Abstract
EARLY FLOWERING 3 (ELF3) is an important regulator of various physiological and developmental processes and hence may serve to improve plant adaptation which will be substantial for future plant breeding. To expand the limited knowledge on barley ELF3 in determining agronomic traits, we conducted field studies with heterogeneous inbred families (HIFs) derived from selected lines of the wild barley nested association mapping population HEB-25. During two growing seasons, phenotypes of nearly isogenic HIF sister lines, segregating for exotic and cultivated alleles at the ELF3 locus, were compared for ten developmental and yield-related traits. We determine novel exotic ELF3 alleles and show that HIF lines, carrying the exotic ELF3 allele, accelerated plant development compared to the cultivated ELF3 allele, depending on the genetic background. Remarkably, the most extreme phenotypic effects could be attributed to one exotic ELF3 allele, differing in only one SNP from the cultivated Barke ELF3 allele. This SNP causes an amino acid change, which predictively has an impact on the protein structure of ELF3, thereby possibly affecting phase separation behaviour and nano-compartment formation of ELF3 and, potentially, also affecting its local cellular interactions causing significant trait differences between HIF sister lines.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
- HvGI expression analysis added - Highlighting the novel ELF3 alleles