mechanical476

work is performed only during the step-to-step transition, with a succession of ideal impulses. First477

is positive push-off work from the trailing leg, directed from its foot to the COM, and second is a478

perfectly inelastic heel-strike collision of the leading leg with ground, directed from the leading foot479

to the COM. For brevity, the equations presented here use dimensionless versions of quantities,480

with body mass𝑀 , gravitational acceleration 𝑔, and leg length 𝐿 as base units. The push-off work481

is denoted 𝑢𝑖 (in units of mass-normalized work), and the push-off and collision sequence act to482

redirect the COM velocity to 𝑣+𝑖 at the beginning of the next stance phase, directed forward and up-483

ward according to the next pendulum arc. Using impulse-momentum, the step-to-step transition484

is described by485

𝑣+𝑖 = 𝑣−𝑖 cos 2𝛼 +
√

2𝑢𝑖 sin 2𝛼. (3)

where 2𝛼 is the inter-leg angle (Figure 7A). There is no work performed during the passive, inverted486

pendulum phases, and so the step-to-step transition is responsible for all energy inputs (𝑢𝑖) and487

energy losses (from collisions).488

Thedynamics of an inverted pendulumdescribe all of the othermotion in the system, consisting489

of the falling of one inverted pendulum toward the step-to-step transition, and the rising of the next490

inverted pendulum toward mid-stance. These dynamics determine the respective velocities and491

timing of these respective instances. The velocities may be found through conservation of energy:492

493

𝑣−𝑖 =
√

2(1 − cos 𝛼) + 𝑣2𝑖 (4)

494

𝑣𝑖+1 =
√

(𝑣+𝑖 )2 + 2(cos 𝛼 − 1) (5)

The step time 𝜏𝑖 is defined as the time for the stance leg angle 𝜃 to move between successive mid-495

stance instants, and the corresponding velocities from 𝑣𝑖 to 𝑣𝑖+1. It may be regarded as the sum of a496

time 𝜏−𝑖 from mid-stance to the step-to-step transition, and then the time 𝜏+𝑖 from the step-to-step497

transition until next mid-stance. Using the linearized dynamics, the dimensionless time 𝜏−𝑖 of step498

𝑖 is499

𝜏−𝑖 = log
𝛼 +

√

𝑣2𝑖 + 𝛼2

𝑣𝑖
. (6)

The other time 𝜏+𝑖 is500

𝜏+𝑖 = log

√

𝑣+𝑖 + 𝛼
√

𝑣+𝑖 − 𝛼
(7)

For comparison with experiment, we also defined an average (as opposed tomid-stance) speed501

for each step 𝑖 as the step length divided by the step time between mid-stance instances,502

Body speed𝑖 =
2𝐿 sin 𝛼
𝜏−𝑖 + 𝜏+𝑖

(8)

The trajectory of this body speed is plotted for different walking bouts, for both model and ex-503

periment. The equations for body speed and step time are summarized as constraints 𝑓 and 𝑔504

below.505

We chose nominal parameters to correspond to typical human walking. A person with body506

mass 𝑀 70 kg and leg length 𝐿 of 1 m may typically walk at 1.25 ms−1, with step length of 0.68 m507

and step time of 0.58 s, and corresponding fixed constant value 𝛼 = 0.35. Using dynamic similarity,508

parameters and results are reported here either in SI units, or in normalized units with body mass509

𝑀 , gravitational acceleration 𝑔, and 𝐿 as base units.510

15 of 21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 13, 2022. ; https://doi.org/10.1101/2022.07.15.500158doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.15.500158
http://creativecommons.org/licenses/by-nc/4.0/


Optimal control formulation511

We applied optimal control to the model for short walk bouts of varying distance (Fig. 7E). In hu-512

mans, both positive and negative work appear to cost positive metabolic energy with different513

proportionalities (Margaria, 1976). In the model, we assess a cost only for positive work, because514

the net work of a level walking bout is zero. Minimizing positive work thus also implicitly minimizes515

the negative work, as well as metabolic cost of any proportionality. The push-offs have a one-to-516

one relationship with the speeds, and so either push-offs or speeds can can describe the trajectory.517

For themodel, the goal is tominimize an objective function 𝐽model comprising the total positive work518

for the walking bout, plus the cost for the time duration:519

𝐽model = (Positive work) + 𝑐𝑇 (Time duration). (9)

where the coefficient 𝑐𝑇 is themodel’s valuation of time in terms of work, and equal to themechan-520

ical work the model is willing to spend to save a unit of time. It is treated as proportional to the521

human’s valuation 𝐶𝑇 for metabolic energy per time.522

This objective is applied as follows. The total distance 𝐷 of a walking bout may be achieved523

by taking an appropriate number of steps 𝑁 . The walking trajectory is described by a discrete se-524

quence of speeds 𝑣𝑖 (step 𝑖 = 1, 2, ..., 𝑁 ), starting and ending from standing at rest, given a standard525

step length. The corresponding control actions include the initiation impulse and the push-off im-526

pulses, for a total of 𝑁 + 1 actions 𝑢𝑖 (𝑖 = 0, 1, 2, ..., 𝑁 ). Using these variables, the model’s objective527

is thus528

𝐽model =
𝑁
∑

𝑖=0
𝑢𝑖 + 𝑐𝑇

𝑁
∑

𝑖=1
𝜏𝑖 (10)

for the optimization problem

minimize
𝑣𝑖 (𝑖=1,...,𝑁)

𝐽model(𝑣𝑖) subject to (11)

rest constraints: 𝑣0 = 0, 𝑣𝑁 = 0 (12)
walking dynamics: 𝑣𝑖+1 = 𝑓 (𝑣𝑖, 𝑢𝑖), 𝜏𝑖+1 = 𝑔(𝑣𝑖, 𝑢𝑖). (13)

where the model begins and ends at rest, and walking dynamics constrain how the speed and529

duration of the next step depend on the current step’s speed and push-off (functions 𝑓 and 𝑔530

detailed above). Note there are actually𝑁 + 1 controls, consisting of the initiation input 𝑢0 and the531

𝑁 step-to-step transition push-offs (𝑢1, 𝑢2, ...𝑢𝑁 ).532

The time valuation 𝑐𝑇 is treated as an unknown but constant coefficient. Greater 𝑐𝑇 is expected533

to yield faster walking bouts, with experimental data used to determine an appropriate range of534

values. Within a fixed experimental context, we expect 𝑐𝑇 to be constant. We found values of 𝑐𝑇535

ranging 0.006 to 0.06𝑀𝑔1.5𝐿0.5 to yield speeds approximately similar to subjects.536

We also considered an alternative hypothesis that walking occurs almost entirely at the optimal537

steady speed. This was primarily to show how different trajectories require different amounts of538

work. Termed the steady min-COT hypothesis, the goal is to walk at the min-COT speed 𝑣∗, or close539

to it, as much as possible. This is accomplished by minimizing deviations from 𝑣∗ throughout the540

bout, with objective541

𝐽steady =
𝑁
∑

𝑖=1
(𝑣𝑖 − 𝑣∗)2 (14)

subject to the same constraints as the Energy-Time hypothesis. This objective is expected to cause542

the model to accelerate immediately from rest to 𝑣∗, then remain at that steady speed, and then543

finally decelerate immediately back to rest. As with any walking bout, the trajectory requires me-544

chanical work, whichmay be compared against the work produced by the Energy-Time hypothesis.545

Model predictions were produced using computational optimization. Optimal control was com-546

puted using the JuMPoptimization package for the Julia language (Dunning et al., 2017), formulated547

as a discrete collocation problem, minimized by nonlinear programming (Ipopt). Step lengths were548
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examined with a nominal fixed step length of 0.68m, and sensitivity analyses performed with fixed549

lengths of 0.59 m and 0.78 m, and varying lengths following the human preferred step length rela-550

tionship 𝑠 = 𝑣0.42 (Grieve, 1968). Walking bouts were conducted for 𝑁 ranging 1 to 20 steps. The551

resulting trajectories were condensed into a scalable, self-similar family of speed trajectories.552

Experimental Methods553

We tested the model predictions by experimentally measuring the speed profiles of healthy adults554

walking a series of short distances, ranging about 2 to 20 steps. Subjects (𝑁 = 10, 6 male and 4555

female, 24–38 yrs) were instructed to walk at a comfortable speed in ten distance conditions, start-556

ing from standing at one numbered marker on the ground, and ending at another as requested557

by the experimenter. After each trial, there was a brief waiting interval, to reduce interference be-558

tween successive trials and to avoid any incentive to rush through trials. The walking surface was559

a level sidewalk. The numbered markers were separated by distances of 1.1, 1.7, 2.2, 2.8, 3.3, 3.8,560

5.1, 7, 9.1, and 12.7 m. Subjects were provided with a simple task upon reaching the target: They561

were provided a pointer stick and instructed to walk to and touch the pointer to the target marker.562

This was intended to provide a context for the task, reflecting the fact that humans often walk to a563

particular destination to accomplish a task. Each distance condition was conducted a total of four564

times in two pairs of out-and-back trials, with the distances in random order. There were therefore565

a total of 400 trials, from ten subjects walking ten distances, each four times.566

Walking speeds were measured from foot-mounted inertial measurement units (IMUs). These567

were used to compute the spatiotemporal trajectory of each foot in 3D, which was then processed568

to yield forward walking speed for the body per step. Each IMU (Opal sensors, APDM Inc., Port-569

land, Oregon) was placed on the top of each foot, taped to the outside of the shoe. The recorded570

data of linear acceleration and angular velocity data were integrated using a previously-described571

algorithm (Rebula et al., 2013) to yield foot trajectories. Briefly, the algorithm detects footfalls as572

instances in time when the foot is momentarily at rest on the ground, as defined by thresholds for573

acceleration and angular velocity. The footfall instance was defined as the mid-point of the below-574

threshold interval, and used to correct the integrated foot velocity (from gravity-corrected inertial575

accelerations) to zero, thus reducing IMU integration drift. The footfalls were also used to segment576

data into discrete strides, from which speed and length of each stride was calculated. (Subjects577

also wore another IMU on a waist belt, the data from which was used to demarcate the trials, but578

not for any further quantitative analysis.)579

There were a few other analysis adjustments required to produce forward walking data. The580

absolute position and compass heading of the IMUs were unknown, yielding independent foot tra-581

jectories with no relation to each other. However, the experimental conditions called for forward582

walking for a known distance, so we rotated each foot path to align them into a single forward di-583

rection. We also assumed that both feet travelled approximately the same distance for each walk,584

and translated and rescaled the start and end points to match each other, to yield a processed585

position-time graph of the two feet (see representative data in Fig. 8). We also devised a defini-586

tion for the starting and ending times for each trial based on IMU data. Humans initiate their gait587

by shifting their weight before moving the feet (Mann et al., 1979), so that the footfall threshold588

defined above may not detect the actual gait initiation. We therefore defined a rough approxi-589

mation to gait initiation and termination, starting before and ending after threshold crossing, by590

an amount equal to half the average below-threshold time during walking. This adjustment may591

be incorrect compared to actual weight shift by several tens of milliseconds. The experiment is592

mainly concerned with speed profiles over time on the order of several seconds. The accuracy of593

the experiment can thus tolerate small errors in detecting gait initiation or termination.594

Finally, the body’s walking speed and length of each step were calculated as follows (Fig. 8).595

The trajectory of each foot’s strides were found to cross each other, approximating the time in596

mid-stance when one foot passes by the other. These points of intersection were used to define597

step length as the spatial distance between intersections, and step time as the temporal difference598
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Figure 8. Experimental estimation of walking speed from inertial measurement units (IMUs). Forward
position vs. time are shown for both feet (black and red lines) for a single walking bout of eight steps.
Forward position is determined from foot trajectories, computed by integrating gravity-corrected inertial data
(top inset). Each foot moves one stride length at a time, and the crossing points of the two feet define
mid-stance instances that separate individual steps (black dots). Body speed is defined as the step length
divided by step duration (slope of dotted line) for each step. Walking speed trajectories are plotted as discrete
body speed vs. time. There are three durations defined within a walking bout (right inset): rise time, cruise
time, and fall time. Rise and fall times are to accelerate from rest to 90% of peak speed and the converse.
Cruise time is the time spent between 90% and peak speed.

between intersections. Assuming the body moves as much as the feet between such mid-stance599

instances, we defined walking speed (“body speed”) at each step as the length divided by time of600

the motion preceding each intersection. These discrete data were used to produce trajectories of601

speed for each step (Fig. 8, inset), without regard to continuous-time undulations in velocity for602

the body center of mass. For comparison with these data, similar discrete body speeds and times603

were computed from model predictions.604

We used these data to test themodel predictions. We examined how human speed profiles var-605

ied with bout distance, and exhibited more rounded peaks for shorter bouts and flatter ones for606

longer ones. We tested for self-similarity by scaling the profiles by speed and time and performing607

statistical tests regarding peak speeds and walking durations. We tested whether a saturating ex-608

ponential describes the increase in peak speedwith bout distance (𝑅2; test 95% confidence interval609

of parameters not including zero). Expecting a self-similar shape for the peak speed vs. distance610

relationship, we scaled the curves by peak speed and tested for a single exponential. We tested611

self-similarity in terms of a reduction of variability in peak speed (standard deviation across sub-612

jects) for each condition, comparing non-normalized to normalized peak speeds (rescaled tomean613

overall peak speed) with paired t-test. We examined thewalking durations as a function of bout dis-614

tance, and also tested self-similarity by significant reduction in standard deviations across subjects,615

comparing non-normalized to normalized data (rescaled to mean longest duration) with paired t-616

test. We also described walking durations in terms of rise and fall times (between 10% and 90% of617

peak speed).618

Prior to the experiment, subjects provided informed consent as approved by the University619

of Calgary Conjoint Health Research Ethics Board (REB21-1497). Pre-established exclusion criteria620

included significant health or other conditions that preclude ability to walk on uneven terrain or621

moderate hiking trails; no prospective participants were excluded. The experiment was performed622

once.623
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Effect of valuation of time on steady walking speed624

We performed an additional analysis to consider how the hypothesized energetic value of time625

may affect human steady walking speeds (6. This requires a valuation of time in terms of human626

metabolic energy rather than the model’s mechanical work, and a consideration of longer walking627

bouts where steady walking dominates. To empirically quantify human cost as a function of speed,628

we fitted the model’s steady mechanical work rate to human net metabolic power reported by629

Elftman (1966), with a resting power adjusted to agree with the optimal steady speed of 1.25m s−1630

reported by Ralston (1958). The model was of the form631

�̇�(𝑣) = 𝑎

(

𝑣 + 𝑏
√

𝑔𝐿

)𝑛

+ 𝑑 (15)

where 𝑎, 𝑏 and 𝑑 are empirical coefficients, and 𝑛 is a model constraint. The exponent 𝑛 is not632

critical, and values ranging 2 to 4 are sufficient to describe the increase. However, we used a value633

of 𝑛 = 3.42 as predicted by the simple model for human-like walking (Kuo, 2002). For metabolic634

power in Wkg−1, the empirical coefficients are 𝑎 = 4.90Wkg−1, 𝑏 = 1.16m s−1, and 𝑑 = 1.56Wkg−1635

(𝑅2 = 0.99). The y-intercept may be regarded as a resting rate, at 1.73Wkg−1 (Fig. 6A). The resulting636

cost is therefore proportional to the model’s mechanical work, while matching well with human637

metabolic power and optimal steady speed data. The curve may be expressed as cost of transport638

by dividing power by speed, �̇�∕𝑣.639

We then used our ownwalking data to estimate the human valuation of time. We used the peak640

walking speeds from the longest walking bout as indicator of steady speed. These were compared641

to the steady speed predicted by the metabolic cost curve with an added variable, the metabolic642

valuation of time 𝐶𝑇 . The Energy-Time curve was converted to cost of transport, and then mini-643

mized to yield optimal speed. This is equivalent to taking the limit of the Energy-Time objective as644

function of increasing distance, thus making the costs of starting and ending a walking bout small.645

The result predicts that steady speed will increase approximately with the cube root of 𝐶𝑇 (Fig. 6B).646

This curve was thus used to estimate 𝐶𝑇 for experimentally observed range of steady speeds. It647

was also used to estimate the effective cost of transport, including the valuation of time, as a func-648

tion of speed (Fig. 6C). This cost of transport may further be regarded as the sum of separate costs649

for Walking and Time (Fig. 6C), where Walking prefers to the cost of transport due to push-off work650

alone, and Time refers to the cost of transport due to the 𝐶𝑇 term alone.651
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