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Abstract 26 
Could non-pharmacological constructs, such as beliefs, impact brain activities in a dose-27 
dependent manner as drugs do? While beliefs shape many aspects of our behavior and wellbeing, 28 
the precise mapping between subjective beliefs and neural substrates remains elusive. Here, 29 
nicotine-addicted humans were instructed to think that an electronic cigarette (e-cigarette) 30 
contained either “low”, “medium”, or “high” levels of nicotine, while nicotine content was kept 31 
constant. After vaping the e-cigarette, participants performed a decision-making task known to 32 
engage neural circuits affected by nicotine while being scanned by fMRI. Activity in the 33 
thalamus, a key binding site for nicotine, increased parametrically according to belief dosage. 34 
Furthermore, the functional coupling between thalamus and ventromedial prefrontal cortex, a 35 
region implicated in value and state representations, also scaled to belief dosage. These findings 36 
illustrate a dose-dependent relationship between a thalamic circuit and nicotine-related beliefs in 37 
humans, a mechanism previously known to only apply to pharmacological agents. 38 
 39 
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Introduction 42 
Humans hold beliefs that can profoundly alter our behaviors and wellbeing. Albeit subjective in 43 
nature, beliefs – similar to other mental functions – are represented by biological substrates in the 44 
brain1,2. However, the exact mapping between subjective beliefs and neurobiological substrates 45 
remains largely unknown, hindering our understanding of neuropsychiatric conditions like drug 46 
addiction, where purely biochemical explanations are not sufficient to account for the complexity 47 
of the disorder3,4. Elucidating the precise neural mechanisms of beliefs is also important for 48 
understanding how beliefs and expectations play a role in pharmacological treatments, where 49 
individuals’ drug response differ drastically5. 50 
 51 
The placebo effect represents a notable example supporting the potential interaction between 52 
beliefs and neurobiology. In these observations, one’s symptoms can improve simply due to 53 
positive beliefs about a receiving a treatment while there is no active ingredient in the drug5–9. 54 
Even in the presence of a powerful neuroactive substance such as nicotine, beliefs can exert a 55 
binary all-or-none type of effect on neural responses in human smokers. Collectively, these 56 
findings provide initial support for the notion that beliefs can broadly affect neurobiological 57 
activities in the human brain10,11 without evidence for how precise the neural effect of beliefs 58 
might be. 59 
 60 
To establish precision, pharmacological research has typically relied on the concept of dose-61 
dependent response, where the amount of active ingredients in a drug is known to modulate 62 
biological processes proportionally. In terms of neuropharmacology, dose responses in the brain 63 
have been observed in a wide range of neuroactive drugs such as nicotine12, alcohol13, and 64 
marijuana14. However, such inquiry has rarely existed in neuroscience research on human 65 
beliefs. Is it possible that beliefs – a highly subjective and implicit mental construct – could 66 
modulate neurophysiological responses in a similar dose-dependent manner?  67 
 68 
Based on the literature reviewed thus far, we hypothesized that human beliefs – such as those 69 
related to neuroactive substances like nicotine – can modulate brain activities in a manner that is 70 
similar to pharmacologically induced dose responses. Nicotine is known to broadly affect 71 
distributed regions in the brain, including the thalamus and the striatum15,16, both of which are 72 
important for cognition and decision-making17,18. The thalamus in particular, contains one of the 73 
highest densities of nicotinic acetylcholine receptors (nAChRs) for nicotine binding in the human 74 
brain19,20. The stimulation of nAChRs by nicotine can lead to subsequent dopamine release in 75 
mesolimbic structures such as the ventral striatum15,21. In humans, however, high levels of 76 
nicotine are not a necessary condition for the activation of nAChRs. For instance, positron 77 
emission tomography (PET) imaging studies have demonstrated that there can be a substantial 78 
degree of occupancy of nAChRs even when nicotine-addicted individuals only smoked 79 
denicotinized or low-nicotine content cigarettes22,23, or only had second-hand smoke24. These 80 
findings pinpoint to the possibility that nicotine itself was not sufficient to account for the 81 
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complex neural effects observed in nicotine-dependent humans, and that cognitive constructs 82 
such as nicotine-related beliefs may play a crucial role in modulating addiction neurobiology. 83 
 84 
To test this hypothesis, we instructed nicotine-dependent human smokers to believe that an 85 
electronic cigarette (e-cigarette) they were about to vape contained either “low”, “medium”, or 86 
“high” levels of nicotine, while the actual nicotine content was fixed across all e-cigarettes (see 87 
Materials and Methods for details). After vaping, smokers (final sample included 60 scans 88 
across 20 smokers) performed a monetary decision-making task during functional magnetic 89 
resonance imaging (fMRI; Fig. 1a). A group of non-smoking healthy controls (HCs, n=31) also 90 
performed the same fMRI task, but without going through the vaping procedure. We chose to use 91 
e-cigarettes to deliver nicotine as nicotine strength can be controlled much more precisely 92 
compared to traditional cigarettes. Based on the literature reviewed thus far, we predicted that the 93 
activity in those neural regions characterized by high nAChRs (i.e. thalamus and related 94 
structures) might represent beliefs about nicotine dose in a precise manner, resembling the dose-95 
dependent responses found in pharmacological studies. If proven true, such a finding would 96 
reveal a higher degree of sophistication and precision of the mapping between human beliefs and 97 
brain states than previously understood.  98 
 99 
Results  100 
Instructions induced changes in subjective beliefs in smokers, but did not affect overall 101 
nicotine intake, metabolism, or baseline saturation 102 
Our key experimental manipulation is the instruction given to the participants about whether the 103 
e-cigarette had “low”, “medium”, or “high” strength of nicotine. To examine if this design 104 
indeed induced changes in beliefs about nicotine in our subjects, we asked all participants to rate 105 
their perceived nicotine strength using a 10-point scale after vaping. Overall, participants’ 106 
perceived nicotine strength significantly increased as a function of instructed beliefs about 107 
nicotine dosage (mean ± SD (AU); ‘low’: = 3.52 ± 0.61, ‘medium’: = 4.52 ± 0.41, ‘high’: = 5.82 108 
± 0.47, rmANOVA F(2,38) = 9.71, P = 0.0004, partial η2�=�0.34, 90% 109 
CI�=�0.12≤�η�≤�048, Fig. 1b), supporting the validity of our experimental manipulation.  110 
 111 
Next, we took extensive sanity checks to ensure the instruction did not interfere with 112 
participants’ nicotine intake, metabolism, or their baseline nicotine saturation levels. First, 113 
participants might vape less in “weaker” nicotine conditions due to a lack of interest. To control 114 
for this, we set vaping time to 20 minutes during data collection. Importantly, we also quantified 115 
the amount of nicotine intake, which equals the change in cartridge weight after vaping 116 
multiplied by the actual percentage of nicotine content (1.2%). We found that nicotine intake did 117 
not differ across belief conditions (nicotine intake (mg): ‘low’: = 0.928 ± 0.56, ‘medium’: = 118 
0.719 ± 0.423, ‘high’: = 0.783 ± 0.434; rmANOVA F(2,38) = 1.806, P = 0.178; Fig. 1c), 119 
suggesting that difference in belief about nicotine did not affect how much liquid or nicotine was 120 
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consumed by the smokers. The overall amount of consumed nicotine here is in a range that is 121 
similar to nicotine delivered by traditional cigarettes in previous experimental studies10,11,23.  122 
 123 
However, it might be possible that even with the same nicotine consumption, nicotine 124 
metabolism might still differ between belief conditions. To address this, we collected saliva 125 
samples both before and after vaping for high-performance liquid chromatography tandem mass 126 
spectrometry (LC-MS/MS) analytical quantification of cotinine—a nicotine metabolite indicative 127 
of plasma nicotine levels25 (see Materials and Methods for details). We found that vaping-128 
induced changes in cotinine concentrations (ng/mL) were comparable across conditions 129 
(rmANOVA F(2,32) = 0.959, P = 0.393; Fig. 1d), suggesting that nicotine metabolism itself was 130 
unlikely a factor contributing to any brain-based differences.  131 
 132 
We also measured exhaled carbon monoxide (CO) before vaping as an index of participants’ 133 
baseline nicotine saturation level. We did not observe differences in CO levels across conditions 134 
(parts per million (ppm); rmANOVA F(2,32) = 0.364, P = 0.698; Fig. 1e). Taken together, these 135 
analyses confirmed that our instruction successfully influenced participants’ beliefs about 136 
nicotine strength, while mitigating the concern that imbalanced nicotine consumption, 137 
metabolism, or baseline deprivation might have contributed to any neural differences across 138 
conditions. 139 
 140 
Thalamic representation of dose-like responses induced by nicotine-related beliefs  141 
Our main quest here is how beliefs about nicotine are represented by neural activities in smokers. 142 
We chose to measure neural activities during a value-based decision-making task because both 143 
nicotine and belief about nicotine have been shown to influence similar circuitries involved in 144 
reward processing10,11,26,27. Specifically, we used a sequential investment task (see Materials 145 
and Methods for details) to probe reward processing; similar paradigms have been previously 146 
used in both healthy controls and those with nicotine addiction10,11,26,27. Briefly, participants 147 
made a series of choices regarding how to invest (or short-sell) in simulated stock markets, based 148 
on one’s prediction of market return rt, defined as rt = (pt−pt−1) / pt−1 (where pt denotes the 149 
market price at time t). Because subjects were allowed to place either positive or negative bets, 150 
they could win (or lose) money in either positive or negative markets. As such, the absolute 151 
value |r| represents the actual reward value that is attainable to the subject. 152 
 153 
In a whole-brain ANOVA with belief as the main factor (“low”, “medium”, or “high”) and the 154 
value signal |rt| as the key parametric modulator (see Materials and Methods for details), we 155 
observed that value-related neural activities in the thalamus exhibited a dose-dependent response 156 
to instructed beliefs about nicotine strength (peak at MNI: x = -15, y = -19, z = -1; P < 0.05, 157 
FWE (family-wise error) cluster-corrected at a cluster-defining threshold of P < 0.005, 158 
uncorrected, k = 50, P = 0.006; Fig. 2a). No other brain structures showed a similar neural 159 
activity pattern in relation to beliefs at the whole brain level with the same statistical threshold. 160 
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Whole brain-level statistical maps of each belief condition are available in Supplementary Fig. 161 
1).  162 
 163 
A region of interest (ROI) analysis using an independent anatomical mask28 further confirmed 164 
that BOLD signals from the thalamus differentiated between instructed belief conditions (mean ± 165 
SD (AU); ‘low’: = 0.157 ± 1.047, ‘medium’: = 0.601 ± 0.714, ‘high’: = 2.914 ± 0.865; 166 
rmANOVA test F(2,38) = 3.62, P = 0.036, partial η2�=�0.16, 90% 167 
CI�=�0.0057�≤�η�≤�0.30, Fig. 2b). These activations did not differ significantly from non-168 
smoking health controls (n=31 for HCs; see Materials and Methods for details; mean ± SD 169 
(AU) for HC: = 2.318 ± 4.258; two-sample t-test: ‘smokers-low’ vs ‘HC’ t(49) = 1.95, p = 0.057; 170 
‘smokers-medium’ vs ‘HC’ t(49) = 1.53, p = 0.132; ‘smokers-high’ vs ‘HC’ t(49) = -0.50, p = 171 
0.616). 172 
 173 
We also carried out a non-parametric approach to examine if the relationship we observed 174 
between beliefs and neural activities was indeed not random. Using a permutation analysis 175 
approach, we iteratively extracted beta estimates from surrogate GLMs based on shuffled belief 176 
conditions (N = 2,000). We observed that beta estimates for the actual allocation of belief 177 
conditions ranked significantly higher than the surrogate distribution (P = 0.002, Fig. 2c). A finer 178 
parcellation of the thalamus29 revealed that ventral posterior nuclei – notably the centromedian 179 
(CM) and lateral geniculate nuclei (LGN), were the primary nuclei in which reward-tracking 180 
neural activity differentiated between instructed beliefs in a parametric manner (FDR corrected 181 
at q = 0.05; VPL, Pulvinar, LGN, CM all P < 0.05; see Supplementary Information and 182 
Supplementary Fig. 2). 183 
 184 
Next, we asked whether thalamic activities were actually predictive of the belief condition using 185 
a decoding analysis. We trained a regularized linear discriminant analysis (rLDA) model to 186 
decode instructed belief conditions from multivoxel spatial patterns extracted from the 187 
thalamus30,31. We were able to decode at 49.3 % accuracy the instructed belief condition from the 188 
distributed multivoxel patterns of thalamic activity. This decoding accuracy was significantly 189 
greater than chance level (33.3 %), as confirmed by a permutation test where we iterated the 190 
procedure with shuffled labels (N = 10,000) and compared the true decoding accuracy to the 191 
surrogate accuracy distribution (surrogate: 33.1 ± 6.3 %, P = 0.011, Fig. 2d). We further applied 192 
this decoding approach to each nucleus within the thalamus, using the same anatomical 193 
parcellation as before. We observed that decoding accuracy was roughly aligned with the spatial 194 
distribution of effects uncovered in the GLM analysis in that there was greater decoding 195 
accuracy in the ventral posterior nuclei. Following FDR correction only the posterolateral 196 
nucleus (VPL) nucleus showed decoding ability significantly higher than chance (FDR corrected 197 
at q = 0.05; VPL, P = 0.018; see Supplementary Fig. 4). 198 
 199 
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Given the individual variability in susceptibility to instructed beliefs10,11, we also asked whether 200 
participants’ subjective beliefs, indexed by their self-reported perception about nicotine strength, 201 
also parametrically modulated thalamic responses. We found that across all participants and all 202 
sessions, subjective ratings of perceived nicotine strength correlated with reward-related 203 
activities in the thalamus (Spearman correlation, r = 0.27, P = 0.035, Fig. 2e), suggesting that 204 
these neural signals were linked to participants’ perceptions about nicotine strength following 205 
instructed beliefs. Taken together, these analyses further confirmed that experimental 206 
instructions about nicotine strength shaped subjective perception in smokers and induced dose-207 
dependent neural responses in the thalamus, a brain region with one of the highest concentrations 208 
of nicotinic acetylcholine receptors and a main binding site for nicotine19,32. 209 
 210 
Taken together, these results pinpoint to the thalamus – in particular the posterior thalamus - as a 211 
key neural substrate representing nicotine-related beliefs. This finding might provide a 212 
mechanistic account for the previously observed effects that smoking denicotinized or low-213 
nicotine content cigarettes can still induce a substantial level of nAChR occupancy in the human 214 
brain22–24. 215 
 216 
Observed effect of beliefs on thalamic activity was not due to sensorimotor effects or spatial 217 
smoothing 218 
Next, we conducted several control analyses to rule out alternative explanations of observed 219 
thalamic effects. In addition to its involvement in nicotine addiction, the thalamus - especially 220 
the thalamic nuclei identified so far - is also known for encoding basic sensorimotor information. 221 
Thus, it is possible that the differential neural states in the thalamus were induced by different 222 
levels of visual or motor processing for the three conditions, instead of the belief per se. To rule 223 
out this possibility, we first checked button pressing behavior during the task, and found no 224 
difference between belief conditions (see Supplementary Information). We also examined 225 
neural responses related to button presses (motor) and simple viewing of market (visual) by 226 
constructing separate GLMs to model the fMRI data. We found no difference in thalamic activity 227 
related to motor or visual processing between belief conditions (Supplementary Fig. 3a).  228 
 229 
Given that technical choices during fMRI preprocessing such as spatial smoothing could have an 230 
impact on the resulting findings33, we also conducted all of our main analyses again by using a 231 
preprocessing pipeline without spatial smoothing (see Materials and Methods for details). We 232 
confirmed that the identified belief representation in thalamus was not due to spatial smoothing 233 
(Supplementary Fig. 3b). Taken together, these additional analyses ruled out several important 234 
confounds and suggest that it is unlikely that visual or sensorimotor elements contributed to the 235 
observed mapping between belief conditions and thalamic activity. 236 
 237 
Striatal activity tracked reward value, but did not distinguish between belief conditions 238 
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Thus far, our primary finding related on the key belief effect centered around the thalamus. 239 
However, previous work10 has also identified the ventral striatum as a key region that could be 240 
modulated by belief about nicotine. The ventral striatum, a mesolimbic region receiving 241 
dopaminergic inputs from the ventral tegmental area (VTA), is known to encode reward signals 242 
and also affected by nicotine addiction. Thus, we conducted a separate set of analyses focused on 243 
the ventral striatum. Consistent with previous findings, we found that the ventral striatum tracked 244 
the market value signal |rt| across all conditions (PFDR q < 0.01, Fig. 3a). However, striatal 245 
responses did not differ between belief conditions at the whole brain level in an ANOVA 246 
analysis (P > 0.05, Supplementary Fig. 5a).  247 
 248 
An ROI analysis using an independent mask of the nucleus accumbens (NAcc) further confirmed 249 
that neural activities in the NAcc did not differentiate between belief conditions (rmANOVA 250 
F(2,38) = 0.056, P = 0.945, permutation test: P = 0.94 ; Fig. 3b). These parameter estimates 251 
were also comparable to those extracted from the same group of healthy controls using the same 252 
NAcc mask (smokers: ‘low’: = 1.228 ± 3.329, ‘medium = 1.248 ± 2.828 ‘high’: = 1.016 ± 253 
2.6983, ‘HC’: = 1.781 ± 2.138; two-sample t-test: ‘low’ vs ‘HC’ t(49) = -0.740, p = 0.462; 254 
‘medium’ vs ‘HC’ t(49) = -0.784, p = 0.436; ‘high’ vs ‘HC’ t(49) = -1.138, p = 0.261). 255 
 256 
In line with the GLM results, classification accuracy for belief condition using patterns extracted 257 
from the NAcc was not significantly higher than chance (ground truth = 34.0 %, surrogate: 32.1 258 
± 6.3 %, P = 0.372; Fig. 3c). Finally, we examined reward-related activations in other basal 259 
ganglia nuclei, namely the putamen and the caudate nucleus. We did not find significant 260 
differences between belief conditions either in separate ROI analyses (putamen rmANOVA 261 
F(2,38) = 1.15, P = 0.327; caudate rmANOVA F(2,38) = 0.24, P = 0.781; Supplementary Fig. 262 
5b-c). 263 
 264 
Seemingly surprising at a first glance, the lack of belief effects on the striatum was consistent 265 
with the lack of belief effect of instructed beliefs on reinforcement learning behavior in smokers 266 
in this study (see Supplementary Information and Supplementary Fig. 6 and Supplementary 267 
Table 1 for details). Combined with the main belief effect concerning the thalamus, we speculate 268 
that the experimentally manipulated beliefs in this study primarily modulated low-level 269 
information gating as opposed to high-level value-guided decision-making in the previous 270 
study10. This difference might be attributed to the fact that smokers were not familiar with e-271 
cigarettes in the current study and thus were not driven by conditioned responses tied to using a 272 
traditional cigarette as is the case for previous work10. We will discuss this in more detail later. 273 
 274 
Belief about nicotine modulated functional connectivity between prefrontal cortex and 275 
thalamus in a dose-dependent manner 276 
At the circuit level, the thalamus is heavily connected to various cortical regions and is known to 277 
contribute to higher-order cognition via these connections34. Thus, we hypothesized that belief 278 
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might also modulate the functional connectivity between the thalamus and higher cortical regions 279 
such as prefrontal regions. Specifically, the ventromedial prefrontal cortex (vmPFC) has been 280 
increasingly recognized as a key region in representing task states35,36 and the structure of 281 
abstract knowledge. Anatomically, it is well known that the thalamus and vmPFC are densely 282 
connected 37,38. Thus, we predicted that thalamic-vmPFC coupling would differ between belief 283 
conditions in our study. 284 
 285 
To this end, we carried out a psychophysiological interaction (PPI; see Materials and Methods) 286 
analysis39 with the thalamus as a seed region to investigate how beliefs about nicotine were 287 
represented at a neural circuitry level. We found that belief about nicotine indeed modulated 288 
functional connectivity between the thalamus and the vmPFC both at the whole brain level (PSVC 289 
< 0.05, FWE cluster-corrected at a cluster-defining threshold of P < 0.005, uncorrected, P = 290 
0.041; Fig. 3a) and via an ROI analysis using a vmPFC mask from an independent study 291 
involving belief formation40 (peak at MNI x = -11, y= 50, z = -6, k = 5; Supplementary Fig. 7a; 292 
Fig. 3b). In sharp contrast, a separate set of PPI analyses using the ventral striatum as a seed 293 
region did not yield any significant changes in functional connectivity with the vmPFC or any 294 
other brain region at the same threshold (Supplementary Fig. 7b). The vmPFC is a brain region 295 
heavily implicated in the computation of value and belief updating36 Importantly, recent work 296 
has pinpointed to the vmPFC for its representation of task states41. Thus, this result suggests that 297 
in addition to modulating thalamic activation itself, belief about nicotine also parametrically 298 
scaled circuit-level interactions between the thalamus and a prefrontal region involved in higher-299 
level cognition and decision-making.  300 
 301 
Discussion 302 
How are drug-related beliefs represented in the human brain? Using nicotine as a test case, we 303 
demonstrated that verbal instruction regarding nicotine strength (“low”, “medium”, or “high”) 304 
modulated how human smokers perceived the strength of nicotine contained in an e-cigarette that 305 
they vaped. Importantly, beliefs about nicotine strength were represented by neural activities in 306 
the thalamus in a dose-dependent fashion, during value-based decision-making. Across 307 
individuals, the subjective perception of nicotine strength parametrically correlated with neural 308 
activities in thalamus. At the circuitry level, the functional coupling between thalamus and 309 
vmPFC also scaled parametrically to belief “dose”. Taken together, these findings demonstrate 310 
the precise mapping between beliefs and neural activities in a prefrontal-thalamic circuit.  311 
 312 
While humans hold beliefs about a wide range of stimuli and events, beliefs about substances are 313 
particularly important to examine due to their high relevance regarding substance use disorders. 314 
Here we demonstrated that nicotine-related beliefs are mapped onto neural states of the brain 315 
circuits that are critically involved in nicotine addiction in a way that mimics dose-responses of 316 
pharmacological agents. The thalamus — especially its posterior portion — contains one of the 317 
highest densities of nAChRs in the human brain20 as quantified by both autoradiography19,42,43 318 
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and functional imaging44,45. This anatomical feature is hypothesized to account for the attention-319 
enhancing effect of nicotine44,46 as the thalamus is known to be central for gate incoming sensory 320 
information. Indeed, previous work has demonstrated acute dose-dependent responses induced 321 
by nicotine itself in the human thalamus45. Importantly, previous work showed that even when 322 
nicotine level was moderate or close to none, smoking cigarettes can induce a substantial level of 323 
occupancy of nAChRs in the thalamus in human smokers22–24. This suggested that habitual 324 
behaviors that had been previously reinforced by the intake of nicotine (e.g., the act of smoking 325 
itself) can modulate thalamic activity irrespective of actual nicotinic content. However, the 326 
mechanism linking the effect of this observable behavior to subjective states remained unclear. 327 
Our study further reveals a granular mechanism that might account for these previous findings – 328 
that difference in neural activations can be triggered by manipulating one’s beliefs about nicotine 329 
intake (which likely acts as precursors of explicit habitual actions), as if the nAChRs receptors 330 
were activated by the presence of actual different dosages of nicotine. This implies that cognitive 331 
constructs such as beliefs and expectations can modulate fine-grained biological mechanisms in 332 
the human brain in a way that is similar to pharmacological agents.  333 
 334 
We also found that vmPFC-thalamus functional coupling during decision-making also 335 
distinguished between belief conditions. The vmPFC has been extensively studied in the context 336 
of value-based decision-making processes and has been proposed to encode a “common 337 
currency” of subjective value47. In serving this role, the vmPFC has been shown to receive input 338 
from both the ventral tegmental area and the basal ganglia via the thalamus17. Importantly, more 339 
recent computational accounts suggest that the vmPFC encodes task states, including forming 340 
abstract representations of task structures that are not directly observable48. Consistent with our 341 
current finding, the functional connectivity between vmPFC and thalamus has also been shown 342 
to subserve prior expectations about incoming visual stimuli49. Here, our finding expands 343 
previous work by demonstrating that instead of functioning as a binary “switch”, the vmPFC-344 
thalamus circuit encodes information related to beliefs and expectations in a parametric manner, 345 
highlighting the importance and precision of this circuitry in representing abstract mental states.  346 
 347 
In contrast to the thalamus, the ventral striatum tracked reward value overall, without 348 
distinguishing between belief conditions. This result is different from a previous study where the 349 
belief of “yes” or “no” nicotine modulated activities in the ventral striatum (but not thalamus) in 350 
smokers10. We speculate that this discrepancy is mainly due to differences in study design 351 
between the current and previous studies. Importantly, the current study design uses e-cigarettes 352 
to deliver nicotine to participants were not experienced with vaping, as opposed to the use of 353 
traditional cigarettes that smokers were highly experienced with in previous work10,11. This 354 
“incongruency effect” could have removed conditioned responses related to smoking in the 355 
smokers in the current study, as substance-dependent humans are known to be sensitive to 356 
subtleties in sensory cues associated with the medium through which the drug is delivered50,51. 357 
As the striatum is heavily involved in reinforcement learning, it is not surprising that striatal 358 
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activities showed a response to instructed beliefs in such study design where the mere presence 359 
of a cigarette could induce strong conditioned effects. Thus, the identified finding regarding the 360 
thalamic circuit represents a mapping between beliefs and neurobiology that is less dependent on 361 
conditioned effect as reported in previous work. Furthermore, the average nicotine level was 362 
higher in the current study (~0.8 mg from vaping) than that of our own previous work (~0.6 363 
mg)10. Because the thalamus contains a higher density of nAChRs than the striatum, a higher 364 
level of consumed nicotine might amplify thalamus-related activities that are primarily tied to 365 
nicotine’s pharmacological effects in this study, as opposed to learned effects in the previous 366 
study4,10,11.  367 
 368 
In sum, our study provides insight into how a thalamic circuitry represents nicotine-related belief 369 
“dosage” in a manner that resembles pharmacological dose-dependent effects. Elucidating the 370 
precise mapping mechanism between beliefs and brain states might be important for 371 
understanding the key roles cognitive constructs play in human addiction, heterogenous 372 
responses to pharmacological treatments5, and neural mechanisms of psychotherapeutic effects . 373 
As such, this finding opens up new avenues for systematically leveraging the impact of 374 
narratives on the brain in mental health research and treatment.  375 
 376 
Materials and Methods 377 
Participants 378 
The study was approved by the Institutional Review Board of the University of Texas at Dallas 379 
and the University of the Texas Southwestern Medical Center where data collection was 380 
conducted. All participants signed informed consent before participating in the study. 381 
 382 
Smokers: Using a similar fMRI learning task and factorial design, a previous study of belief-drug 383 
interaction in nicotine addiction (N = 24 per condition) yielded an effect size of Cohen’s d = 0.69 384 
for reward learning. Based on this, we estimated an n = 20 in each belief condition in the final 385 
sample would provide 90% power to detect an effect of this magnitude at alpha = 0.05 (two-386 
tailed). Further, sample size calculation with G*Power V3.1.9.7. assuming a three-measurements 387 
repeated-measures ANOVA F-test with an effect size of 0.4, alpha = 0.05, and power = 0.95, 388 
suggested a minimally required sample size of 18 participants.  389 
 390 
Based on this power calculation, we recruited nicotine-dependent adult participants from the 391 
Dallas-Fort Worth (DFW) metropolitan area (total n=23 and final n=20). Inclusion criteria 392 
include an age of 18 years and older, normal or adjusted to normal vision, and smoking a 393 
minimum of 10 cigarettes a day for a period exceeding one year but with no prior experience 394 
with vaping devices or current attempt to quit smoking. Exclusion criteria included the use of 395 
illicit drugs in the past two months, a history of traumatic brain injury, any current substance 396 
abuse (excluding nicotine and alcohol), any contraindication to MRI, or previous or current 397 
psychiatric, neurological, or major medical conditions. Twenty-three participants enrolled in this 398 
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study and underwent three fMRI sessions, spaced about one week apart. Three participants were 399 
excluded from analysis for the following reasons: one participant was excluded due to software 400 
malfunction, one due to falling asleep in the scanner and one due to loss of behavioral data for 401 
one of the scanning sessions. The final sample therefore comprised of 20 participants (6 females, 402 
age: 41.1± 11.97 years, age range: 24-61 years). Participants were all right-hand dominant.  403 
 404 
Non-smoking healthy controls (HC): In an exploratory analysis, we compared neural activities of 405 
the nicotine addicted cohort to those of a healthy controls (HC) cohort which engaged in the 406 
same task in the same imaging facility. Thirty-three healthy volunteers (15 females, aged 28 ± 9 407 
years) were recruited for the study using similar criteria as smokers, other than nicotine addiction 408 
being an additional exclusion criterion. The sample size for HCs was larger than the required n 409 
for smokers as HC data were taken from another study with different overall design and 410 
hypotheses. 411 
Two participants were excluded from neural analyses due to excessive head movement (>3 mm), 412 
leaving a final sample size of 31.  413 
 414 
Experimental design 415 
Upon arrival at the laboratory, participants completed demographic, mental health (Positive and 416 
Negative Affect Schedule, Beck’s Depression Inventory, Empathy Quotient, Toronto 417 
Alexithymia Scale, Behavioral Inhibition System and Domain-Specific Risk-Taking 418 
questionnaires), general substance and alcohol use (Drug Abuse Screening Test, Short Michigan 419 
Alcohol Screening Test), and nicotine-specific surveys (Fagerström Test for Nicotine 420 
Dependence, Wisconsin Withdrawal Scale, Shiffman-Jarvik Withdrawal scale). Participants 421 
provided saliva samples for measuring cotinine, the primary metabolite of nicotine. Saliva 422 
samples were collected using a passive drool method until a volume of 1.8 – 2ml was obtained. 423 
They were then coded and stored in designated freezers until sent for analysis. Participants’ 424 
exhaled carbon monoxide (CO) levels served as proxy for their satiety status. These were 425 
acquired by a Smokerlyzer (coVita micro+basic, Santa Barbara, CA) prior to e-cigarette vaping 426 
in each session. The measurement took place in a designated behavioral testing rooms adjacent 427 
to the scanners. Participants continuously exhaled through a designated straw until a 428 
measurement appeared on screen.  429 
 430 
For nicotine delivery, we used the “blu” e-cigarette atomizer (blu, UK) with disposable 1.2% 431 
nicotine cartridges in the ‘classic tobacco’ flavor. Following the fMRI scans, participants 432 
repeated the state-based series of surveys and provided a second saliva sample. 433 
 434 
Three participants’ data were removed from cotinine analysis: two due to cotinine readings 435 
exceeding 3 standard deviations from the mean of the cohort and one due to missing data. Data 436 
for all three sessions (instructed beliefs conditions) were discarded from this analysis. Three 437 
participants’ data (non-overlapping with the previous omission) were removed from CO 438 
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analysis: two due to readings exceeding 3 standard deviations from times the mean of the cohort 439 
and one due to missing data. Once again, data for all three sessions (instructed beliefs conditions) 440 
were discarded from this analysis.  441 
 442 
Prior to vaping, the e-cigarette cartridge was weighed three times on a high precision scale and 443 
the average of the three measurements was logged as the baseline weight of the cartridge. A 444 
similar procedure was done post-vaping and the change in cartridge weight represented the 445 
amount of nicotine liquid consumed by the participant. Using a double-blind procedure, neither 446 
participants nor the research assistants (M.H. and A.K.) responsible for data collection had prior 447 
knowledge about the true nicotine content in the e-cigarettes. The order of belief conditions was 448 
randomly assigned for each participant. The e-cigarette cartridges were carefully re-labelled as 449 
‘low’, ‘medium’, or ‘high’ by the PI (X.G.) herself to avoid un-blinding by either the participant 450 
or the research assistants.  451 
 452 
Notably, the same type of cartridges containing 1.2% nicotine were used across all participants 453 
and sessions. Research assistants (M.H. and A.K.) who interacted with the participants adhered 454 
to a fixed text during the manipulation stating: “The cartridge you will use today will contain: 455 
[mild-to-no nicotine] / [a medium amount of nicotine] / [a high amount of nicotine].” These 456 
experimenters also made sure that participants used the e-cigarette properly, the device was well 457 
powered, and that vapor was visible. Participants were told they could vape as much as they wish 458 
for the next 20 minutes and were left alone to vape. After 20 minutes they were questioned about 459 
any issues with the e-cigarette. Participants were then prompted to reply how they would rate the 460 
strength of the nicotine in the e-cigarette on a scale of 0 to 10, compared to a normal cigarette.  461 
 462 
Cotinine detection in saliva 463 
Chemicals and reagents: Optima LC-MS grade acetonitrile, water and methanol were purchased 464 
from Fisher Scientific (New Jersey, USA). Reagent grade ammonium formate was purchased 465 
from Sigma Aldrich (Missouri, USA). Cotinine was purchased from Sigma Aldrich. Rac-466 
cotinine-d3 was obtained from Toronto Research Chemicals (Ontario, CAN). All other 467 
chemicals and reagents were of analytical grade and used without further purification. Blank 468 
human saliva procured from primary investigator. (New York, USA).  469 
 470 
Preparation of stock and working solutions of analyte and internal standard: Primary stock 471 
solutions of cotinine for the calibration curve (CC) and quality control samples (QC) were 472 
prepared from a 1 mg/mL stock solution in methanol. Stock solutions of cotinine were stored at -473 
20 °C, and subsequent dilutions were conducted using water. Primary stock solutions of the 474 
bioanalytical method’s internal standard (IS) d3-cotinine were prepared by accurately weighing 475 
d3-cotinine and dissolving in methanol to yield a 1 mg/mL stock solution. Stock solutions of d3-476 
cotinine were stored at -20 °C, and subsequent dilutions were conducted using water. For spiking 477 
of saliva samples with cotinine, a working stock solution of 1000 ng/mL cotinine in water was 478 
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prepared and stored at -20 °C. For spiking of saliva samples with d3-cotinine, a working stock 479 
solution of 300 ng/mL d3-cotinine in water was prepared and stored at -20 °C. 480 
 481 
Preparation of calibration curve and quality control samples for analysis of saliva samples: 482 
Cotinine was validated over a calibration range that supports low concentration and high 483 
concentration samples. The calibration curve ranged from 5 ng/mL to 1000 ng/mL. Calibration 484 
curve samples were prepared by spiking 1µL of the working stock (1 mg/mL cotinine in water) 485 
into 250 µL of saliva. This represented the top calibration curve point (i.e., the upper limit of 486 
quantification or ULOQ). The remaining calibration curve samples were prepared by serial 487 
dilution of the ULOQ standard in saliva. Quality control was prepared in a similar fashion by 488 
spiking 80 µL of the working stock (1000 ng/mL cotinine in water) into 250 µL of plasma. This 489 
represented the high-quality control standard (HQC). The medium-quality control standard 490 
(MQC) and low-quality control standard (LQC) were prepared by serial dilution of the HQC 491 
standard in saliva. Spiking volume of the working standard did not exceed 5% of the matrix 492 
volume. QCs for the calibration curve were prepared at 5, 30, and 80 ng/mL. 493 
 494 
Saliva Collection: Patients provided a saliva sample collected at various time-points throughout a 495 
session. Samples were collected using a passive drool method (i.e., Salimetrics ‘SalivaBio’ 496 
collection aid). Saliva samples were analyzed for cotinine concentrations using a validated LC-497 
MS/MS method. 498 
 499 
Saliva Sample Preparation: Acetonitrile (350 µL) and 100 µL (300 ng/mL) d3-cotinine was 500 
added to a 250 µL aliquot of saliva. The resultant mixture was centrifuged for 5 min at 5000 rpm 501 
at a temperature of 4�. Five hundred microliters (500µL) of the clear supernatant, was removed, 502 
placed in a new Eppendorf tube, and dried using a SpeedVac. Samples were reconstituted using 503 
250 µL of water. 504 
 505 
HPLC operating conditions: A Shimadzu CBM-20A Nexera X2 series LC system (Shimadzu 506 
Corporation, Kyoto, Japan) equipped with degasser (DGU-20A) and binary pump (LC-30AD) 507 
along with auto-sampler (SIL-30AC) and (CTO-30A) column oven. The autosampler was 508 
maintained at 15 °C. An injection volume of 1 µL was used and chromatographic separation was 509 
achieved using a Kinetex Biphenyl (2.6 µm, 50 × 2.1mm) column. The mobile phase, consisting 510 
of 2mM ammonium formate in water (pump A) and methanol:water (95:5) with 0.2% formic 511 
acid (pump B) used for the method. The mobile phase pumped using a gradient program at a 512 
flow rate of 0.8 mL/min into the mass spectrometer electrospray ionization chamber in positive 513 
polarity. Gradient program initiated with 5% of B and maintained for 1.0min, then ramped to 514 
75%B by 2.5min and maintained at 75%B until 3.5min, changed back to 5%B by 4.0min and 515 
maintained until 6.01min at the end system controller stop command. 516 
 517 
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Mass spectrometry operating conditions: Quantitation was achieved employing electrospray 518 
ionization in positive ion mode for the analytes using a SCIEX QTRAP 6500+ mass 519 
spectrometer (Redwood, CA, USA) equipped with the Turbo V source operated at 550 ºC. The 520 
nebulizer gas, auxiliary gas, curtain gas, CAD gas were set at 45, 45, 30 psi and ‘medium’, 521 
respectively. The declustering potential (DP), collision energy (CE), entrance potential (EP) and 522 
collision cell exit potential (CXP) were 141, 31, 10, 10 V for (Cotinine-1); 141, 47, 10, 8 V for 523 
(Cotinine-2); 141, 31, 10, 12 V for (d3-Cotinine-1); and 141, 29, 10, 8 V for (d3-Cotinine-3), 524 
respectively. Detection of the ions was carried out in the multiple-reaction monitoring mode 525 
(MRM), by monitoring the precursor > product transitions of 177.0 > 80 and 177.0 > 98.0 (sum 526 
over 2 MRMs) for cotinine and 181.2 > 80.1 and 181.2> 101.1 (sum over 2 MRMs) for d3-527 
cotinine. The data obtained were processed by Analyst software™ (version 1.6.3). 528 
 529 
Method Validation: The methods for analysis of cotinine in saliva were validated according to 530 
the United States FDA’s May 2018 Guidance for Industry on ‘Bioanalytical Method Validation’. 531 
The method was found to have acceptable sensitivity, selectivity, matrix effect, linearity, 532 
accuracy, precision, recovery, dilution integrity and stability. 533 
 534 
Value-based decision-making task 535 
This task was developed based on a previous investment task10,26 but with the modification that 536 
participants were allowed to place both positive (‘invest’) and negative (‘short’) bets. Briefly, 537 
participants were allocated an initial sum of 100 monetary units (i.e., their portfolio) at the 538 
beginning of the experiment which could be invested in stock markets. Participants were 539 
informed that their final payment would be scaled according to their actual gains or losses in the 540 
task. Each participant played a total of 10 markets per visit, each consisting of 20 trials. The 541 
stock market prices in the task were chosen from true historical stock market prices. Each task 542 
block commenced by a caption titled ‘new market’ followed by a graphic display of past market 543 
dynamics.  544 
 545 
In each trial t, the participant observes the price history of a stock market (including the trial 546 
before, pt-1) and places a bet, bt. Next, a new market price pt is revealed, and portfolio amounts 547 
are updated to reflect the recent outcome. The fractional market return rt ,is defined as rt = (pt - 548 
pt−1) / pt−1. In each of the 20 trials, participants had unconstrained time to decide on their 549 
investment moves. Participants were able to choose to either invest normally (if they think the 550 
price will go up) or short sell (if they think the price will go down). Notably, shorting the market 551 
would result in gaining from market drops. Thus, people could benefit from either a positive or 552 
negative price change and the absolute value of market return |rt| represents the magnitude of the 553 
potential gain. Participants provided their choice using a slider bar and finalized their choice by a 554 
button press. Following a 750 ms delay, the new market price was revealed and the fractional 555 
change in market price was applied to the portfolio. In later analyses this event is termed ‘market 556 
reveal’. Each trial concluded in a 750 ms inter-trial interval in which the slider turned gray and 557 
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became unresponsive. A total of 30 different markets were used across all three visits. Mean 558 
session duration in the stock market task was 14.91 ± 3.06 minutes and did not differ across 559 
conditions (rmANOVA F(2,59) = 0.28, P = 0.76). 560 
  561 
Imaging acquisition and preprocessing 562 
Whole-brain anatomical and functional MRI data were acquired on a Philips Achieva scanner 563 
with a 3T field strength. High-resolution T1-weighted scans (1.0 × 1.0 × 1.0 mm) were acquired 564 
using a 3D magnetization prepared rapid gradient-echo (MPRAGE) sequence. Functional images 565 
were acquired using echo-planar imaging (EPI) and tilted 30° from AC-PC axis. The detailed 566 
settings for the functional imaging were repetition time (TR) = 2,000 ms, echo time (TE) = 25 567 
ms, flip angle = 90°, voxel size = 3.4 × 3.4 × 4.0 mm, 38 slices. The average number of 568 
functional images acquired was 457.37 ± 91.67. All imaging data were preprocessed using 569 
standard statistical parametric mapping (SPM12, Wellcome Department of Imaging 570 
Neuroscience) algorithms (fil.ion.ucl.ac.uk/spm). Functional images were applied a slice time 571 
correction. 572 
 573 
To account for large head movements often caused by participants’ coughing during the scan, we 574 
used the ArtRepair toolbox52 to examine and repair volumes with large motion artifacts. We used 575 
the art_motionregress and art_global modules of the single subject pipeline. The ArtRepair 576 
algorithm was further used to generate the motion parameters to be included in the GLM design 577 
matrix. Volumes were examined for fast head movements using the automated defaults such that 578 
volumes with movement of >0.5 mm/TR were tagged and interpolated with the nearest usable 579 
volumes. Overall, 6 out of 60 scans were repaired. The mean functional images for each subject 580 
were co-registered to the subject’s high-resolution T1 structural scan, using a 12-parameter 581 
affine transformation. The participant’s T1 image was segmented into gray and white matter and 582 
then normalized using nonlinear basis functions to the Montreal Neurological Institute (MNI) 583 
space with the functional images normalized to the template and resampled into 3.4 × 3.4 × 4-584 
mm functional voxels. Functional images were smoothed spatially using a 6 mm full-width at 585 
half-maximum Gaussian kernel. A temporal high-pass filter of 128 Hz was applied to the fMRI 586 
data, and temporal autocorrelation was modeled using a first-order autoregressive function. 587 
 588 
Statistical analysis 589 
Throughout this study, we used a within-participant repeated measures ANOVA implemented in 590 
MATLAB (anova_rm) to assess differences between the three conditions of instructed belief. 591 
Normality was assessed with Shapiro-Wilk tests wherever appropriate. During analysis of the 592 
various controls if data for one of the sessions was missing, that participant was excluded from 593 
this specific analysis. For neural data, we specified the statistical thresholds and rationale in the 594 
fMRI methods sections below. In the case of between-group comparison between smokers and 595 
HC, we used two-sample t-tests, conducted separately for each level of instructed belief.  596 
 597 
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Behavioral modeling 598 
We examined the impact of the value signal of market return |rt| on participants choice behavior, 599 
operationalized as their next bet, |bt+1|, using a linear mixed-effects multiple-regression model. 600 
The final return of each market was excluded from the regression, as there was no investment 601 
decision following the final market segment. Similarly, the first trial was also removed since it 602 
had no preceding investment decision. In line with previous investigations10, our parameter of 603 
interest was instructed belief, expressed as a 3-level interaction (the first level, i.e., ‘low’ belief 604 
served as baseline) modulating market return, |rt| 

10.  605 
 606 
In order to test whether there was an interacting or a moderating effect of belief on the 607 
relationship between market return and next bet, we first tested two plausible models, with- and 608 
without an interaction of |rt| and instructed belief. The results suggested that the interaction 609 
effect did not improve model fit. We therefore modeled choice behavior as follows: 610 
 611 
|bt+1| ~ 1 + |bt| + |rt| + InstructedBelief + (1 + InstructedBelief | participant) 612 
 613 
Multiple regression was carried out in R (RStudio 1.1.463, 2018) using the ‘lmer’ function as 614 
follows in the ‘lme4’ package P values were approximated via Satterthwaite’s degrees of 615 
freedom method. The inclusion of instructed belief as a random effect was guided by the notion 616 
that the effects of belief are likely heterogenous across the cohort. This intuition was backed up 617 
by model comparison between the two options (with / without belief as a random effect) using 618 
the ‘anova’ function (P < 2.2e-16).  619 
 620 
General linear modeling (GLM) of fMRI data 621 
Event-related analyses of the fMRI data were conducted using SPM12 (Wellcome Department of 622 
Imaging Neuroscience). We conducted general linear modeling (GLM) of the functional scans of 623 
each participant bey modeling the observed BOLD signals and regressors to identify the 624 
relationship between the task events and the hemodynamic response. Regressors related to all 625 
visual and motor events were created by convolving a train of delta functions representing the 626 
sequence of individual events with the default basis function in SPM12, which consists of a 627 
synthetic hemodynamic response function composed of two gamma functions. The GLM 628 
included six separate regressors: (1) new market screen display; (2) market history display; (3) 629 
all key presses; (4) market price reveal of trial 1; (5) market price reveal of trials 2–19; (6) 630 
market price reveal of trial 20. Additionally, six parameters generated during motion correction 631 
were entered as covariates. In the GLM, absolute market return |r| was entered as a parametric 632 
modulator of market reveal of trials 2–19. We carried out linear contrasts of the parameter 633 
estimates to identify the effects in each participant.  634 
 635 
Statistical maps from all participants were then entered into a second-level group analysis to 636 
implement a random-effects statistical model. A within-subject repeated-measures ANOVA 637 
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model was conducted for the factor of instructed beliefs (‘low’, ‘medium’, ‘high’). Statistical 638 
inference was made based on the F statistics derived from whole-brain rmANOVA statistical 639 
maps. Significant effects were identified at P < 0.05 family-wise error cluster-corrected at a 640 
cluster-defining threshold of P < 0.005, uncorrected with a cluster size threshold of k = 50. We 641 
relied in cluster-extend thresholding in our statistical inference in order to allow sufficient 642 
sensitivity to detect effects given the experimental sample size 53 while implementing thresholds 643 
recommended for a balance between Type I and Type II errors 54. Maps were rendered using 644 
MRIcroGL v1.2.2. 645 
 646 
Thalamic parcellation and ROI analyses 647 
We extracted parameter estimates from bilateral thalamus using an anatomical mask (WFU Pick 648 
atlas28. Thalamic parcellations were obtained from the Lead-DBS MATLAB toolbox. Each 649 
segmented nucleus or region was transformed into the experimental dataset’s functional space 650 
using the MarsBaR toolbox. The THOMAS (Thalamus optimized multi-atlas segmentation) 651 
atlas29 contains 12 non-overlapping nuclei, three of which (vLA, MGN and MTT) were too small 652 
to be meaningfully transformed to our functional space and were therefore not used. As before, 653 
we modeled BOLD activity tracking of fluctuations in magnitude of market return, |r|, and 654 
carried out a group analysis with a within-subject rmANOVA design per region of the thalamic 655 
parcellation. To account for multiple comparisons, we applied the false-detection rate (FDR) 656 
correction to the extracted ROIs at q = 0.05.  657 
 658 
Permutation analysis 659 
We iteratively shuffled labels for instructed beliefs (‘low’, ‘medium’, ‘high’) within each 660 
participant while maintaining their original ratio (i.e., one of each per participant). For each 661 
viable permutation (i.e., a permutation whose model estimation converged and yielded any 662 
significant voxels), a within-subject rmANOVA was carried out, following which a parameter 663 
estimate was derived from the same ROI as the original design matrix to generate a surrogate 664 
distribution of beta estimates (N = 1,000). 665 
 666 
Classification analysis: 667 
We decoded instructed belief conditions (‘low’, ‘medium’, ‘high’) from multivoxel spatial 668 
patterns data using a rLDA (regularized linear discriminant analysis classifier, ‘fitdiscr’ function 669 
in MATLAB)30,31. Input data consisted of 20 participants’ first-level GLM maps X 3 conditions 670 
along with corresponding belief condition labels, which were used to train the rLDA. A 10-fold 671 
cross-validation sample size was used. To test the model’s performance on we iteratively 672 
repeated this process with permuted data partitions (N = 10,000 for the whole thalamus / NAcc, 673 
N = 1,000 for thalamic nuclei) per ROI and compared classification accuracy of ground truth 674 
data to the surrogate distribution using non-parametric testing. 675 
 676 
Psycho-physiological interaction (PPI) analysis 677 
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PPI analysis provides a measure of change in functional connectivity between different brain 678 
regions under a specific psychological context39. We defined a seed region – the thalamus – as 679 
defined by the WFU anatomical atlas and a psychological context (‘market reveal’ – the 680 
presentation of the investment’s return). We then conducted a PPI analysis per condition of 681 
instructed beliefs and compared those in a within-subject repeated-measures design. The 682 
generated PPI model included the PPI term, the physiological regressor, the psychological 683 
regressor, and nuisance regressors of six motion parameters.  684 
 685 
A 6 mm spherical ROI was defined based on previous investigation of the neural mechanisms of 686 
belief-formation in the vmPFC by Rouault and Fleming40. Sphere center was set to reflect the 687 
coordinate of peak activation (MNI x = -6, y= 52, z = -10). In the follow-up exploratory analysis, 688 
the threshold of significance for the group-level rmANOVA from the PPI regressor was set to be 689 
P < 0.05 FWE cluster-corrected at a cluster-defining threshold of P < 0.005, uncorrected. 690 
 691 
Data availability 692 
Data supporting the findings of this study are deposited in: https://osf.io/3hq6s/ 693 
 694 
Code availability 695 
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Analyses were conducted using open software and toolboxes available online as described in 697 
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Figures: 859 
 860 

 861 
Fig. 1. Experimental paradigm and sanity check measures. (a) Participants completed three 862 
visits. In each visit, we collected saliva samples for cotinine measurement, measured carbon 863 
monoxide (CO) levels, instructed beliefs, and measured brain activities using fMRI as 864 
participants engaged in a decision-making task. (b) Subjective beliefs about nicotine strength 865 
increased as a function of instructed nicotine strength (P = 0.0004). (c) Consumed nicotine was 866 
similar across three belief conditions (P = 0.178), (d) cotinine concentration (P = 0.393), or (e) 867 
CO level (P = 0.698) did not differ between conditions. Bars depict group means and points 868 
represent participants. Error bars are SEM. ***P < 0.001. 869 
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 870 
Fig. 2. Belief about nicotine strength induced dose-dependent responses in the thalamus. 871 
(a) Whole-brain effects of instructed beliefs about nicotine on value-tracking signals 872 
(rmANOVA, cluster-level PFWE = 0.006, k = 50). (b) Parameter estimates representing reward-873 
related activities extracted from an independent thalamus mask (shown in purple) across belief 874 
conditions in smokers (P = 0.036), compared to a non-smoking healthy controls (HC, orange 875 
bar) Bars depict group means, points represent participants. Error bars are SEM. *P < 0.05. (c) 876 
Permutation analysis for instructed beliefs conditions (N = 1,000, P = 0.002). A histogram 877 
comprised of surrogate distribution for beta estimates (black bars). Red line denotes mean of true 878 
beta values. (d) Decoding accuracy of belief condition from thalamic neural patterns. Vertical 879 
red line denotes decoding accuracy for ground truth data. Colored histogram is a surrogate 880 
distribution comprised of decoding accuracy for the same neural data with shuffled labels. P 881 
value is derived non-parametrically through a permutation test (N = 10,000). (e) Correlation 882 
between thalamic signals and subjective belief rating regarding perceived nicotine strength (r = 883 
0.27, P = 0.035). Black dashed line is linear fit.  884 
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 885 

 886 
Fig. 3. Belief about nicotine strength did not modulate striatal reward-related responses.  887 
(a) Whole-brain effects of cross-condition brain activation tracking market return across all 888 
instructed belief conditions. Heatmap signifies t values. (b) Parameter estimates representing 889 
reward-related activities extracted from an independent nucleus accumbens mask across belief 890 
conditions in smokers (teal bars) (rmANOVA P = 0.945; Permutations P = 0.94), compared to a 891 
non-smoking healthy controls (HC, orange bar). Bars depict group means, points represent 892 
participants. Error bars are SEM. (c) Decoding accuracy of belief condition from accumbens 893 
neural patterns. Vertical red line denotes decoding accuracy for ground truth data. Colored 894 
histogram is a surrogate distribution comprised of decoding accuracy for the same neural data 895 
with shuffled labels. P value is derived non-parametrically through a permutation test (N = 896 
10,000). 897 
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 898 

 899 
Fig. 4. Belief about nicotine strength modulated thalamus-vmPFC functional connectivity 900 
in a dose-dependent fashion. (a) Effects of instructed beliefs on the psychophysiological 901 
interaction (PPI) between the thalamus and the vmPFC. (b) Parameter estimates extracted from 902 
(a) representing functional coupling strength between the thalamus and vmPFC. Bars depict 903 
group means, points represent participants. Error bars are SEM.  904 
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