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Abstract

Nature relies on highly distributed computation for the processing of information in
nervous systems across the entire animal kingdom. Such distributed computation can
be more easily understood if decomposed into the three elementary components of
information processing, i.e. storage, transfer and modification, and rigorous information
theoretic measures for these components exist. However, the distributed computation is
often also linked to neural dynamics exhibiting distinct rhythms. Thus, it would be
beneficial to associate the above components of information processing with distinct
rhythmic processes where possible. Here we focus on the storage of information in
neural dynamics and introduce a novel spectrally-resolved measure of active information
storage (AIS). Drawing on intracortical recordings of neural activity under anesthesia
before and after loss of consciousness (LOC) we show that anesthesia- related
modulation of AIS is highly specific to different frequency bands and that these
frequency-specific effects differ across cortical layers and brain regions.

We found that in the high/low gamma band the effects of anesthesia result in AIS
modulation only in the supergranular layers, while in the alpha/beta band the strongest
decrease in AIS can be seen at infragranular layers. Finally, we show that the increase
of spectral power at multiple frequencies, in particular at alpha and delta bands in
frontal areas, that is often observed during LOC (’anteriorization’) also impacts local
information processing – but in a frequency specific way: Increases in isoflurane
concentration induced a decrease in AIS in the alpha frequencies, while they increased
AIS in the delta frequency range < 2Hz. Thus, the analysis of spectrally-resolved AIS
provides valuable additional insights into changes in cortical information processing
under anaesthesia.

Author Summary

While describing information processing in digital computers is somewhat
straightforward and accessible (e.g. how much information is stored in a hard disk or
which modification of information a CPU is executing), quantifying the widely
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distributed information processing in a biological neural system is much more
challenging. In neural systems separating the components of distributed information
processing - information transfer, storage and modification - helps with this task, but
requires accurate mathematical definitions of these components of information
processing. These definitions of distributed information processing quantities have
become available only very recently. Of the three component processes mentioned above
information storage, in particular, has been used with great success to analyze
information processing in swarms, and to evolve, and optimize artificial information
processing systems. The analysis of information storage has also already proven to be
useful for the analysis of biological neural systems. Since in such systems, information
processing seems to be often carried out by rhythmic neural activity with different
frequencies, a measure of the frequency-specific components of the active information
storage is needed. Here introduce such a measure and study how isoflurane anesthesia
affects the local information processing in the ferret prefrontal and primary visual areas
around loss of consciousness. We found that the modulation of active information
storage by isoflurane is specific to frequency, layers and area, and that the analysis of
frequency-specific active information storage provides insights not captured by more
traditional descriptions of neural activity.

Introduction

Biological systems must process information about their environment and their internal
states in order to survive. Many biological systems have evolved specialized areas where
such information processing is particularly evident. Prime examples are the central
nervous systems of many animals and the human brain in particular. Taking inspiration
from such systems, humans have developed biologically-inspired, artificial information
processing systems, such as artificial neural networks, to solve a variety of tasks.
Artificial neural networks and their biological sources of inspiration share an important
property—they perform highly distributed information processing in which fundamental
information-processing operations such as storing, transferring and modifying
information are both, highly distributed and co-located at almost all computational
elements. The computational elements making up biological and artificial neural
networks, for example, are neurons, where each neuron’s activity can simultaneously
serve the storage, transfer and modification of information. This lack of specialization
and high degree of distribution separates such information processing systems from
classical digital architectures (like a household PC) where the fundamental information
processing operations are much more spatially separated and carried out by dedicated
subsystems. While the highly distributed information processing certainly adds to the
performance of artificial and biological neural networks on certain tasks, it also poses a
formidable challenge to understand how such a system functions.

A powerful approach to describe and understand computation in systems such as
biological or artificial neural networks is information theory, which introduces measures
of information transfer, storage and modification [1–5]. The proposed measures are
well-suited to investigate the function of artificial information processing systems, and
have successfully been applied to biological neural systems [6–9]. However, in its original
form, the framework neglects a central aspect of information processing in biological
neural networks, namely the frequently displayed highly rhythmic activity when
performing a computation. To understand those systems better and to build a bridge
between information processing and their biophysical dynamics, it would therefore be
beneficial to link the components of information processing to specific neural rhythms.

We have recently presented such a link for the case of information transfer in [10],
and have provided results that challenged some long-held ad hoc beliefs about the
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relationship of brain rhythms and information transfer. In the present work, we extend
this approach to information storage. In particular we focus on the active storage,
where the information storage is actively in use for a computation in the dynamic of the
neural activity (for differences with passive storage, e.g synaptic gain changes, see [11]).
A measure of this kind of storage is the active information storage (AIS) [3, 7], which
quantifies the amount of information in the present samples of a process (”currently
active”) that is predictable from its past value. The AIS measure is closely linked to the
transfer entropy (TE) [1]: the TE quantifies information transferred from a source
process to the current value of a target process, in the context of the target process’
own past. Hence, AIS and TE together reveal the sources of information which
contribute to prediction of the target process’ next outcome (either, information actively
stored in the processes’ own past, or additional information being transferred from
another process) [7].

The importance of understanding how neurons and neural systems store information
when studying neural information processing has been outlined already in [11] and later
by the work of [3, 7, 12]. AIS as a measure of information storage has been successfully
applied in magnetoencephalographic (MEG) recordings to test, for example, predictive
coding theory [13] or to provide better understanding of the information processing in
people affected with the Autism spectrum disorder (ASD) [6,14]. In local field potential
(LFP), [8] found an increased AIS measure as a function of anesthesia (isoflurane)
concentrations in two ferrets recordings, at prefrontal (PFC) and visual cortical (V1)
sites. Anesthetic agents such as isoflurane are known to affect the frequency spectrum
throughout the cortex [15] and at laminar level [15,16]. In [15] it was shown that the
effect of isoflurane on neural oscillatory activity is not only frequency-specific but also
related to the computational property of the area, being different between different
areas of the cortex (PFC or V1) or between different layers (deep laminar or
infragranular layers, granular layers, and superficial or supragranular ones).
Similarly, [16] reported highly specific effects of isoflurane on laminar frequency data.

Even though the effect of anesthesia on brain rhythms is known, due to a lack of a
suitable method, all attempts to link the AIS with the rhythmic activity in different
frequency bands were only indirect and through correlation analysis [6, 8, 14]. Hence, it
seems beneficial to have also a spectrally-resolved AIS to directly investigate effects, for
example, of isoflurane agents on brain rhythms and thus on neural information
processing. We here present such a method, which is able to quantify AIS in a
spectrally-resolved fashion. We apply this method to laminar recordings from two areas
of the ferret cortex (PFC and V1) under different levels of anesthesia, to investigate how
different frequency bands contribute to information storage under anesthesia. We
hypothesised that due to the different computational properties of the layers [17] (either
deep or superficial), the frequency-resolved AIS will show a heterogeneity of relevant
frequency bands across frequencies and recording sites. On the other hand, low
frequency oscillations ( 1HZ) caused by higher levels of anesthesia, which are a mark for
loss of consciousness (LOC) [18], could have a coherent effect across cortical layers. We
apply our AIS measure to disentangle these different effects and evaluate how isoflurane
affects the AIS measure across anesthesia levels and cortical areas by means of Bayesian
Regression.

Materials and Method

In this section, we first clarify the purpose and application of the proposed method.
Second, we introduce the information theoretic preliminaries together with the AIS
measure, and the corresponding notation. Central to our method is the creation of
frequency-specific surrogate data, for which we summarize the technical background.

July 14, 2022 3/28

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2022. ; https://doi.org/10.1101/2022.07.15.500162doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.15.500162
http://creativecommons.org/licenses/by/4.0/


Here, we outline only the crucial properties of the Maximal Overlap Discrete Wavelet
Transform (MODWT), while a more detailed description can be found in [19,20].
Finally, we present the core algorithm to identify frequency-specific AIS.

Background

Problem Statement and Analysis Setting

The aim of the proposed method is to determine whether there is statistically significant
active information storage generated by one or more frequencies. Our method can be
implemented after a significant AIS has been determined in the time domain, e.g. as
computed by the AIS algorithm in [21], in order to provide a perspective on this novel
spectrally-resolved AIS.

Technical Background: Active information storage (AIS)

We assume that a stochastic process Y recorded from a system (e.g cortical or layers
sites), can be treated as a realizations yt of random variables Yt that form a random
process Y = {Y1..., Yt, ..., YN}, describing the system dynamics. Then, AIS is defined as
the (differential) mutual information between the future of a signal and its immediate
past state [3, 7, 22]:

AIS(Yt) = I(Yt;Y<t), (1)

where Y is a random process with present value Yt, and past state
Y<t = (Yt−δ1 , Yt−δ2 . . . , Yt−δk), with δi = i∆t, where ∆t is the sampling interval of the
process observation, and δ1 ≤ δi ≤ δk. Y<t is a vector of random variables chosen from
Y from the past of the current time point t. The collection, or vector, Y<t captures the
underlying dynamic of the system Y and can be seen as a state space reconstruction, for
details see [3, 23]. We here employed a recently proposed non-uniform embedding
algorithm from the IDTxl toolboox [21] to properly construct the nonuniform
embedding of Y time-series [24,25]. This algorithm also yields approximations for
parameters like δ and k. Thus, the AIS estimates how much information can be
predicted by the next measurements of the process by examining its paste state [3]. In
processes that either produce little information (low entropy) or that are highly
unpredictable, the AIS is low, whereas processes that are predictable but visit many
different states with equal probabilities [7], exhibit high AIS [7, 9].

Technical Background: Maximum Overlap Discrete Wavelet Transform

Our method is based on the creation of suitable surrogate data for use in a statistical
test. Many methods exist for surrogate data creation, each with its own limitations and
advantages (see [26] for a review). Among these, wavelet-based methods allow to create
the needed frequency-specific surrogate data through randomization of the wavelet
coefficients [27]. In particular, wavelet-based surrogates that preserve the local mean
and the variance of the data were introduced by [28]. Similarly to [29], we employ the
Maximal Overlap Discrete Wavelet Transform (MODWT), to transform the data in the
wavelet domain. The MODWT is well defined for time-series of any sample size and
produces wavelet coefficients and spectra unaffected by the transformation. [29].

The MODWT of a time-series X = (X0, . . . , XN−1) of J0 levels, where J0 is a
positive integer, consists of J0 + 1 vectors: J0 vectors of wavelet coefficients

W̃1, ...,W̃J0 and an additional vector ṼJ0 of scaling coefficients, all with dimension N
(our exposition of the MODWT closely follows that of [19], pages 159-205). The
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coefficients of W̃j and ṼJ0 are obtained by filtering X, namely:

W̃j,t =

Lj−1∑
l=0

h̃j,lXt−l mod N , (2)

Ṽj,t =

Lj−1∑
l=0

g̃j,lXt−l mod N , (3)

where {h̃j,l} and {g̃j,l} are the jth level MODWT wavelet and scaling filters, with
l = 1, ..., L being the length on the filter and Lj = (2j − 1)(L− 1) + 1. We can write the
above in matrix notation as:

W̃j = W̃jX (4)

ṼJ0 = ṼJ0X (5)

where each row of the N ×N matrix of W̃j has values denoted by {h̃◦j,l}, while Ṽj has

values denoted by {g̃◦j,l}, where {h̃◦j,l} and {g̃◦j,l} are the periodization of {h̃j,l} and
{g̃j,l} to circular filter of length N [19]. Thus, the MODWT treats X as if it were
periodic, such periodic extension is known as ”circular boundary condition” [19].
Finally, the time series X can be retrieved from its MODWT by [19]:

X =

J0∑
j=1

W̃T
j W̃j + ṼTJ0ṼJ0 (6)

While, the coefficients ṼJ0 represent the unresolved scale [19,29], and capture the

long-term dynamics of X, the coefficients W̃j are associated with changes of the
underlying dynamics, at a certain scale, over time. If N = 2J and we set J0 = J , then a
full decomposition is performed and the scale ṼJ0 retains only the average constant of
the data with all other information represented in the wavelet coefficients [29, 30]. Since
in many applications a full decomposition is not necessary (e.g. the dynamic of a
physical system is meaningful over a certain frequency range only), J0 can be set to any
integer J ≤ b(log2(N))c so that the decomposition at any scale is shorter than the total
length of the time series [31]. The selection of J0 determines the number of scales of
resolution with the MODWT coefficients at a certain scale j related to the nominal

frequency band |f | ∈ (1/2j+1, 1/2j) [19]. Moreover, given W̃j and Ṽj , it is possible to
reconstruct the time-series X through the inverse MODWT (IMODWT). If the
coefficients are not modified, the IMODWT returns the original time-series X [19]. As
shown in [10] the MODWT is a suitable and efficient method to create surrogate data
as required by the current algorithm.

Algorithm

To obtain a frequency-resolved AIS measure, our algorithm’s main idea is to create
surrogate data, in which we destroy the AIS-relevant signal properties, i.e., the temporal
order, in specific frequency bands. We then compare AIS estimates from the original
data with estimates from the surrogate data, and establish via non-parametric statistical
testing whether destroying specific frequency components led to a drop in AIS. This
approach has has been successfully demonstrated in [10] to estimate frequency-specific
TE and replaces approaches that use filtering or other preprocessing steps to estimate
frequency-resolved measures, as these come with well known problems [10,32]. As
in [10], we here employed an invertible wavelet transform (maximum overlap discrete
wavelet transform, MODWT) and a frequency- or scale-specific scrambling of the
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wavelet coefficients in time for surrogate data creation, keeping the original time-series
always intact. With this method, we are also able to handle any potential bias
introduced by the wavelet filtering of the surrogate data, yielding a more conservative
analysis. Indeed, if the frequency-specific AIS measure should increase due to the
scrambling of the wavelet coefficients, this will not result in a significant drop when
statistically compared to the original AIS, and will thus not be mistaken for an effect.

Implementation Below, we will detail the algorithm for the measurement of
frequency-specific AIS. As introduced above, we obtain this measure by creating
surrogate data in which the temporal ordering of the signal has been destroyed for
specific spectral components, by first transforming into the frequency domain, then
scrambling wavelet coefficients and last transforming back to the time domain to obtain
surrogate data. Overall this algorithm relies on five steps:

1. Perform a wavelet decomposition of the source time series through the MODWT
to obtain a time-frequency representation of Y in J0 scales.

2. At the jth scale of the MODWT decomposition shuffle the wavelet coefficients to
destroy information carried by the scale (frequency band)

3. Apply the inverse wavelet transform, IMODWT, to get back the time
representation of the time series

4. Compute the AIS′freq of the process Y .

(a) Repeat step 2 to 4 for a sufficiently high number of permutations to build a
surrogate data distribution.

(b) Repeat step 1 to 4 for all J0 scales.

5. Test whether the original AIS is above the 1− α
J0

quantile of the surrogate-based
distribution of AIS′freq values at each scale, i.e. perform a significance test with
respect to the surrogate-derived distribution.

The operations implemented in the five steps are illustrated in Fig. ?? and described in
detail hereafter.

Fig 1. Spectral AIS algorithm pipeline. (A) The neural signal (blue) is converted
to a time-frequency representation (grey) using the invertible maximum overlap discrete
wavelet transform (MODWT). (B) At a frequency (wavelet scale) of interest in the
source the wavelet coefficients are shuffled in time, destroying its internal dynamic. (C)
The signal is recreated by the inverse MODWT. (D) The AIS for the original and many
shuffled signals is computed. (E) A statistical tests determines whether the shuffling
reduced the active information storage, indicating that the information storage was
indeed encoded at the specific frequency. Each panel here shows the distribution of
AIS′freq values (vertical bars) obtained from surrogate data where the wavelet
coefficients of the scale of interest were shuffled, the median of this distribution (red
line), and the original AIS (black line). The analysis and the testing is repeated for all
scales of interest (here 4,5,6) .

Step 1: The time-series is decomposed once into J0 scales through the MODWT
(Fig. 1, A). As introduced in section Maximum Overlap Discrete Wavelet

Transform this decomposition gives a set of coefficients W̃J0 and an

additional set of approximation coefficients ṼJ0 . The latter is saved in this
first step and utilized only in step 3, without any modification. Only the
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W̃J0 coefficients at the jth scale under analysis are subjected to step 2. The
current implementation uses a Least Asymmetric Wavelet (LA) as mother
wavelet of length 8 or 16, since both lengths showed to be robust against
spectral leakage and do not relevantly suffer from boundary-coefficient
limitations. [19, 28,33].
The creation of surrogate data for subsequent statistical testing comprises of
the following steps 2 and 3.

Step 2: The frequency-specific active information storage of the process is destroyed

by shuffling the W̃J0 wavelet coefficients one scale at a time. The jth scale

under analysis is shuffled by randomly permuting the coefficients W̃j ,
whereas all the other scales decomposed by the MODWT stay intact (Fig. 1,
B, jth scale in red). We implement two alternative methods for the creation
of surrogate data: a Block permutation of the wavelet coefficients [27] and
the Iterative Amplitude Adjustment Fourier Transform (IAAFT) [27,29].
Since there is no canonical method of surrogate data creation and in many
cases the employment of one method over another depends on the specific
analysis carried out by the user.

Step 3: The unchanged set of coefficients, W̃J0\j , the unchanged ṼJ0 ’s, and the

permuted coefficients at scale j (W̃j) are submitted to the IMODWT, to
reconstruct the surrogate process signal, Y′, in the time-domain (Fig. 1, C).
This step is identical for both of the implemented surrogate-data creation
methods: Block permutation of the wavelet coefficients and IAAFT. The
reconstructed process Y′ (process surrogate) differs from the process Y only
on the shuffled jth scale. In this way, we destroy the process information
storage only if is carried by the jth scale, otherwise the information storage
stays the same.

Step 4: With Y′ we compute again the AIS. We illustrated this step in Fig. 1, D.
Let Y<t be the set of past variables of the process previously found in the
analysis, with Y′n being the n-th process surrogate under analysis at scale j;
then, the AIS′ for the surrogate data is:

AIS′ = I(Yt,n;Y′<t,n), (7)

The algorithm is repeated from step 2 to step 4 for n permutations, with
n = 1, . . . , N , to create a distribution of surrogate AIS′n values; N is set
according to the desired critical level for statistical significance (including
Bonferroni correction for the number of scales, see below). Subsequently, all
the J0 scales decomposed by the MODWT in step 1 are subjected to step 2,
step 3 and step 4, such that J0 separate distributions of AIS′n-values, one
for each scale, are obtained.

Step 5: As a final step, the AIS is tested for statistical significance against the J0

different distributions of AIS′ surrogate values. If the Yj (where j is one of
the scales decomposed by the MODWT) contributes to the generation of the
active information storage in the process Y, a significant drop of the AIS′

surrogates will be observed. This step is applied for all J0 scales under
analysis and a Bonferroni correction is applied such that each individual
scale is tested at the significance level α/J0.

Additionally, each scale analyzed is plotted, see Fig. 1, E, and we restrict
ourselves to interpret only the scale that shows maximal distance (or well
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separated local maxima) from the original AIS, maxj(AIS − ÃIS
′
), where

ÃIS
′

denotes the median of the surrogates distribution. We consider the
maximal distance in addition to the statistical significance test because
frequency decomposition is never perfect (e.g. due to leakage, noise and
overlapping wavelet bands). Indeed, validation of the algorithm on synthetic
data shows that the maximum distance reliably reflects the ground truth,
whereas the statistical significance test can suffer from leakage effects on
adjacent scales. Obviously, this limits the detectability of frequency-specific
AIS and may be overly conservative. Thus, in scenarios, where AIS from
multiple frequency bands is strongly expected a priori, or where the length
of the data allows for vanishing leakage effects, the above restriction may be
lifted.

Results

In the following section we test the capability of the proposed algorithm to recover
frequency specific AIS. To this end, we employed three simulations, where the ground
truth is known. These simulations are limited to three example cases only, because the
core idea and implementation strictly followed the spectral TE algorithm [10] (see
above). For this more complex case of source-target interactions we have already
demonstrated in depth that the MODWT construction of frequency specific surrogates
in combination with a suitable statistical test reliably delivers a frequency resolved
information theoretic measure [10].

In addition to the proof-of-principle on simulated systems, we applied the spectrally
resolved AIS on Local Field Potential (LFP) data from ferrets under different levels of
isoflurane and at recording sites in different cortical, and at sites in the prefrontal cortex
(PFC) and in primary visual cortex (V1). For each combination of cortical area and
layer we assessed if the AIS and the frequency resolved AIS were modulated as a
function of different isoflurane concentrations using Bayesian linear regression.

All the analysis of AIS and spectrally resolved AIS below were performed with a
block permutation of the wavelet coefficients (for construction of surrogates) and LA(8)
as mother wavelet, similarly to [10].

Example I: Null case, no information storage

At first, we simulated the case of no AIS in a process, to evaluate the behavior of our
algorithm when none of the frequency scales generates information storage. We
employed a white noise process, which by definition should not contain any information
storage.

As expected, no significant AIS could be found in the time domain (see Fig 2, panel
A). To evaluate the behavior of the spectral AIS algorithm in the scenario of no AIS we
repeated the spectral analysis 500 times, to estimate the number of false positive result
at each scale. This analysis revealed no false positive result, indicating that the strategy
to exploit wavelet filtering for surrogates data creation leads to a conservative behaviour.

Example II: AR process

Secondly, we simulated an autoregressive process AR(2) process with an autonomous
oscillation at f1 = 45 Hz. We reproduced the simulation of Example 3 in [10], with
p = 0.98, generating 10 s at sampling rate of 120 Hz and 10 trials, and closely
following [34]. This process exhibits long-term memory and positive information
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storage [34]. The AR(2) process was generated with the following equation:

S0(t) =2p cos(2πf1)S0(t− 1)− p2 (8)

First, we analysed the process in the time domain to establish the presence of significant
AIS. Then, we applied the spectrally-resolved AIS algorithm to obtain the frequency
information of the system. Correctly, the scale 1 (frequency band 30–60 Hz), containing
the spectral peak at 45 Hz, shows a significant drop of AIS in the surrogate data set
indicating spectral AIS at that scale (see Fig 2, panel B).

Example III: chaotic dynamical system oscillator

In this third simulation, we evaluated the spectral AIS with a process generated by a
non-linear dynamical system that exhibits self-sustained periodic oscillations, similar
to [10,35]. The system was simulated with the following equation:

dx1

dt
= −w1y1 − z1 + εx2(t− τ)

dy1

dt
= w1x1 + 0.15y1

dz1

dt
= 0.2 + z1(x1 − 10)

dx2

dt
= −w2y2 − z2

dy2

dt
= w2x2 + 0.15y2

dz2

dt
= 0.2 + z2(x2 − 10)

(9)

where w1 and w2 are the natural frequencies of the oscillator which were set to 0.8 and
0.9, and ε = 0.07 is the coupling strength and τ is the time delay, which was set to 2
time steps. Additionally, Gaussian white noise was added to the generated time-series.
The analysis was performed on the assumption that only variables x1(t) could be
observed. As can be seen in Fig 2, A, the process x1(t) oscillated around 8 Hz. The
sampling rate was 500 Hz, and 25 trials of length 4 seconds were generated (100000
samples).

As before, first we established the presence of significant AIS in the time domain.
Then, we obtained the spectral AIS as in the examples before. The results indicate that
the largest drop was at scale 5, with also a significant drop at scale 6, which was
expected as the frequency of the process spanned both scales (see Fig 2, panel C).

Fig 2. Spectrally-resolved AIS for three exemplary simulations. Each panel,
shows the AIS′ distribution obtained from the surrogate data with shuffled coefficients
at the scale indicated to the left, or, equivalently, the frequency band indicated at the
top of each panel. White bars represent histograms of surrogate data, i.e. relative
frequencies in (a.u.), the red dashed line is the median of the surrogate AIS′

distribution, the black dashed line is the original AIS value. The horizontal black line
indicates the distance between the original AIS and the median of the surrogate
distribution (**, p < 0.005; *, p < 0.05) Panel A, spectral AIS for the null-case example.
Left, the power spectra of white noise process. Right, spectrally resolved AIS at
different scales (frequency bands). No significant drop of the shuffled wavelet
coefficients can be found since the process had no internal dynamic. Panel B spectral
AIS for example 2, linear. Left, power spectra of AR(2) with spectral peak at 45 HZ.
Right, spectrally resolved AIS at different scales (frequency bands). The AIS showed,
correctly, a significant drop at scale 1 (30− 60Hz). Panel C, spectral AIS for example 3,
nonlinear. Left, power spectra of the realizations of a selected variable of the Rossler
system, with a spectral peak at around 8 Hz. Right, spectrally resolved AIS at different
scales (frequency bands) . The AIS showed, correctly, the largest drop at scale 5 (8− 16
Hz) and scale 4 (4− 8 Hz).
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Spectral AIS under anesthesia at different cortical layers via
Bayesian regression

We applied our spectral AIS method to electrophysiological recordings of LFP data.
Data were recorded in V1 and PFC in two different female ferrets, at supragranular
layers, the granular layer and infragranular layers, under different concentrations (0.5%,
0.75%, 1%) of isoflurane and under awake conditions (0%).

These laminar LFP data have been analysed previously in terms of frequency
spectrum modulations at different isoflurane concentration in [15]. Here, we provide a
spectrally-resolved assessment of the AIS in these signals, we hypothesise that AIS is
modulated by isoflurane concentration in a layer- and brain-region-specific way. All
methodological and recording details can be found in [15].

0.0.1 AIS and spectral AIS estimation

First, we estimated the AIS from LFP recordings. We implemented a similar approach
as in [8], using the IDTxl toolboox [21] to determine the presence of significant AIS
value at the layer level. To make any claim about isoflurane concentration effects we
had to use identical embeddings(see Section Technical Background: Active information
storage (AIS)) for the estimation of the AIS or spectral AIS measures at different
isoflurane levels in order to equilibrate the estimation bias across these levels. To this
end, we applied the following four analysis steps:

1. Run the AIS algorithm for each trial (length 8 seconds) and isoflurane level.

2. Take the union of all embeddings across trials and isoflurane levels (i.e. the union
of all past state variables identified).

3. Compute the AIS measure using the union embedding.

4. Apply the union embedding for the spectral AIS algorithm and quantify the
frequency (scale/frequency band) contribution as:

AIS∆
freq = AIS − ÃIS′ (10)

where, AIS is the original measure computed in the time domain and ÃIS′ is the
median of the AIS distribution estimated on surrogate data with coefficients
shuffled at a specific frequency scale. Thus, the AIS∆

freq reflects the contribution
of the particular frequency band under analysis to the AIS. Only positive values
correspond to a significant contribution to the formation of AIS in the process
under investigation.

Bayesian Linear Regression layers: model specification

For the analysis of LFP laminar data, we employed a Bayesian linear regression model.
The dependent variables were the AIS and AISfreq. For the ith trial, we can define
the likelihood of the AIS measure as:

yi ∼ N (α+ βxi,iso, σ
2) (11)

where α is the intercept and encodes the mean AIS, the parameter β is the slope which
captures the isoflurane experimental effect, whereas the term xisoi encodes the isoflurane
levels (0%, 0.5%, 0.75%, 1%), and σ2 is the residual variance.

We choose a Normal distribution as a prior for the parameters α and β and
Halfnormal distribution for the σ parameter, all values for the parameters of the prior
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distributions can be found in table S1. We built one model (we refer to this model as
”simple model”) for each layer at PFC site and V1 site, separately (6 models in total).
Since the plotted data showed a possible quadratic effect as a function of different
isoflurane concentrations, we additionally built the same six models with an added
quadratic term (we refer to this model as ”model squared”), so that the likelihood terms
become:

yi ∼ N (α+ βxi,iso + βsqx
2
i,iso, σ

2) (12)

with a Normal distribution as a prior for βsq (see table S1). Finally, for each layer we
evaluated the model that predicted the data better (simple model vs model squared)
using a leave-one-out cross-validation (LOO-CV) score as outlined next.

Bayesian regression setup and model comparison

We estimated the model regression coefficients using Bayesian inference with Markov
Chain Monte Carlo (MCMC) sampling, using the python package pymc3 [36] with
NUTS (NO-U-Turn Sampling), using multiple independent Markov Chains. We
implemented four chains with 3000 burn-in (tuning) steps using NUTS. Then, each
chain performed 10000 steps, those steps were used to approximate the posterior
distribution. To check the validity of the sampling, we verified that the R-hat statistic
was below 1.05.

To evaluate different models with different numbers of parameters, we implemented
cross-validation, which has been advocated for Bayesian model comparison, e.g. in [37].
In particular we adopted the LOO-CV implemented in PyMC3. Lower LOO-CV scores
imply better models. We report the full modeling and model comparison results in 1
and only include the results of the winning models in the main text.

Hierarchical Bayesian Regression

We point out that an alternative modeling approach to asses the anesthesia effects on
the AIS measure would have been adopting a Hierarchical Bayesian Regression [38]. In
a hierarchical model, parameters can be viewed as a sample from a population of
parameters; for our case this implies to set a hyperprior from which we sample the β
parameters for the two cortical areas (PFC and V1) and three layers (infragranular,
granular and supragranular). This modeling approach would be optimal in case of the
prior assumption of a certain amount of similarity of the AIS behaviour between these
cortical structures, or in other words, an overall effect common to the different cortical
areas and layers. The Bayesian framework allows to include such prior knowledge on the
model formulation. However, previous work on spectral power [15,16], as mentioned
above, showed that anesthesia modulates cortical areas and layers differently. Based on
this prior knowledge we decided to model each single layer in each cortical area (PFC
and V1) separately, resulting in six separate models.

Cortical layer and brain-region specific modulation of total AIS by
isoflurane:

We start by reporting the result of the Bayesian regression analysis for the AIS
dependent variable, in the time domain, and subsequently the result of the frequency
resolved AIS (AISfreq).
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Fig 3. Bayesian Regression results of AIS in the time domain. Panel A, left,
Bayesian regression fit for infragranular layer at PFC (yellow) and V1 (purple). Panel
B, left, Bayesian regression fit for granular layer at PFC (yellow) and V1 (purple).
Panel C, left, Bayesian regression fit for supragranular layer at PFC (yellow) and V1
(purple). Middle columns, posterior mean for beta iso and beta iso squared coefficients
at PFC site, for panel A, B and C. Right columns, posterior mean for beta iso and beta
iso squared coefficients at V1 site. Shaded area in the regression fit represents 94
%HDI. Axis units are z-normalized values across anesthesia conditions.

First, we evaluated the AIS measure for different isoflurane levels in the time
domain, and performed the Bayesian regression analysis.

In V1, the models with a squared beta coefficient described the data better than the
models without it, as indicated by the LOO-CV-based Bayesian model comparison ??
(lowest LOO score in supplementary Table S2). In contrast, in PFC, the two types of
models were almost indistinguishable; yet the model squared performed slightly better
as well (see supplementary Table S2).

In PFC, in the infragranular layer, we found a consistent increase of the AIS as a
function of isoflurane concentration (yellow line) with a posterior mean of beta iso
= 1.7, [1.28, 2.13] and beta iso squared = 0.9, [0.52, 1.27] (Fig 3, panel A) and also in the
granular layer of PFC beta iso: = 0.48, [−0.075, 1.05] and beta iso squared
= 1.43, [0.92, 1.91] (Fig 3, panel B), while for the super-granular layer of the PFC the
effect of isoflurane on AIS was minimal, with a posterior mean of beta iso
= 0.814, [0.08, 1.54] and beta iso squared = −0.54, [−1.19, 0.099] (see Fig 3, panel C).

In V1, all layers showed a similar behavior (see Fig 3, panels A–C), with a decrease
of AIS values for intermediate isoflurane concentrations (0.5% and 0.75%) and a
subsequent increase for the highest isoflurane level (1% ). Posterior means for beta iso
were = −4.78, [−5.24,−4.3], −5.17, [−5.69,−4.64] and −5.25, [−5.77,−4.73], for
infragranular, granular and supragranular layers, respectively (see Fig 3, panel A–C).
Similarly, posterior means for the beta coefficient of the squared isoflurane
concentration were close to each other with beta iso squared = 5.7, [5.24, 6.13],
5.42, [4.91, 5.93], 5.57, [5.09, 6.08], for infragranular, granular and supragranular layers,
respectively (see Fig 3, panel A–C).

In summary, deeper layers in PFC (infragranular and granular) showed stronger
modulation under increasing isoflurane levels compared to supragranular layers, such a
clear difference did not appear between layers in V1. This result is in line with [8],
where a more pronounced increase of AIS (at increasing isoflurane concentrations) was
found at PFC compared to V1.

Cortical layer and brain-region specific modulation of frequency-specific
AIS by isoflurane:

Next, we evaluated the AISfreq for different isoflurane levels in the frequency domain
in multiple frequency bands. We start presenting the results for 62.5Hz − 125Hz,
i.e. the high gamma frequency band.
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Fig 4. Bayesian Regression results of AIS at frequency 62.5-125 Hz. Panel
A, left, bayesian regression fit for supragranular layer at PFC (yellow) and V1 (purple).
Panel B, left, bayesian regression fit for granular layer at PFC (yellow) and V1 (purple).
Panel C, left, bayesian regression fit for infragranular layer at PFC (yellow) and V1
(purple). Middle columns, posterior mean for beta iso and beta iso squared coefficients
at PFC site, for panel A, B and C. Right columns, posterior mean for beta iso and beta
iso squared coefficients at V1 site. Shaded area in the regression fit represents 94%
HDI. Shaded gray background for AIS∆

freq values that are below zero (i.e. no frequency
specific drop)

In this band, in PFC, the model squared was substantially better than the simple
model in the infragranular and granular layers; in the supragranular layer the model
squared, despite still fitting the data better than the simple model, only had a
marginally better LOO score (see supplementary Table S3).

In V1 at the infragranular layer, LOO scores for the models with or without the beta
iso squared coefficient were almost identical, whereas for granular and supragranular
layers the model squared represented a better description of the data by the model (see
Table S3).

In the high gamma band (62.5Hz − 125Hz) we observed a modulation of the
AIS∆

freq mostly in the supragranular layer of V1 (see Fig 4 panel A), with an increase
for intermediate levels of isoflurane (0.5%) beta iso = −0.92, [−0.96,−0.89] and beta iso
squared = −0.86, [−0.89,−0.83] and a subsequent decrease for higher isoflurane
concentrations, whereas in PFC such a modulation was absent in supragranular layer.
Modulationwas was also absent at both, V1 and PFC, in granular and infragranular
layers (see Fig 4, panels A–C).

In the frequency range 31Hz − 62Hz (i.e. gamma band), the model squared was
better for all layers at both brain regions (V1 and PFC). Nevertheless, at the granular
layer of V1 and at the supragranular layer of PFC the LOO-CV difference with the
simple model was minimal (see supplementary Table S4).

Fig 5. Bayesian Regression results of AIS at frequency 31.25-62.5 Hz. Panel
A, left, bayesian regression fit for supragranular layer at PFC (yellow) and V1 (purple).
Panel B, left, bayesian regression fit for granular layer at PFC (yellow) and V1 (purple).
Panel C, left, bayesian regression fit for infragranular layer at PFC (yellow) and V1
(purple). Middle columns, posterior mean for beta iso and beta iso squared coefficients
at PFC site, for panel A, B and C. Right columns, posterior mean for beta iso and beta
iso squared coefficients at V1 site. Shaded area in the regression fit represents 94%
HDI. Shaded gray background for AIS∆

freq values that are below zero (i.e. no frequency
specific drop)

Similarly to the high gamma band, the supragranular layer was the layer most
pronouncedly modulated by the different isoflurane concentrations. In the PFC the
AIS∆

freq decreased as a function of isoflurane beta iso = −0.48, [−0.54,−0.41] and beta
iso squared = −0.09, [−0.04,−0.14] , while in V1 it increased for isoflurane at 0.5%
followed by a decrease beta iso = −0.43, [−0.51,−0.35] and beta iso squared
= −0.42, [−0.5,−0.36] (see Fig 5, panel A).

At granular layer of V1, the positive AIS∆
freq values for isoflurane at 0% decrease to

negative (see Fig 5, panel B, shaded gray background) for intermediate and high level of
isoflurane concentrations (from 0.5% to 1%).

Finally, no relevant modulation could be seen in the infragranular layers of both
PFC and V1 brain areas (see Fig 5, panel C). Taken together, the results for gamma
and high gamma band, showed an isoflurane effect on AIS∆

freq mainly in the superficial
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layer (supragranular) and minimally in the granular layer, in agreement with association
of gamma band to superficial layers [?], see Section Modulation of spectral information
storage according to distinct functional roles across cortical layers by anesthesia, for
further details.

In the frequency range 15Hz − 31Hz (i.e. beta band), the simple model had a lower
LOO-CV score for the supragranular layer of PFC. In all other cases, the model squared
had lower LOO-CV score (see Table S4).

Fig 6. Bayesian Regression results of AIS at frequency 15.6-31.25 Hz. Panel
A, left, bayesian regression fit for supragranular layer at PFC (yellow) and V1 (purple).
Panel B, left, bayesian regression fit for granular layer at PFC (yellow) and V1 (purple).
Panel C, left, bayesian regression fit for infragranular layer at PFC (yellow) and V1
(purple). Middle columns, posterior mean for beta iso and beta iso squared coefficients
at PFC site, for panel A, B and C. Right columns, posterior mean for beta iso and beta
iso squared coefficients at V1 site. Shaded area in the regression fit represents 94%
HDI. Shaded gray background for AIS∆

freq values that are below zero (i.e. no frequency
specific drop)

In this frequency band, in PFC, the supragranular and infragranular layers decreased
as isoflurane levels increased. While in the supragranular layer AIS∆

freq value were still
positive at isoflurane 1%, beta iso = −0.67, [−0.72,−0.62], in the infragranular layer the
AIS∆

freq values became negative at higher isoflurane levels (0.75% and 1%),beta iso
= −0.74, [−0.79,−0.70] and beta iso squared = 0.11, [0.08, 0.16], revealing that the
spectral surrogate drop was abolished (see Fig 6, panel C, shaded gray background).

In V1 the supragranular layer had a different modulation, compared to PFC, with a
significant decrease at isoflurane 0.5% and a subsequent increase for isoflurane 0.75%
and 1%,beta iso = 0.05, [−0.007, 0.11] and beta iso squared = 0.66, [0.60, 0.71] (see Fig
6, panel A). In granular layer after a decrease for concentration 0.5%, AIS∆

freq remained
in a similar range of values for high isoflurane concentrations (see Fig 6, panel B).

In the frequency range 8Hz − 16Hz (alpha/beta band), the model squared had a
lower LOO-CV for all layers at both PFC and V1 regions (see Table S5). Nevertheless,
for the supragranular layer at PFC and granular layer of V1 the models had overlapping
standard errors of the estimates (SE).

Fig 7. Bayesian Regression results of AIS at frequency 7.8-15.6 Hz. Panel A,
left, bayesian regression fit for supragranular layer at PFC (yellow) and V1 (purple).
Panel B, left, bayesian regression fit for granular layer at PFC (yellow) and V1 (purple).
Panel C, left, bayesian regression fit for infragranular layer at PFC (yellow) and V1
(purple). Middle columns, posterior mean for beta iso and beta iso squared coefficients
at PFC site, for panel A, B and C. Right columns, posterior mean for beta iso and beta
iso squared coefficients at V1 site. Shaded area in the regression fit represents 94%
HDI. Shaded gray background for AIS∆

freq values that are below zero (i.e. no frequency
specific drop)

In this frequency range, in V1, we observed a similar behavior of supragranular and
granular layers to the previous frequency range, posteriors for beta iso
= −0.06, [−0.008,−0.125] and beta iso squared = 0.687, [0.63, 0.73] of supragranular
layers were very close to the ones in the frequency range 15Hz − 31Hz (compare values
with Fig 7, panel A). In contrast, the infragranular layer of V1 had a opposite
modulation to that found in the next higher frequency range with an increase for
intermediate isoflurane level (0.5%) and a later decrease at higher isoflurane
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concentrations, beta iso = −0.574, [−0.64,−0.50] and beta iso squared
= 0.52, [0.588, 0.46] .

In PFC the AIS∆
freq was mainly modulated from 0.5% to 1% isoflurane levels and

this modulation was strongest in the infragranular layer (compare Fig 7, panel A, B and
C yellow). Despite a common shift of alpha power from posterior to anterior cortex
during loss of consciousness (LOC) [18], none of the layers at PFC showed an AIS∆

freq

component increase. We discuss the absence of the alpha anteriorization effect
commonly observed during LOC in Section Modulation of spectral information storage
according to distinct functional roles across cortical layers by anesthesia.

In the frequency range 4Hz − 8Hz (theta band), the model squared was
substantially better only in the supragranular layer of V1 (see Table S6); in all other
cases the difference with the simple model was minimal, yet the model squared had a
nominally lower LOO-CV score.

Fig 8. Bayesian Regression results of AIS at frequency 3.9-7.8 Hz. Panel A,
left, bayesian regression fit for supragranular layer at PFC (yellow) and V1 (purple).
Panel B, left, bayesian regression fit for granular layer at PFC (yellow) and V1 (purple).
Panel C, left, bayesian regression fit for infragranular layer at PFC (yellow) and V1
(purple). Middle columns, posterior mean for beta iso and beta iso squared coefficients
at PFC site, for panel A, B and C. Right columns, posterior mean for beta iso and beta
iso squared coefficients at V1 site. Shaded area in the regression fit represents 94%
HDI. Shaded gray background for AIS∆

freq values that are below zero (i.e. no frequency
specific drop)

In PFC, we observed a modulation of the AIS∆
freq by isoflurane, in all three layers

(see Fig 8, panel A-C). The strongest decrease was for infragranular and supragranular
layers with beta iso = −0.515, [0.57,−0.45] and beta iso squared = 0.18, [0.14, 0.22] and
beta iso = −0.301, [−0.375,−0.228] and beta iso squared = 0.151, [0.09, 0.203],
respectively.

In V1 the supragranular layer had a strong decrease for isoflurane 0.5% but this was
followed by an increase for higher isoflurane levels beta iso = 0.618, [0.56, 0.67] and beta
iso squared = 0.776, [0.725, 0.827].

In the frequency range 1.95Hz − 4Hz (delta band), the models with a squared beta
coefficient described the data better than the models without it in all layers at PFC and
V1, as indicated by LOO cross-validation- based Bayesian model comparison (lowest
LOO-CV score, see Table S7).

Fig 9. Bayesian Regression results of AIS at frequency 1.95-3.9 Hz. Panel A,
left, bayesian regression fit forsupragranular layer at PFC (yellow) and V1 (purple).
Panel B, left, bayesian regression fit for granular layer at PFC (yellow) and V1 (purple).
Panel C, left, bayesian regression fit for infragranular layer at PFC (yellow) and V1
(purple). Middle columns, posterior mean for beta iso and beta iso squared coefficients
at PFC site, for panel A, B and C. Right columns, posterior mean for beta iso and beta
iso squared coefficients at V1 site. Shaded area in the regression fit represents 94%
HDI. Shaded gray background for AIS∆

freq values that are below zero (i.e. no frequency
specific drop)

At this low frequency band the modulation by isoflurane became more homogeneous
across layers and brain regions. Indeed, we found that the infragranular and granular
layer of PFC and V1 were all similarly modulated (see posterior plots in Fig 9, panel B
and C). Only in supragranular layers the increase for high isoflurane values was stronger
in V1 compared to PFC, with beta iso = 0.609, [0.55,−0.66] and beta iso squared
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= 0.77, [0.72, 0.82] for V1 and beta iso = 0.297, [0.22, 0.37] and beta iso squared
= 0.391, [0.33, 0.44].

Fig 10. Bayesian Regression results of AIS at frequency 0.97-1.95 Hz. Panel
A, left, bayesian regression fit for supragranular layer at PFC (yellow) and V1 (purple).
Panel B, left, bayesian regression fit for granular layer at PFC (yellow) and V1 (purple).
Panel C, left, bayesian regression fit for infragranular layer at PFC (yellow) and V1
(purple). Middle columns, posterior mean for beta iso and beta iso squared coefficients
at PFC site, for panel A, B and C. Right columns, posterior mean for beta iso and beta
iso squared coefficients at V1 site. Shaded area in the regression fit represents 94%
HDI. Shaded gray background for AIS∆

freq values that are below zero (i.e. no frequency
specific drop)

Finally, we estimated the frequency range 0.9Hz − 1.9Hz (low delta band). The
Bayesian model comparison revealed that the model squared had a lower LOO score in
all the layers, however in the granular layer of V1 standard error of estimates
overlapped, indicating that both models fitted the data similarly (see Table S9).

As in the previous frequency range, deep and superficial layers at both brain regions
were characterized by a similar isoflurane modulation, due to a possible global effect of
slow oscillation throughout the cortex under LOC (see Section Modulation of spectral
information storage according to distinct functional roles across cortical layers by
anesthesia). However, in this frequency range, infragranular and granular layers at PFC
had a stronger increase at high isoflurane concentrations (0.75% and 1%) than in V1,
with the highest difference in the infragranular layer beta iso = 0.84, [0.78, 0.903] and
beta iso squared = 0.284, [0.24, 0.32] for PFC and beta iso = 0.291, [0.20, 0.37] and beta
iso squared = 0.25, [0.18, 0.33], while supragranular layer showed a similar modulation
at both brain regions (see Fig 10, panel A).

0.0.2 Relation between the spectral AIS and the spectral power

To further highlight the specificity of the spectral AIS compared with a simple spectral
power analysis we performed a Bayesian correlation of two frequencies range:
0.9Hz − 1.9Hz (delta) and 7.9Hz − 15Hz (alpha). The Bayesian correlation revealed
that the correlation between the two measures varied depending on the frequency bands
or isoflurane level. In the frequency range 0.9Hz − 1.9Hz at isoflurane of 0% there was
a strong evidence for a negative correlation BF= 48530.5 (see Fig 11, panel A, top row);
at isoflurane of 1% the correlation dropped to moderate evidence BF= 3.079 (see Fig 11,
panel A, bottom row). In the alpha band 7.9Hz − 15Hz at isoflurane of 0% the
evidence for a correlation was absent BF= 0.098 (see Fig 11, panel B, top row) and
became positive with weak or anecdotal evidence BF= 1.380 (see Fig 11, panel B,
bottom row). Additionally, we showed that as the power increase as a function of
isoflurane the AIS∆

freq had opposite behavior; the frequency specific surrogates drop
increased at higher isoflurane percentage in the range 0.9Hz − 1.9Hz, while it decreased
in the range 7.9Hz − 15Hz (see 11, panel C and D).
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Fig 11. Bayesian correlation of spectral AIS and spectral power. Panel A,
bayesian correlation of spectral AIS with spectral power in range 0.9Hz − 1.9Hz at
isoflurane 0%, top row and isoflurane 1% bottom row. Panel B, bayesian correlation of
spectral AIS with spectral power in range 7.9Hz − 15Hz at isoflurane 0%, top row and
isoflurane 1%, bottom row. In each panels A and B, on the right: correlation plot of
AIS∆

freq values, on the left: posterior distribution (black line), prior distribution
(dashed line), median and 95% of the posterior estimates and bayes factor BF10 of the
alternative hypothesis (H1) and BF01 of the null hypothesis (H0). Panel C, the
modulation of AIS with isoflurane levels (red curve) follows the increase of spectral
power in the delta band (black box-plot). Panel D, the modulation of AIS with
isoflurane levels has an opposite behaviour (red curve) with the modulation of spectral
power in the alpha band (black box-plot).

Discussion

In this study we addressed two tightly related questions: 1. Can we in principle design
an algorithm to detect frequency-specific active information storage? 2. Do we detect
such frequency-specific active information storage in neural systems, and if so, does it
provide valuable information towards a better understanding of neural information
processing.

Estimating spectrally-specific AIS

To address the first question, we presented an algorithm to estimate which specific
spectral components contribute to the overall active information storage (AIS) of a
process. We demonstrated with different simulations that these spectral components
can be reliably identified, in both linear and nonlinear systems and processes. The
algorithm builds on the idea of creating spectrally specific realizations of the null model
(surogate data) that was presented in [10], for the case of spectrally-resolved TE. In the
present study, we again used the MODWT decomposition and scrambling of the wavelet
coefficients for the creation of spectrally-specific surrogates data to asses frequency
contribution to the AIS measure.

The spectrally-resolved AIS can be seen as an attempt to determine frequency
components related to information-theoretic properties of a process under investigation.
Its estimation is less complex than the estimation of spectral TE which implies to
decompose specific spectral components of sources and targets and to distinguish
one-to-one from one-to-many or many-to-one interactions, whereas spectral AIS
provides spectral resolution only of a single process. Thus, it is expected that the
proposed algorithm performs similarly well as the previously published one for spectral
TE. We, therefore, keep the discussion of the validity and performance short here.

Which insights into neurophysiology can be obtained using
spectral AIS? – The example of anesthesia effects

The second question becomes crucial in biological systems such as the brain where the
role of rhythmic processing in neural system is still not fully understood but
prominently discussed for neural communication mechanisms [39–41]. We note that for
AIS as a foundational component of neural information processing, only a handful of
studies exist to date [?, 6–8,13], and none has asked the question of its relation to neural
rhythmic processing.

The analysis of LFP cortical layers at two brain sites (PFC and V1) in ferrets,
showed that we can successfully detect frequency-specific AIS at different frequency
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bands. While in the time domain the total AIS showed an increase as a function of
isoflurane level, the spectral perspective revealed a much more complex and richer
picture. Furthermore, in comparing modulations of spectral AIS and spectral power we
showed that AIS provides information on the computational dynamics of the neural
process and its modulation by anesthesia, which spectral power analysis does not
directly reveal.

In the remainder of this section, we will further discuss the results of the application
of our novel, spectrally-resolved AIS measure to the LFP, highlight the additional
details that a spectral decomposition revealed compared to time-domain-only analysis
and the additional information that the spectral AIS provides compared to only spectral
power analysis also in terms of anesthesia effects. We will then indicate limitations and
caveats of the method, discuss its relation to previous approaches and possible future
applications.

Modulation of spectral information storage according to distinct functional
roles across cortical layers by anesthesia

Even though the molecular targets of anesthetic agents are well known [42], changes in
neural information processing related to anesthesia are not well understood. This
understanding is further complicated by the complex laminar organization of the cortex,
which is composed of neurons with distinct connectivity patterns and feedforward or
feedback projections across laminae [16,17,43–45]. Of importance to our study is also
the fact that neural assemblies and canonical circuit motifs exhibit rhythmic activity in
distinct frequency bands [40] where activity supragranular layers is found to be often
dominated by gamma band activity and projected mostly along the feedforward
direction of the cortical hierarchy, while activity in infragranular layers is often
dominated by alpha/beta frequencies and projected along the feedback direction [43].
Note however, that recent experiments using different stimuli challenge this clear link of
frequency bands to layers [45]. Thus, information theoretic quantities in cortex and
their anesthesia related changes are bound to exhibit a complex spectral structure –
possibly in a layer-specific way.

Our results indicate that also the spectral AIS reflects the previously described
frequency signatures within a cortical area. Modulation by isoflurane could be seen in
the high gamma range (62.5Hz − 125Hz) in superficial layers (e.g. supragranular) of V1
and in the gamma range (31Hz − 62.5Hz) at both V1 and PFC areas. In beta and
alpha frequency ranges the strongest modulation effect were observed mainly at the
PFC area in deeper layers (e.g. granular and infragranular). Departing from the simple,
previously reported, associations between layers and frequencies the supragranular layer
of V1 showed a decrease in AIS at intermediate isoflurane concentration, followed by an
increase at higher concentrations in a broad frequency range from 4 Hz to 30 Hz. This
means that in supragranular layers, also information processing in non-gamma
frequencies is affected by anesthesia. This pattern specifically was actually more
pronounced in the supragranular that in granular and infragranular layers. In contrast
to these region and layer specific anesthesia effects at frequencies above 4Hz, at
ferquencies below 4 Hz, the differences between brain regions (PFC or V1) and layers
became minimal. This could mean that the emergence of slow-wave oscillatory power
has to have an indiscriminate global effect on the neural computational properties
throughout the cortex. In the case of slow oscillations below 2 Hz, the PFC showed a
similar pattern at all three layers with a substantial increase of the AIS∆

freq towards
more positive values at the high isoflurane level (1%), with the strongest increase at
deep infragranular layers in agreement with [46]. Our results are in line with previous
works reporting that with LOC, neural signals became more uniform and exhibited
repetitive patterns, interrupted by bursting activity [47]. In particular, slow-wave
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oscillatory power was more pronounced during anesthesia-induced LOC.
A potential explanation for the observed differences in isoflurane modulations of

local information processing at the two cortical areas, V1 and PFC, may be the
differences in the quantitative properties of neural circuits in the two areas. The
different properties of individual neurons, feedback loops and feedforward excitation or
inhibition from other areas (e.g. thalamus) might affect how information is stored and
maintained at the local level under different anesthesia concentrations. Additionally, the
functional organization of these areas might play a role, for example missing sensory
input during LOC at V1 or reduced integration in PFC that serves higher cognitive
function [48]. Studies that investigate neural processing in animals under anesthesia will
have to consider that different cortical sites can be modulated or affected by anesthesia
differently, and that the local processing exhibits distinctive spectral AIS, which in turn
might affect how information is integrated and transferred across brain regions, as
previously also reported by Wollstadt et al. [8].

Spectrally-resolved AIS provides insights into neural processing and the
effects of anesthesia that are not provided by an analysis of spectral power

Anaesthetic agents such as isoflurane, sevoflurane or propofol produce similar oscillatory
changes, in particular, predominating low frequencies (delta band) and increased power
in the alpha frequency band at frontal sites (anteriorization effect) [18, 49, 50]. We show
here that the spectral AIS provides additional information on the underlying neural
information processing and the effects of isoflurane. For example, we describe effects in
the alpha frequency band that are not found by an analysis of only spectral power:
While at low frequencies (delta band) and no isoflurane (0%), the spectral AIS and the
spectral power are correlated, such a relation can not be seen in the alpha band (Figure
11 A, B). Additionally, while in the delta band the spectral AIS follows the increase of
spectral power as a function of isoflurane concentration, an opposite behaviour can be
seen in the alpha band (Figure 11 C, D).

Thus, decomposing the AIS measure in its spectral components can reveal aspects of
the computational dynamics of neural processes that are not directly accessible by a
spectral power analysis. This will be highly useful for anesthesia research in general,
e.g., also for other anesthetics such as propofol. For propofol, recent work showed that
alpha band effects (increase of anterior alpha and decrease of posterior alpha) depended
on two types of thalamocortical circuits affected by the anaesthetic agents and were
completely distinct from the propofol-induced slow oscillations [50]. Thus, we speculate
that also propofol-related changes in spectral AIS will be distinct for the delta- and the
alpha-bands.

Spectrally-resolved AIS adds additional insights into the effects of
anesthesia on neural processing compared to AIS in the time domain

In a previous study analyzing LFPs from ferrets under anesthesia, the AIS (in the time
domain) increased as a function of isoflurane concentrations in PFC [8]. Given the
similar effect that we found in this work in the time domain (see Fig 3, panel C), the
overall increase at high isoflurane levels in AIS seems to be linked to an increase in AIS
in delta frequencies, whereas alpha and beta frequency bands are modulated by
isoflurane differently, i.e. they decrease as a function of isoflurane levels. Alpha and
beta bands have been linked to generation of internal models in the predictive coding
framework [13], and have also been associated mostly with deep cortical layers, and
thereby, cortical feedback pathways [16]. Thus, the absence of alpha and beta-band AIS
may suggest—following the line of argument in [13]—that under anesthesia the
maintenance of internal models and the generation of internal predictions is strongly
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impaired. This in turn may be an important component of the phenomenon of loosing
consciousness.

Relation to previous approaches

A method that allows to compute AIS at different temporal scales has been introduced
by [51]. It exploits the state space formalism to obtain a multiscale representation of a
linear fractionally integrated autoregressive process (ARFI) [51]. The time-series
undergo to lowpass filtering and downsampling to obtain a multiscale representation, so
that the AIS can be computed as a function of the cutoff frequency. This parametric
formulation, employing the state space formalism is restricted to the description of
linear Gaussian processes. However, it is a significant improvement over previous
attempts to quantify system complexity in terms of a linear multiscale entropy [52],
with the simultaneous description of short and long memory properties which are
fundamental aspects of systems dynamic [34]. When the assumptions of linear Gaussian
processes is valid the approach from [51] will be more data-efficient and come with lower
computational burden.

On the possibility of cross-spectral information storage

Due to the sensitivity of information-theoretic measures to non-linear phenomena it is
conceivable to find information storage in cases where the frequency of the process
underlying the storage changes over time, i.e. where the stored information wanders
between frequencies as the process unfolds. If, for example, the information is moving
forth and back between dynamics at certain low frequencies and certain high
frequencies, this should be detectable. Thus, as an extension to the algorithm presented
here, it is possible to destroy the information in a specific frequency also in the future of
a process instead of the past, similar to the individual frequency-specific destruction of
information in source and target processes in the estimation of TE [10]. Although this is
not used in the current manuscript, it is implemented in IDT xl [21], for future
investigations.

Caveats and limitations

The estimation of information-theoretic quantities, such as the AIS, from finite data is
highly non-trivial (e.g. [53] and references therein). In many cases the necessary number
of physical realizations of a process is not available. Two possible strategies can be
implemented then: pooling data over time to obtain a sufficient amount of realizations
(this requires stationarity) or pooling data over an ensemble of temporal copies. This
latter approach approach exploits the cyclostationarity across these temporal
replications of the process. Last, for discrete-valued data, Bayesian approaches exist for
optimization embedding parameters and AIS estimation [54]; these approaches are
available in our Toolbox [21].

Future directions

Future studies should focus on combining spectrally resolved transfer entropy [10] and
active information storage to provide a more exhaustive characterization on the
computational behaviour of the analysed system in the spectral domain. Employed
together, these tools offer a promising framework to test specific hypothesis on brain
functioning such as predictive coding theory [9] or encoding and maintenance of
information in working memory [55]. For example, frequency-resolved measures of
information transfer and active information storage can test specific hypothesis on
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LFP-frequency signatures of error signals [17,43] or coding of prior information [13].
Similarly, maintenance of relevant information for later reactivation, in working-memory
and prefrontal cortex has been associated with specific frequency signature [55]. Also
here our spectrally resolved algorithms can, thus, provide additional insights on the
relation between brain rhythms and information-processing.

Conclusion

In this study we have presented an algorithm that provides a spectral representation of
the computational dynamics of neural processes in terms of the active information
storage. Using this algorithm for the analysis of changes in neural information
processing under anesthesia, we showed that this analysis can add valuable additional
insights that are not provided by the analysis of changes in spectral power.

Our method is fully available and integrated in the open source package
IDTXl:https://github.com/pwollstadt/IDTxl/tree/feature spectral ais, along with a
demo script.
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