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1 Abstract 
 
Deep reinforcement learning methods have been 
shown to be potentially powerful tools for de novo design. 
Recurrent neural network (RNN)-based techniques are 
the most widely used methods in this space. In this 
work, we examine the behaviour of RNN-based 
methods when there are few (or no) examples of 
molecules with the desired properties in the training 
data. We find that targeted molecular generation is 
often possible, but the diversity of generated molecules 
is often reduced, and it is not possible to control the 
composition of generated molecular sets. To help 
overcome these issues, we propose a new curriculum 
learning-inspired, recurrent Iterative Optimisation 
Procedure that enables the optimisation of generated 
molecules for seen and unseen molecular profiles and 
allows the user to control whether a molecular profile 
is explored or exploited. Using our method, we 
generate specific and diverse sets of molecules with up 
to 18 times more scaffolds than standard methods for 
the same sample size. However, our results also point 
to significant limitations of one-dimensional molecular 
representations as used in this space. We find that the 
success or failure of a given molecular optimisation 
problem depends on the choice of SMILES.  
 

2 Introduction 
Developing a novel drug is a complex and difficult 
problem.1 The pipeline from hit-to-lead, then through 
clinical trials, to market is plagued with failure.2–4 
While there are several known challenges to improve 
the efficiency of the drug development process, one key 
step would be to produce better early hits by reducing 
resources spent on inappropriate molecules. Beyond hit 
generation, the ability to generate novel molecules with 
specific properties would be beneficial in much of the 
pipeline, improving cost, speed, and effectiveness.5 

Ideally, during drug discovery, given a target and a 
required molecular profile, we would search for 
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suitable molecules in all drug-like chemical space. 
Current experimental high-throughput methods do 
allow millions of molecules to be tested, however 
further increases in scale are still prohibitively 
expensive.6 Therefore, given that there are an 
estimated 1060 synthetically accessible drug-like 
molecules7, of which approximately 108 have been 
synthesized8, experimental methods are not sufficient 
for comprehensive sampling of chemical space.  

Computational methods offer the promise of being 
able to search larger areas of chemical space and 
virtual screening is commonly used to search curated 
chemical libraries for potential hits.9–12 However, the 
chemical space available for assessment is only a tiny 
proportion of the possible space.13–15  

Instead of searching existing molecular datasets, 
computational de novo design models aim to create new 
sets of novel molecules.12,16  These generative models 
have become a popular choice in computational 
molecular design in recent years.17-19 Early de novo 
models were rules-based algorithms designed to 
generate molecules by enumerating fragment 
combinations.17,18 While these models were able to 
generate large sets of novel molecules, they required 
manual encoding of disconnection rules, filtering to 
generate chemically valid molecules, and often only 
enumerated fragments from available molecular 
datasets. Such early models were often paired with 
global optimisers to generate molecules with desired 
properties.6,19,20 Over the last few years, deep learning 
molecular generation tools have become more 
prevalent.21 Similar to early molecular generation 
algorithms, deep learning de novo tools often pair 
molecular generation with optimisation in order to 
produce focused sets of molecules with improved 
performance.  

Several deep learning approaches have been applied to 
de novo molecular design. Autoencoders22 are perhaps 
the most frequently applied method for de novo 
molecular generation and optimization.12,25 Here the 
discrete representation of a molecule is converted to a 
continuous representation (encoded) from which its 
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properties can be predicted and optimised. The 
resulting continuous representation is then converted 
back to a discrete molecular representation 
(decoded).23,24 Several popular de novo design methods 
use SMILES23 to discretely represent molecules, often 
with recurrent neural networks (RNNs). An early 
example of this approach used RNNs to generate a 
molecular library through a SMILES language 
model16, before fine-tuning the model on a smaller 
subset of molecules with desired properties. Another 
popular method to fine-tune SMILES generation 
models is reinforcement learning (RL). In theory, RL 
methods allow a user to generate a set of molecules with 
specific properties without explicit examples of 
molecules that match the reward profile.  

In this paper, we examine on-policy reinforcement 
learning models.25 These models learn a policy to 
maximise the reward for each action taken. For 
molecular generation, the policy describes a strategy 
that maximises the reward for each generated 
molecule. This is done by augmenting a prior model to 
produce sets of molecules optimised for specific 
molecular profiles. In 2017, Olivecrona et al. proposed 
a policy-based reinforcement learning model, 
REINVENT26, to tune a SMILE-generating RNN. 
The authors reported that their model could generate 
novel molecules similar to a target structure even after 
analogues of the target were removed from the training 
data. Furthermore, it was able to generate predicted 
actives (predicted activities greater than 95%) to the 
DRD2 receptor even when known actives were 
removed from training. Popova et al. proposed another 
using the same general architecture (ReLeaSE) that 
was able to bias the generated molecules against 
structural complexity, melting point, and activity 
against the JAK2 protein. In 2022, the authors of 
REINVENT proposed an update to their method that 
enables the use of curriculum learning to fulfil complex 
generation tasks while reducing the overall cost of 
learning.27 These recent papers point to the potential 
of SMILES-based deep RL models in the generation 
and optimisation of novel molecules. However, it is still 
not clear how the prevalence of desired molecular 

profiles in training data will affect optimisation 
performance.  

In drug discovery, successful hit generation requires 
new molecules with novel combinations of properties. 
These molecules often do not exist in currently 
available datasets; therefore, for RL methods to be 
truly useful, they must be able to extrapolate. At 
present, it is unclear how well these models are able to 
do so. It is also important that RL methods can 
generate sets of molecules that explore the chemical 
space for a complex molecular profile and produce a 
diverse library and exploit the chemical space to 
generate focused molecular libraries. In this paper, we 
explore scenarios where optimisation is attempted with 
little or no representation in the training data and 
investigate the extent to which the methods can 
extrapolate. We manipulate the prevalence of specific 
properties, measured as a percentage of the entire 
training dataset, and test the limits of optimisation of 
individual properties. We find that the RL models 
tested can extrapolate beyond the training data but 
often produce a set of molecules with little diversity. We 
show that these models are frequently unable to 
generate molecules that satisfy complex molecular 
profiles. We go on to demonstrate a curriculum-
learning-inspired optimisation procedure that enables 
the generation of specific and diverse sets of molecules 
that satisfy complex and unseen molecular profiles. We 
also highlight the limitations of SMILES-based 
molecular generation tools. 

3 Methods 
We assessed the performance of a popular on-policy 
SMILES generation model, REINVENT26, to 
determine the limits of deep RL tools in molecular 
design. Like earlier RL molecular generation tools28, 
REINVENT involves a two-step process. The first is to 
train a prior RNN to generate SMILES through 
supervised learning. This model is trained to correctly 
predict the next character of a SMILES string given a 
starting token or incomplete string. The second is to 

Fig u re  1 :  H ig h - le v e l  d ia g ra m  d i sp la y in g  t h e  a r ch i t e ct u re  o f  t h e  d e e p  re i n fo rce me n t  l e a rn in g  mo d e l  u se d  b y  P o p o v a  e t  a l  a n d  
O l i v e cro n a  e t  a l . 2 9 , 3 0  (a )  Su p e rv i se d  le a rn in g  la n g u a g e  mo d e l .  Th e  p r io r  mo d e l  l e a rn s t o  g e n e ra t e  n o v e l  SM I LE S  f ro m a  la rg e  
d a t a se t  o f  SM I LES  f ro m Ch EM B L. 3 1  (b )  Re in fo rce me n t  Le a rn in g .  Th e  a g e n t  mo d e l  (b a se d  o n  t h e  p r io r  mo d e l )  i s  t ra in e d  t o  g e n e ra t e 
SM I LES  t h a t  re t u rn  a  fa v o u ra b le  re w a rd .  
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fine-tune the prior model producing an agent model 
able to generate a focused library through a reward-
feedback loop. During this second step, the model 
learns a policy that maximises the likelihood of 
generating a molecule with a favourable reward (Figure 
1). Full details of the models can be found in the work 
of Olivecrona et al.26 
 
For all experiments described in the following, the 
model was trained on subsets of 1.5 million drug-like 
molecules from ChEMBL29. After the model was fully 
trained, we sampled 500 molecules unless otherwise 
stated. We chose to generate 500 molecules as this 
provided a large enough sample from which we could 
draw clear conclusions about the distribution of 
generated molecules.  
 
3.1 Property Characterisation 
 
Hydrogen bond acceptors (HBA), donors (HBD), 
molecular weight (MW), topological polar surface 
(TPSA) and LogP were calculated using the chemical 
descriptor module from RDKIT.30 Synthetic 
accessibility (SA)31, QED35, and Tanimoto similarities 
were also calculated using RDKit. 
 
For the analysis of generated molecular sets, only 
unique molecules (all valid SMILES generated once 
repeats are removed) were considered. To compare the 
diversity of training and generated datasets, Murcko 
scaffolds32 were generated using RDKit. The generated 
library internal diversity scores were calculated using 
MOSES.33 
 
3.2 Reinforcement Learning 
 
To successfully optimise for a property, a suitable 
reward function must be provided. For simplicity, 
throughout our study, we used the same step reward 
function (examples available in the supplementary 
information). Any invalid SMILES did not return a 
reward and all valid SMILES that met the reward 
criteria returned a reward of one. 
 
3.2.1 Optimisation Success 

We initially determined the success of optimisation 
using the proportion of molecules in the generated 
library that fell within the reward range. However, 
after several properties were tested at increasing 
representations, it became clear that the difference 
between the proportion of optimised molecules in 
successful and unsuccessful optimisation attempts was 
large enough so that a success threshold was not 
appropriate. Instead, optimisation attempts that 
showed an increase in the proportion of optimised 
molecules were deemed successful. This was possible 
because all unsuccessful attempts resulted in zero 
optimised molecules. 

3.3 Recurrent Iterative Optimisation 
Procedure 

 
We propose a novel, curriculum learning inspired 
recurrent Iterative Optimisation Procedure (rIOP). 
Curriculum learning is a method used to teach models 
how to complete difficult tasks through the gradual 
introduction of more complex examples during 
training.34 For single-step optimisation attempts, it is 
common for RL methods to exploit molecular motifs 
found to return positive rewards, leading to generated 
sets with low diversity (specialisation). We expect that 
the greater the difference between the reward profile 
and training data, the more prevalent this behaviour is. 
By splitting the optimisation task into a series of smaller 
tasks, we reduced the difference between the molecules 
generated by the prior and the desired reward profile 
at each step. Thus, reducing the likelihood of early 
specialisation. Repeating a prior/agent training loop 
with a series of small changes in the reward profile, we 
encouraged each agent model to shift its property 
distribution toward the final, desired, distribution. The 
resulting agent was then used as the prior in the next 
step. Splitting the final optimisation task into a series of 
increasingly complex subtasks allowed the model to 
satisfy increasingly difficult molecular profiles that 
directed it toward the final goal.  
 
We demonstrate the use of two implementations of 
rIOP. The first, single model rIOP (SrIOP), only 
samples from the previous agent when training the 
current model. The second, double model (DrIOP), 
samples from the previous two models. Unless 
otherwise stated, for DrIOP we sampled the current 
agent once for every five times the previous agent was 
sampled.   
 
3.3.1 Diversity filters 
 
To control diversity, where appropriate, we 
incorporated the diversity filters described by Blaschke 
et al.35 With diversity filters (DF) enabled, the model will 
only give a positive reward for the first n molecules that 
satisfy the reward function for a given scaffold. Once n 
molecules that match the reward profile have been 
generated, molecules with this scaffold are no longer 
rewarded. This prevents the model from entering a 
local optimisation minimum by producing many 
molecules with the same scaffold and small structural 
differences to satisfy the reward function.  

4 Results 
Deep RL molecular generation models are powerful 
tools for optimising molecular properties. However, 
their usefulness is dependent on their input training 
data. We show how these tools are able to optimise for 
specific property values, however, only within a 
property specific value range. We also show how these 
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methods can generate molecular profiles that are not 
present in training data and how the representation of 
training data affects the composition of generated sets 
of molecules.  
 
By evaluating the performance of deep RL molecular 
generation methods with increasing proportions of 
training data that match a desired property profile, we 
show the effects of representation on generated 
molecules. To overcome the generated library 
restrictions caused by training data representation, we 
propose a curriculum learning inspired approach 
(rIOP) that allows for the optimisation of under-
represented properties. rIOP also allows users to 
optimise generated molecules toward complex 
molecular profiles that are not possible with 
REINVENT while controlling the diversity of 
generated libraries.  
 
4.1 Control of Generated Libraries 
A standard goal for de novo design deep RL tools is to 
produce novel molecules for which the property 
distribution of a single property or many properties has 

been controlled. Previous studies using methods such 
as REINVENT and ReLeaSE have shown that it is 
possible to bias generated molecules toward specific 
properties such as hydrophobicity, melting point, or 
predicted activity against the DRD2 receptor.26,28 
 
To determine the degree to which the property 
distribution of the molecules generated by the agent 
(agent distribution) can be controlled, we set 
REINVENT the task of shifting the distribution of 
LogP or HBA counts across their respective ranges. 
These properties may not be the most important in a 
drug discovery context; however, these experiments 
allow us to assess optimisation performance. If it is 
possible to control the distribution of generated 
molecular sets, we expect to observe changes in the 
composition of these sets as the reward range changes. 
During RL, all valid SMILES that satisfy the reward 
function are given a reward of one. All other molecules, 
valid or not, receive zero reward.  
 
Figure 2a shows the property distribution of generated 
molecules for the reward ranges of LogP between -15 
and 20. It shows that it is possible to control the position 
of agent distributions with the reward range. However, 

Figur e  2 :  D i str ibution  o f gener ated  l ibr ar ies  for  (a )  LogP  opti misa tion  and (b)  number  o f  HBA ’s  opti misation .  Each  l ine  
cor r esponds to  the  pr oper ty  d istr ibution  of the  molecu les  sampled  by  an  agent tr a ined  with  a  r ewar d r ange  deta i led  in 
the  legend.  Both  f igur es  show that optimi sation  i s  poss ib le  with in  a  speci f ic  r ange  (e .g . ,  0 - 20  HBA ’s),  outs ide  th is  r ange  
optimisa tion  fa i l s .  The  mode l  i s  unable  to  gener ate  appr opr iate  molecu les ,  so  the  tr a in ing  data  d istr ibution  i s  r ecr eated.  

(a) 

(b) 
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in extreme cases (LogP reward between -15 and -10), 
optimisation was unsuccessful, and we observe no 
change in the agent distribution; the training data 
distribution is reproduced.  
 
The same behaviour was observed for HBA counts 
(Figure 2b). Optimisation anywhere in the range of 0-
20 was possible; however, optimising the model to 
generate molecules with 20 HBA’s or more was 
unsuccessful (red distribution). As with LogP, a 
distribution similar to the training data was 
reproduced. The training data did include several 
molecules with more than 30 HBA’s. A full breakdown 
of the generated molecular sets, reward ranges, and 
examples of molecules can be found in the 
supplementary information.  
 
We postulate that this failure occurs because in the 
extreme case fewer molecules generated by the prior 
model return any reward during RL. If trained for 
infinite time, the model will eventually randomly 
generate SMILES that will return a positive reward; 
nevertheless, poor representation can prevent effective 
optimisation. This ineffective optimisation then leads to 
the model repeatedly producing the same SMILES 
seen in training; thus, the training data is reproduced.  
 
4.2 Effect of percentage representation 
 
We have shown that using deep RL molecular 
generation tools, optimisation of under-represented 
properties is sometimes not possible. To investigate 
how widespread this issue is, we tested the ability of the 
models to generate molecules with properties within 
and outside the training data. 
 
We prepared several training datasets in which the 
proportion of molecules that matched the desired 
reward profile varied. We chose reward profiles 
(supplementary information) at the upper end of the 
full ChEMBL training data distribution such that at 
least 10% of the training data matched the reward 
function. Once the reward range was calculated, all 
molecules that matched the reward profile were 
removed from the full training data set. Then smaller 
random samples equal in size to 0%, 2%, 5%, 7% and 
10% of the entire training dataset were put back and 
used to train the model from scratch.  
 
Table 1 shows that using REINVENT optimisation 
was successful for all properties across all percentage 
representations. In all cases, the generated set 
distributions were shifted toward our desired property 
profile relative to the training data. These results show 
that, for the properties tested, the model was able to 
learn the chemical-structural relationship from the 
surrounding molecules in the distribution; it is possible 
to learn without representation in the training data. 
 

Table 1 shows that the composition of each generated 
library is dependent on the representation of the 
desired property in the training data. For example, we 
can generate sets where most molecules have a HBA 
count greater than 8 (the reward threshold), but a 
higher percentage representation leads to molecules 
with higher HBA counts with the same reward 
function. The mean of the 0% representation is 9 
HBA’s compared to 20 for the 10% experiment. 
Directional changes across each experiment can be 
seen for all properties tested (supplementary 
information). We postulate that the trends in the 
generated molecules mirror the training data. For 
example, for a specific reward property value (e.g. HBA 
= 5) if, as the percentage representation of that 
property profile increases, the diversity of the training 
data increases, you will see an increase in the diversity 
of the generated library. Conversely, if all the examples 
in the training data were very similar, you would 
observe a reduction in training data diversity and 
generated library diversity. Therefore, for most 
properties, we expect that a lower percentage 
representation would lead to a less diverse generated 
library.  
 
Table  1 :  Mean property  va lues  for  molecu les  generated 
f rom four  property  opt imisat ion  tasks  us ing  increas ing  
t ra in ing  data  percentage representat ions.   

 
These results show that it is possible to generate 
molecular profiles that are not seen during training and 
that the composition of the generated molecular sets 
depends on the degree to which the desired molecular 
profile is prevalent in the training data. Therefore, 
depending on the use case for these models, different 
percentage representations for training may be 
suitable. However, when the aim is to generate an 
unseen molecular profile (0% representation), standard 
methods leave the user without control over the 
composition of the generated library. 
 
4.3 Curriculum Learning for Generated 

Library Control 
 
We have shown that it is possible to generate molecules 
with unseen molecular profiles in training data (Table 
1). However, the model’s ability to do this is limited at 
the extremes of the property distribution (Figure 2). 
The composition of each generated set depends on the 
prevalence of molecules in the training data with the 
desired molecular profile. Building on previous work27, 
we postulate that higher training data representations 
would often lead to greater diversity for generated 
molecules, as the model would often have a more 

Property  
(Reward min) 

Percentage representation in training 
0 2 5 7 10 

HBA (8) 9 8 13 16 19 
MW (527) 624 715 748 735 787 
QED (0.83) 0.901 0.908 0.905 0.902 0.879 
TPSA (122) 175 190 206 201 207 
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diverse set of examples to learn chemical-structural 
relationships.  
  
To improve the efficacy of deep RL generation 
methods, we propose a new curriculum learning-
inspired approach, called recurrent iterative 
optimization procedure (rIOP). Our method allows 
deep RL generation methods to maximise the diversity 
of generated molecules for seen and unseen molecular 
profiles during optimisation. It also enables the model 
to generate molecules that perform more complex 
optimisation tasks where standard methods fail.   

 
4.3.1 Recurrent Iterative Optimization Procedure 

to Improve Diversity 
 
To demonstrate how rIOP can increase the diversity of 
simple optimisation tasks, we generated molecules with 
a reward for TPSA between 250 and 300 using SrIOP 
and REINVENT’s standard implementation. 
Standard methods do generate molecules in this range; 
however, we expect that with SrIOP we will see an 
improvement in the diversity of generated molecules. 
TPSA shift is a simple optimisation task; therefore, we 
only sampled the agent of the previous step when 
training the current prior (see methods).  
 
Figure 3 shows each step of the SrIOP procedure and 
the change in property distribution at each stage to 
match the reward function. To measure the diversity of 
each generated library, we calculated the number of 
unique Murcko scaffolds generated. With each SrIOP 
step, we see a reduction in the number of scaffolds 
generated. This is to be expected as we are moving 
toward the limit of the full TPSA property distribution, 
where there are fewer ways to achieve these property 
values. Table 2 shows that in our last step (SrIOP 4) we 
produce 18 times more scaffolds using SrIOP (55 
scaffolds) compared to REINVENT (3 scaffolds). 
Furthermore, SrIOP generates more molecules from 
the 500 sampled that match the reward profile (494 

compared to 476 for SrIOP and REINVENT, 
respectively). Examples of generated molecules can be 
found in the supplementary information. 
 
Table  2 :  Compar ison  of  generated  set  compos i t ion  of  each  
agent  t ra ined dur ing  Sr IOP and REINVENT for  TPSA 
opt imisat ion.  

 
 
4.3.2 Iterative optimisation procedure for diversity 

control 
 
For de novo design tools to be effective, it should be 
possible to control the specificity of the generated 
molecules. We have shown how the representation of a 
desired profile during training can affect the 
composition, and hence the specificity, of generated 
sets of molecules. Our results also show how the use of 
our new method, SrIOP, can improve the diversity of 
molecules generated during simple optimisation tasks.  
 
To demonstrate how SrIOP can be used to control the 
diversity of generated molecules, we created a library 
of compounds where our aim was to maximise QED. 
We use no molecules with QED greater than 0.8 
during training, then iteratively increased the QED 
reward profile at each step. Diversity filters (DF) (see 
methods) were also used to further improve the 
diversity of generated molecules. DF prevents the 
model from producing the same scaffold repeatedly to 
maximise the reward. As in the previous experiment 
(Section 4.3.1), we only sampled the agent from the 
previous step when training the current agent (SrIOP).  
 

Run # In reward range # Scaffolds 
SrIOP 1 437 352 
SrIOP 2 468 198 
SrIOP 3 499 20 
SrIOP 4 494 55 
REINVENT 476 3 

Figur e  3 :  TPSA  d is tr ibution  of  molecu les  sampled  fr om each  
inter mediate  (1 - 3)  and f ina l  (4 )  agent  tr a ined  dur ing  r IOP.  
We show that we  can  sh i ft  the  d istr ibution  i te r at i ve ly  
towar ds tar get pr oper ty  va lues.  TPSA  r ewar d  r ange  for  
each  step  wer e  (1)  100  – 150,  (2 )  150- 200,  (3 )  200- 250,  (4 )  
250- 300.    

SrIOP 1 
SrIOP 2 
SrIOP 3 

SrIOP 4 
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Figure 4 shows how with and without diversity filters it 
is possible to generate molecules with high QED 
values. Figure 4b also shows that a wider distribution of 
molecules is produced with a diversity filter enabled. Of 
the 500 molecules sampled, SrIOP generates 490 
molecules that match the reward function compared to 
only 317 using REINVENT. Of the 490 molecules, 
SrIOP generated 22 scaffolds. Standard methods 
produced more with 130 scaffolds across those 317 
molecules. However, with DF enabled, we observed a 
significant increase in SrIOP performance, with 
scaffold diversity increasing from 22 to 297 in the 301 
generated molecules. We also see a change using 
REINVENT; the model generates 234 scaffolds across 
236 molecules. These results show how, using our 
SrIOP, we can generate a specific library of molecules 
(without DF), and a diverse library with DF enabled. 
On the contrary, REINVENT is only able to generate 
diverse molecules, eliminating the user’s ability to 
control the composition of generated sets. A full 
breakdown of the results, including each step of SrIOP, 
is available in the supplementary information.  
 
SrIOP gives the user more control over the specificity 
of the generated library. If they wish to exploit a 
property, SrIOP used without DF filters will return a 
very narrow selection of molecules that match your 
reward profile. On the contrary, if a diverse library is 
required, enabling diversity filters with SrIOP will 
produce one.  In this example, we chose a simple 
optimisation task as there are many ways to increase 
QED for a molecule. Therefore, we expected that the 
standard method would perform well. SrIOP still 
outperforms REINVENT in both specific (no diversity 
filter) and diverse (diversity filter used) set generation; 
however, we expect the difference in performance to 
increase for more complex optimisation tasks.  
 

4.4 Comparison to other curriculum 
learning methods 

 
Curriculum learning has long been used as a tool to 
overcome complex machine learning problems in 
various applications.36 However, its use in deep RL 
molecular generation tools is limited. There is one 
implementation of a similar method by the original 
authors of REINVENT27, that applies a curriculum 
learning approach to solve complex optimisation tasks, 
which we call ReCL.  
 
4.4.1  Iterative Optimisation procedure for 

complex optimisation tasks 
 
One common use case of deep learning RL models is 
to optimise for molecules similar to a target structure. 
In such scenarios there may be few examples of the 
target structure in training data. To determine how 
useful SrIOP is in this practical situation, we have used 

(a) (b) 

Figur e  5 :  D iagr am s of  (a )  s i mple  and (b)  co mplex  tar get  
str uctur es  used  for  tan i moto  s i mi lar i ty  and substr uc tur e  
gener ation  exper iments.  

s 

s 

Figur e  4 :  Compar ison  o f Sr IOP to  R EIN VENT  (ST D) for  gener ation  o f  dr ug l ike  molecu les  (a )  withou t d i ver s i ty  f i l te r s ,  (b )  
w ith  d iver s i ty  f i l te r s .  Sr IOP (b lue ),  standar d  (or ange),  pr ior  (green) and  tr a in ing  data  (dotted) d istr ibutions for  th e  
gener ation  of h igh  QED molecu les  (Q ED >  0 .90).  On ly  low Q ED m olecu les  (< 0 .8)  wer e  used  in  tr a in ing,  then  the  Q ED  
r ewar d  r ange  was incr eased  each  SrIOP step .  Both  methods can  gener ate  the  des ir ed  molecu les ,  however , Sr IOP 
gener ates  mor e  molecu les  in  the  des i r ed  r ange  in  both  cases.   

(a) (b) 

SrIOP SrIOP 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2022. ; https://doi.org/10.1101/2022.07.15.500218doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.15.500218
http://creativecommons.org/licenses/by/4.0/


it to generate molecules similar to target structures 
(Figure 5) with increasing difficulty. 
 
In our experiments, we removed all molecules with 
tanimoto similarity greater than 0.4 to each target from 
the training data and then increased the tanimoto 
similarity reward threshold by 0.1 each step. Figure 6a 
shows how for a simple molecule (Figure 5a) it is 
possible to generate molecules identical to the target. 
Both SrIOP and ReCL perform well, with SrIOP 
generating more molecules with a tanimoto similarity 
between 0.9 and 1.0 (486 and 325 for SrIOP and 
ReCL, respectively).  
 
For a more complex molecule (Figure 5b), ReCL is less 
successful (Figure 6b and Figure 6c) as it cannot 
generate any molecules with a high similarity to the 
target structure (tanimoto similarity greater than 0.7). 
For SrIOP almost all (497 of 500 sampled) generated 
molecules have a high similarity to the target structure.  
 
A second benefit of our method is the ability to control 
the diversity of the generated library.  
 
Table 3 shows how, without a diversity filter, all 497 
molecules sampled have the same scaffold. However, 
with diversity filters enabled, SrIOP generates 142 
scaffolds across 447 molecules. In this example, we 
highlight the ability of SrIOP to fulfil more complex 
reward functions where similar CL methods fail. We 
show how it can also be used to control the diversity of 
the generated library through the inclusion of diversity 
filters.  
 
 
 
 
 
 
 
 
 
 
 

 

 

Tab le  3 :  Breakdown of  generated  sets  us ing  Sr IOP and ReCL  
in  target  s imi lar i ty  opt imisat ion  for  (a)  s imple  molecu les  
and (b)  complex  molecu les .  For  s imple  molecu les ,  (a) ,  a  
h igh  s imi lar i ty  was  a l l  molecu les  with  tan imoto  s imi lar i ty  
greater  than 0 .9 .  For  complex  molecu les ,  (b ) ,  the  threshold  
was  a  tan imoto s imi lar i ty  greater  than 0 .7 .  D ivers i ty  f i l ters  
(DF)  were  used  on  the  complex  molecu le .  

(a) 

Method # High similarity # Scaffolds 
SrIOP 486 1 
ReCL 448 2 

 

(b) 

Method # High similarity # Scaffolds 
SrIOP 497 1 
SrIOP (DF) 447 142 
ReCL 0 0 
ReCL (DF) 3 3 

 
 
4.4.2 Generating Complex Substructures 
 
In their paper, Guo et al.27, report how they use ReCL 
to generate a library of molecules that contain the 
dihydro-pyrazoloquinazoline scaffold (Figure 5b). 
They do this by training their agent to generate 
molecules containing a series of increasingly complex 
substructures that direct the agent toward the final task. 
To compare our methods, we carried out the same 
experiment. Figure 7 shows each substructure and 
how, with our DrIOP method (blue) sampling from the 
two previous agents, we are also able to generate each 
substructure. Using DrIOP, we generated 103 
molecules (from the 500 sampled) that included the 
final substructure across 21 distinct scaffolds. ReCL 
was able to generate more molecules with 451 

(a) (b) (c) 

Figur e  6 :  Gener ating  molecu les  s imi lar  to  (a )  a  s imple  tar get mol ecu le  (Figur e  5a),  (b )  a  complex  molecu le  (Figur e  5b)  
without d iver s i ty  f i l te r s  and (c )  a  co mplex  molecu le  with  d i ver s i ty  f i l te r s .  Sr IOP (b lue),  ReCL (or ange),  tr a in ing  (do tted)  
and Pr ior  (gr een) d istr ibutions  for  each  op timi sation  task .  Both  methods can  pr oduce  enti r e  dataset s  tha t match  the  
s imple  tar get s tr uctur e ,  however ,  on ly  Sr IOP i s  ab le  to  gener ate  molecu les  s i mi lar  to  the  complex  tar get str uctur e .   

SrIOP SrIOP SrIOP 
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molecules across 94 distinct scaffolds. This result 
suggests that DrIOP can generate molecules with 
increasingly complex substructures.  
 
4.4.3 Effects of Sampling from Multiple Agents 
 
We have used rIOP where the previous one or two 
agents were sampled during reinforcement learning. 
For simple optimisation tasks, we used only the 
previous agent. However, for more complex tasks, 
sampling from the previous two models (DrIOP) 
improved performance. For example, in Section 4.4.2 
using sampling from two models, we were able to 
generate all six substructures; however, using just the 
previous model, we only generated the first five.  
 
We postulate that this is due to the specialisation of the 
agent at each step. For substructure generation, the 
success of each generation attempt is dependent on the 
model randomly generating a structure that maximises 
the reward. If, after an RL step, the current agent has 
learned to produce a very narrow selection of 
structures, the likelihood that it will randomly step out 

of this local minimum and produce a molecule that 
satisfies the next reward function is low. Therefore, 
over-specification at any step is harmful in the long run, 
and for the best performance the model should learn to 
generate a diverse set of molecules that satisfy the 
reward function. Figure 8 shows the pairwise tanimoto 
similarity of molecules sampled from the agents taken 
at each step of SrIOP (Figure 8a), DrIOP (Figure 8b) 
and ReCL (Figure 8c). The figure shows that for SrIOP 
and DrIOP, the first step leads to agents that produce 
diverse sets of molecules (blue) with mean tanimoto 
similarities ~ 0.2. However, for SrIOP we observe a 
significant increase in the similarity between molecules 
generated at steps 2 to 5. For DrIOP we see more pairs 
of molecules with low similarities for later steps (e.g., 
steps 2 and 3). Conversely, for ReCL we observe a 
gradual positive shift in the tanimoto similarity 
distributions as each new model becomes slightly more 
specialised. We believed that this would propagate 
forward and allow DrIOP to solve more complex 
reward functions, as shown in Figure 7.  
 

Figur e  7 :  Substr uctur e  tr ee  used  to  gener ate  complex  unseen molecu les .  Each  method a ttemp ts  to  gener ate  each  
substr uctur e  befor e  moving  on.  Sr IOP (b lue) can  on ly  gener ate  molecu les  with  the  f i r st  f i ve  substr uc tur es.  ReCL (or ange)  
Dr IOP (gr een) can  gener ate  a l l  s ix .    

SrIOP 

ReCL 

DrIOP 

Figur e  8 :  Co mpar ison  of mode l  specia l i sa t ion  dur ing  (a )  Sr IOP,  ( b )  Dr IOP,  and  (c )  R eCL.  Tan imo to  s i mi lar i t ies  o f  each  
pa ir  o f  molecu les  in  the  gener ated  set  a t  each  step  by  a l l  met hods wer e  ca lcu lated.  Sr IOP  shows lar ge  in cr ease  in  
s imi lar i ty  for  later  steps (e .g . ,  2  to  5)  suggesting  ear ly  specia l i sat ion .  Dr IOP and R eCL have  mor e  gr adual  incr ease  in  
pa i r wise  tan imoto  s i mi lar i t ies  suggesting  mor e  gr adual  specia l i sat ion .   
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SrIOP 3 
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Despite their differences in performance, both 
implementations of rIOP are useful. The specification 
we observed with SrIOP allows the model to exploit a 
chemical property and generate a set of molecules with 
a very narrow property distribution. In contrast, long 
optimisation regimes will benefit from the reduced 
specificity of DrIOP.  
 
4.5 Limitations of SMILES-Based 

Molecular Generators 
 
We have investigated the performance of, and 
proposed novel, SMILES-based, deep learning, 
molecular generation tools. These tools learn to 
generate novel one-dimensional SMILES 
representations of three-dimensional molecular 
structures (see methods). SMILES-based tools are 
popular because they only require simple architectures 
and can be trained quickly. However, SMILES do 
present some challenges; namely, they do not detail the 
three-dimensional structure of a molecule beyond 
atomic connections and there are several ways to 
represent the same molecule. Canonical SMILES 
provide a standard method to generate SMILES; 
however, it has been shown that SMILES-based 
models trained on random SMILES show improved 
model coverage and a reduction in overfitting.37  
 
The lack of structural information and inherent 
redundancy in SMILES can cause SMILES-based 
models to struggle to fully understand the chemical and 
structural relationships between molecules. This is 
because the similarity between two SMILES strings is 
not well correlated with the similarity between the 
chemical structures they represent. This limitation of 
SMILES-based methods and its effects can be seen in 
our study. For example, when we tried to generate 
molecules with increasingly complex structures, the 
performance of the model was heavily dependent on 
the strings used to represent each substructure. We 
found that for the best performance, the difference 
between each string representing a new target structure 
should be minimised.  
 
To examine the limitations of SMILES-based 
molecular generators, we attempted to generate 
molecules that included a target substructure using 
multiple different SMILES strings to represent the 
intermediate substructures. We used ReCL and SrIOP 
to generate molecules with a series of increasingly 
complex substructures. For each molecule, we 
enumerated five alternate SMILES for each target 
intermediate substructure. We found that the choice of 
SMILES directly affects the performance of the 
models. Around a quarter of all substructure 
generation attempts failed (no molecules were 
generated with the final target substructure) across all 
molecules (Table 4).  But, for each failed attempt, an 
alternative series of SMILES representing the same 
molecules was successful. Figure 9 shows the total 

number of SMILES sampled from the final agent that 
included the desired substructure and the total number 
of distinct scaffolds present in successful attempts for 
two structurally similar molecules (A and B). For 
molecule A, both ReCL and SrIOP fail to generate the 
final target substructure at least once, and both 
methods fail in the final step (supplementary 
information). For molecule B, we were able to generate 
substructures regardless of the choice of SMILES even 
though the intermediate and final substructures were 
almost identical compared to those of molecule A. This 
further highlights the issues caused by SMILES as you 
would expect similar performance across both models 
given the targets' structural similarity. Instead, the 
SMILES used has the largest effect on model 
performance.  
 
Table 4: Proportion of failed substructure 
generation attempts using different SMILES across 
all  molecules tested using ReCL and SrIOP.  

 
The choice of SMILES also has a large effect on the 
diversity of the generated molecules. For molecule B 
using SrIOP series 3 (Figure 9c) we generated more 
than 250 distinct scaffolds across the 500 molecules 
sampled, while all other SMILES series generated 
between 50 and 150 scaffolds with ReCL and SrIOP. 
Similar fluctuations in performance were observed for 
both ReCL and SrIOP across all molecules tested 
(supplementary information).  
 
Molecular representations such as SELFIES38 and 
Deep-SMILES39 attempt to overcome some of the 
issues of SMILES in machine learning. However, 
higher dimensional representations that include 

Method Number 
of 
attempts 

Number 
of failed 
attempts 

Percentage of 
failed 
attempts / % 

ReCL 40 8 20 
SrIOP 40 12 30 
Total 80 20 25 
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structural information are likely to be a more powerful 
way to represent molecules.   

5 Conclusions 
We have investigated how well deep RL molecular 
design methods can search beyond the chemical space 
represented in training data and the effects of the 
composition of the training data on generated 
molecular sets. The results show that it is possible to 
control the distribution of molecules generated by 
altering the reward function. However, we 
demonstrate how standard methods (REINVENT) can 
fail towards the edge of the training data distribution. 
We found that it is possible to generate molecules with 
properties that are not present in the training data; 
nevertheless, we showed that the representation of the 
desired molecular profile affects the distribution of the 
generated molecular library. We highlight the lack of 
control standard methods provide in terms of 
composition, particularly diversity, of generated 
molecules and the limitations of SMILES-based 

molecular generation methods. To overcome some of 
these issues, we propose a new curriculum learning 
approach, recurrent iterative optimisation procedure 
(rIOP), to help boost the diversity of generated 
molecules when few or no examples of the desired 
molecular profile are present in the training data. 
Using this method, we generate structures similar to a 
series of unseen target structures and outperform other 
curriculum learning approaches (ReCL). We describe 
SrIOP and DrIOP, which enable a user to control the 
diversity of generated molecules for simple and 
complex optimisation tasks. Using several SMILES 
representations of the same molecule when generating 
target structures, we show how the choice of SMILES 
directly affects the success and performance of 
SMILES-based tools. Therefore, our method, like any 
method based on SMILES or other one-dimensional 
representations will be hampered by the lack of direct 
structural information.  
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Figure 9: Effects of SMILES choice on substructure generation performance using ReCL and SrIOP. For 
each molecule 5 sets of different intermediate SMILES were generated, then used during optimisat ion. 
Each SMILES variat ion at each step represented the same molecule. (a) and (c) are the total number of 
SMILES sampled from the final agent that included the target substructure (500 molecules were 
sampled). SrIOP (pink) and ReCL (b lue).  (b) and (d) are the total number of dist inct scaffolds present 
in the successful samples. SrIOP (orange) and ReCL (green). (a) and (b) correspond to molecule A, while 
(c) and (d) correspond to molecule B. The figure shows that the SMILES choice direct ly affects 
optimisat ion performance and diversity  of generated molecules. For example, opt imisat ion of molecule 
A failed (no molecules matching the desired substructure) at  least  once with both methods, despite 
intermediate SMILES at  each step across all sets representing the same structure.   

(c) 

(b) (a) 

(d) 
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6 Code & Data Availability 
 
The raw data that supports the findings of this study 
are available from the corresponding author upon 
request.  
 
The code used in this study is available at 
https://github.com/m-mokaya/riop.git 
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Supplementary Information 
Testing the Limits of SMILES-based De Novo Molecular Generation 

with Curriculum and Deep Reinforcement Learning 

 

S1. Reinforcement Learning Reward Profiles 

We used simple step reward functions in all our experiments. For each property, we selected a 
range of values which would return a positive reward, and then all SMILES generated within 
that range returned a value of one. All SMILES outside the reward range returned zero. For 
non-numerical optimisation tasks (for example, substructure generation), if optimisation was 
successful, the model returned a value of one; otherwise, zero was returned. Figure S1 shows 
two example reward functions. Figure S1a shows the profile of a reward range; all values within 
this range received a reward of one. Figure S1b shows a reward profile with a limit where any 
value greater than 3 received a reward of one. Table 1 shows the reward profiles for all our 
property optimisation experiments. 

 

S2. Control of generated libraries 

Our results show how we can often control the property distribution of generated molecular 
sets by changing the reward profile during reinforcement learning. We show this to be possible 
between property-specific values; however, outside of these values, optimisation fails. We 

Figure S1: Example reward functions used in our study. (a) reward profi le for experiment with a reward 
range. All  molecules inside the range return a reward of one, all  outside return zero. (b) reward profi le 
for experiment with reward threshold. All  molecules greater than the threshold return one, all  other 
SMILES return zero. For a l imit,  the same shape would be observed, instead all  SMILES less than the 
l imit would return one, all  other smiles would return zero.  

(a) (b) 
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demonstrate this with LogP and hydrogen-bond acceptor (HBA) count optimisation. Figure S2 
shows the distribution of all optimisation attempts for HBA count between 0 and 350 HBA’s.  

Figure S3 shows a series of molecules each generated with increasing LogP reward profiles. 
We see a gradual increase in the LogP of each molecule as the reward range increases; however, 
at the low extreme (-15 < LogP < -10) optimisation fails and a molecule similar to the training 
data (LogP between 0 and 10) is produced. Similar results are seen in Figure S2 during 
hydrogen-bond (HBA) count optimisation. We saw gradual increases in the HBA count until 
about. 20, beyond this optimisation fails and molecules similar to the training data are 
produced. 

 

 

 

Figure S2: Distribut ion of generated set  for HBA count optimisat ion. Each line corresponds to the property 
distribut ion of the molecules sampled from an agent trained with a reward range detailed in the legend. 
The distribut ion of training data (dotted) is  also provided.  

Figure S3: Example molecules from LogP optimisat ion. Each molecule was sampled from an agent optimised to 
produce molecules with LogP between (a) -15 and -10, (b) – 10 and -5, (c) -5 and 0, (d) 5 and 10, (e) 10 and 
15.   

(a) (b) (c)
 

(d) 
(e) 
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In our comparison of SrIOP to a similar curriculum learning method (ReCL) we tested how 
well both methods are able to generate molecules similar to target structure with no similar 
molecules in training data. In our results, we show that ReCL struggles with a complex target 
structure (Figure 5b), while SrIOP is able to generate similar molecules (Figure 6). One key 
difference between the methods is the total number of iterations allowed during training. Under 
the standard protocol, ReCL is assigned a total of 1500 training iterations for all intermediate 
tasks. The agent will only move on to the next task when it has satisfied the previous one. On 
the contrary, SrIOP trains for exactly 1000 iterations per intermediate task. This means that for 
the same set of intermediate tasks, SrIOP is able to train for more iterations. To ensure that any 
difference in performance is not a result of training iterations, we increased the total number 
of iterations allowed for ReCL from 1500 to 3000 and 6000 (Figure S4). We found that this 
had no effect on the results as both models are unable to generate molecules with a tanimoto 
similarity greater than 0.8 to the target structure. 

 

S3. Effects of percentage representation 

In all our experiments all training datasets were ~800,000 molecules, and contained either 0%, 
2%, 5% 7% or 10% of the molecules within the reward profile. Table S1 detailed the reward 
thresholds for each property in this experiment. Valid molecules with a property greater than the 
threshold received a reward of one. All other molecules returned zero reward.  
 
Table S1: Reward thresholds and dataset sizes for percentage representation experiments.  

Property Dataset Size Reward Threshold 
Hydrogen Bond Acceptors 798,471 8 
Molecular Weight 799,248 527 
TPSA 799,063 122 
QED 797,569 0.83 

Figure S4: Distribut ions of generated sets of molecules from ReCL for s imilarity  generat ion task. Agent 
training was done for 3000 (blue) and 6000 (orange) (with) iterat ions to better match SrIOP training 
regime. Training (dotted) and prior model (green) distribut ions are provided for reference. 
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Figure S5: (a) Number of scaffolds present in each training dataset for each curated dataset across four propert ies. 
QED (blue), HBA (orange), TPSA (green), molecular weight (red).  (b) Number of scaffolds in the reward range region 
of the same datasets.  

F igure S6: Training data distribut ions for four propert ies (a) Molecular weight, (bb) TPSA, (c) QED and (d) HBA count, 
and percentage representat ions tested.  

(a) (b) 

(c) (d) 
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Table 2: (a) Mean and (b) standard deviation of generated datasets property distributions for three 
properties at f ive different training data representations. The values are the average taken from three 
repetitions.  

(a)  
Property Mean of property distribution 

0 2 5 7 10 
HBA 9.2 13.2 17.4 19.7 18.4 
QED 0.900 0.906 0.908 0.903 0.891 
TPSA 176 193 207 206 204 
MW 624 715 748 735 787 

 

Property Standard deviation of property distribution 
0 2 5 7 10 

HBA 0.194 3.72 3.15 3.61 2.66 
QED 0.00141 0.00128 0.00474 0.00125 0.0137 
TPSA 3.13 3.69 5.36 3.25 4.92 
MW 2.52 12.0 30.1 10.9 44.3 

 

(b) 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 18, 2022. ; https://doi.org/10.1101/2022.07.15.500218doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.15.500218
http://creativecommons.org/licenses/by/4.0/


 

S5. Limitations of SMILES 

We show how SMILES choice directly affects the performance of molecular generators. We 
show that single model rIOP is unable to generate molecules that include a substructure given 
a series of the increasingly difficult substructures (Figure 7).  shows the series of SMILES 
used for both ReCL and rIOP. ReCL is able to generate all 6 substructures, whereas single 
model rIOP can only generate 3. We do show how double model rIOP can also generate all 
six substructures. We suspected that altering the SMILES used would affect the performance 
of single model rIOP and found alternative routes (figure B) that allowed more of the 
substructures to be generated. Although we did not find a route to the final structure, we 
believe that an exhaustive search of possible SMILES combinations would lead to successful 
substructure generation.  

 

 

 

 

Figure S7: Property distribut ions for four propert ies, (a) HBA, (B) molecular weight, (c) QED, (d) 
TPSA, that where the same optimisat ion regime was attempted for each using different training 
data. Each property was tested with 0% (blue), 2% (yellow), 5% (green), 7% (red) and 10% (purple) 
of the training data matching the reward profile. As the training representat ion increases, we see a 
shift  in the property distribut ion. Suggest ing that the percentage representation does affect  the 
composit ion of generated sets of molecules.   
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We have shown the dependence of molecular generators on SMILES choice. To further this, 
we conducted an experiment on several different molecules from Chembl and curated a series 
of target substructures. Figure S9 shows the molecules used in our experiments.  

Figure S8: Diagrams showing our various routes used in attempts to generate molecules that included the 
final substructure. Green arrows represent successful steps where the molecule following the arrow was 
included in generated molecules. Red arrows are unsuccessful steps.  
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) 

Figure S9: Diagram of all molecules used to demonstrate the effects of SMILES choice on model performance.  
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Figure S10: Effect of SMILES on substructure optimisat ion performance using ReCL (a and b) and single model  
rIOP (c and d). For each molecule (A-H), 5 sets of intermediate SMILES were enumerated and used during 
optimisat ion. In (a) and (c) the coloured bars represent the total number of molecules generated by the final 
agent (500 molecules were sampled) that included the desired substructure (F igure S9). In (b) and (d), the bars 
show the total number of dist inct scaffolds in the same sample. The figure shows that the SMILES choice 
direct ly  affects optimisat ion performance and diversity of generated molecules. For example, opt imisat ion of 
molecule B failed (no molecules matching the desired substructure) three t imes using ReCL (a) and twice using 
rIOP (c) despite intermediate SMILES at  each step across all sets representing the same structure.  
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Table 3: Number of molecules that include the target substructure and number of distinct scaffolds for 
each set of SMILES for (a) molecule A and (b) molecule D.  

(a)  
Run Molecules with Substructure Number of Scaffolds 

SrIOP ReCL 
1 498 78 415 142 
2 498 61 462 64 
3 489 264 471 85 
4 497 41 460 55 
5 497 104 450 124 

 

Run Molecules with Substructure Number of Scaffolds 
SrIOP ReCL 

1 499 69 410 114 
2 497 68 416 21 
3 494 27 400 85 
4 0 0 440 155 
5 0 0 0 0 

 

Figure S11: Diagram displaying the intermediate and final substructures we aimed to generate for two molecules.  (a) 
Molecule A and (b) Molecule D from Figure S9. The substructure following a red arrow was not successfully  generated 
after optimisat ion. Substructures following a green arrow were generated. Despite the intermediates used for both 
molecules being very s imilar, both methods tested (ReCL and SrIOP fail on the last step for molecule A.   

(a) 

(b) 

(b) 
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