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ABSTRACT18

The ability to distinguish imported cases from locally acquired cases has important consequences for19

the selection of public health control strategies. Genomic data can be useful for this, for example using20

a phylogeographic analysis in which genomic data from multiple locations is compared to determine21

likely migration events between locations. However, these methods typically require good samples of22

genomes from all locations, which is rarely available. Here we propose an alternative approach that23

only uses genomic data from a location of interest. By comparing each new case with previous cases24

from the same location we are able to detect imported cases, as they have a di↵erent genealogical25

distribution than that of locally acquired cases. We show that, when variations in the size of the26

local population are accounted for, our method has good sensitivity and excellent specificity for the27

detection of imports. We applied our method to data simulated under the structured coalescent model28

and demonstrate relatively good performance even when the local population has the same size as29

the external population. Finally, we applied our method to several recent genomic datasets from both30

bacterial and viral pathogens, and show that it can, in a matter of seconds or minutes, deliver important31

insights on the number of imports to a geographically limited sample of a pathogen population.32
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INTRODUCTION33

Many infectious disease pathogens spread mostly within multiple geographical locations, for example34

countries, and are also occasionally imported from one location to another. When pathogen genetic35

data is available from several locations, a phylogeographic approach can be used to infer past migrations36

between countries (Lemey et al. 2009; Bloomquist et al. 2010). Here, however, we consider the situation37

where genetic data is available only from a single location, which is subject to imports from other38

locations about which little is known. This situation occurs frequently, for example due to high39

discrepancies between the sequencing capacities of high and low income countries. Furthermore, even40

if limited sequences are available from other locations, biases in sampling between locations can often41

confuse phylogeographic methods (De Maio et al. 2015).42

We therefore address the problem of inferring the number and phylogenetic location of imports into43

a population based on samples taken only from that population. This problem is important for44

determining which measures to take in the control of infectious diseases, since di↵erent measures are45

e↵ective against importation and local transmission. It is also important to consider the presence of46

imports into a population before attempting to reconstruct local transmission chains with one of the47

recently developed methods for this purpose (Jombart et al. 2014; Didelot et al. 2017; Klinkenberg48

et al. 2017; De Maio et al. 2016). Only one of these methods considered the possibility of importation49

by performing a test based on the number of mutations between a case and its most likely donor50

(Jombart et al. 2014).51

Our starting point is a dated phylogeny for the samples at the location of interest. Such a phylogeny52

can be constructed either directly from the genomes using BEAST (Suchard et al. 2018) or BEAST253

(Bouckaert et al. 2019), or by dating the nodes in a standard phylogeny using treedater (Volz and Frost54

2017), TreeTime (Sagulenko et al. 2018) or BactDating (Didelot et al. 2018). We consider the leaves of55

this dated phylogeny in increasing order of sampling dates, asking ourselves for each leaf whether it is56

likely to to be the result of local transmission or importation from external sources. This chronological57

approach is important to assess the true number of imports: for example if an import occurred followed58

by local transmission of the imported variant, the first sample from this variant should be labelled59

as an import, but subsequent samples from the same variant should not. The approach also lends60

itself naturally to the online assessment of imports as new cases arise, which is often needed when61

performing infectious disease epidemiology in real time.62

Since we do not have any information about the external sources, and do not want to make any63

assumptions about them, we build statistical models based on the hypothesis of local transmission,64

which are fitted using Bayesian methods. When a leaf of the dated phylogeny is found to be a bad fit65

for this local model, we deduce that an importation is likely to have occurred. Our model is based on66

the coalescent framework (Kingman 1982; Donnelly and Tavare 1995) and in particular its extension67

to heterochronous sampling (Drummond et al. 2002, 2003). We also use the version of the coalescent68

model that accounts for variations in the population size (Gri�ths and Tavare 1994; Donnelly and69

Tavare 1995). We use simulated datasets to show that our approach has an excellent specificity and a70

good sensitivity for the detection of imports. We also show that our approach can be useful in practice71

by analysing several recently published real datasets.72
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MATERIALS AND METHODS73

Coalescent framework and notations74

Let n denote the number of tips in a dated phylogeny G, let s1:n denote the dates of the leaves and75

c1:(n�1) denote the dates of the internal nodes. Let A(t) denote the number of lineages at time t in76

G. This is easily computed as the number of leaves dated after t minus the number of internal nodes77

dated after t:78

A(t) =
nX

i=1

[si > t]�
n�1X

i=1

[ci > t] (1)

In the coalescent model, each pair of lineages coalesces at rate 1/Ne(t) where Ne(t) is the e↵ective79

population size at time t (Gri�ths and Tavare 1994). Note that here and throughout this paper we80

use the notation Ne and the name e↵ective population size to denote what is in fact the product of the81

generation duration and the population size in an idealised Wright-Fisher population. Let us initially82

assume that this function Ne(t) is known, and we will see later how to extend to the situation where83

it is not known. The total coalescent rate for all pairs at time t is therefore equal to:84

�(t) =

✓
A(t)

2

◆
1

Ne(t)
with the notation

✓
0

2

◆
=

✓
1

2

◆
= 0 (2)

However, here we consider an alternative equivalent formulation of the coalescent model, in which the85

phylogeny is formed by iterating over the leaves one by one in increasing order of date, and considering86

how each leaf coalesces with the phylogeny made by the previous leaves (Didelot et al. 2014; Carson87

et al. 2022). To do so, we consider that the dates s1:n of the leaves are in increasing order, and that88

the dates c1:(n�1) of the internal nodes are ordered so that ck corresponds to the internal node created89

when adding the leaf sk+1 to the tree made of the first k leaves. Figure 1 shows an example of this90

notation used for labelling the leaves and nodes of the tree. With these notations, the tree made of91

the k first leaves contains the leaves s1:k and the nodes c1:(k�1). We can therefore define the number92

Ak(t) of lineages at time t in the tree made of only the first k samples in a way similar to Equation 1:93

Ak(t) =
kX

i=1

[si > t]�
k�1X

i=1

[ci > t] (3)

Note in particular that A(t) from Equation 1 is equal to An(t) from Equation 3 as expected since this94

corresponds to the number of lineages in the tree made of all n leaves and n� 1 internal nodes. The95

rate at which the new leaf sk+1 coalesces with the tree made of the first k leaves is then:96

�k+1(t) =
Ak(t)

Ne(t)
(4)

The di↵erence in Equation 4 compared to Equation 2 is that we are now considering coalescence of a97

single given lineage leading to leaf sk+1, rather than any two pairs of lineages, so that the binomial98
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Figure 1: Illustration of the notations used. The leaves are labelled sk with k in increasing order of
sampling date. The internal nodes are labelled ck so that leaf sk coalesces at point ck�1 with the
genealogy made of the leaves s1, ..., sk�1. The coalescent interval for leaf s10 is shown in red.
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term for the number of lineages is replaced with simply the number of previous lineages. Note that99

after the date of leaf k, i.e. for t > sk, we have no previous lineages, i.e. Ak(t) = 0, so that �k+1(t) = 0,100

i.e. coalescence is impossible. On the other hand, before the date of leaf k, i.e. for t < sk, we have101

always at least one previous lineage so that �k+1(t) > 0.102

Let Ck denote the coalescent interval for leaf k, which is defined as the sum of branch lengths between103

time sk and ck�1 in the phylogeny made of the k�1 first leaves. This represents the amount of branch104

lengths before the new leaf k coalesced in the previous tree. Figure 1 shows an example of how the105

coalescent interval is counted. More formally, we can define the coalescent intervals as:106

Ck =

Z sk

ck�1

Ak�1(t)dt (5)

To obtain a given value of Ck, we need to have no coalescence of the new lineage between ck�1 and sk107

and a coalescent event at time ck�1 with any of the Ak�1(ck�1) lineages existing at that time, so that108

the probability density function of Ck can be written as:109

p(Ck) =
1

Ne(ck�1)
exp

 
�
Z sk

ck�1

Ak�1(t)

Ne(t)
dt

!
(6)

Detecting imports into a population110

Our aim is to find the number and phylogenetic location of import events in a given dated phylogeny.111

We address this question by considering each leaf of the tree and whether it is likely to be the result112

of a previously unreported import, given the dated phylogeny made of only the previous samples. If113

a leaf sk is not the result of a new import, then its coalescent interval Ck is distributed as described114

in Equation 6 where Ne(t) is the size of the local population. On the other hand, if the leaf sk is the115

result of a new import, its coalescent interval will be larger, depending on how distantly related the116

source of the import is. We do not attempt to explicitly model the source of imports firstly because117

the data contains little information about import sources, and secondly because we do not want to118

make assumptions on the sources. We expect most cases in the dated phylogeny to represent local119

transmission, with only a relatively small ratio (e.g. < 5%) of the number of imports to the number120

of cases. Only the chronologically first case of any import is classified as such, whereas further cases121

from the same import represent local transmission following the import.122

To progressively explain our methodology for the detection of imports, we will first assume that the123

demographic function is a known constant, then extend to the case of an unknown constant value, and124

finally extend to the general case of an unknown variable population size function.125

Case of a known constant population size126

Let us first assume that the demographic function Ne(t) is a known constant Ne. In this case Equation127

6 simplifies into:128
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p(Ck) =
1

Ne
exp

 
�
Z sk

ck�1

Ak�1(t)

Ne
dt

!
=

1

Ne
exp

✓
�Ck

Ne

◆
(7)

which means that in the case of a constant population size, the coalescent intervals are independent129

and identically distributed as Exponential with mean Ne. If the leaf sk is the first reported case of130

an import, it is likely to have a coalescent interval Ck greater than would be expected if transmission131

happened only locally, which can be used to form a simple one-sided statistical test with p-value:132

pk = exp

✓
�Ck

Ne

◆
(8)

Case of an unknown constant population size133

In the case where the population size function is a constant Ne(t) = Ne which is unknown, we need to134

estimate it in order to detect imports. We take a Bayesian viewpoint to perform this estimation, which135

requires setting a prior ⇡(Ne) and combining it with the likelihood terms in Equation 7 to obtain the136

posterior distribution of Ne:137

p(Ne|G) / ⇡(Ne)
nY

k=2

1

Ne
exp

✓
�Ck

Ne

◆
(9)

For ⇡(Ne) we use a InvGamma(0.001,0.001) prior, which means that the exponential rate parameter138

1/Ne follows approximately its improper Je↵rey’s prior (Spiegelhalter et al. 2002). The Gamma139

distributions used here and throughout this article are parameterized in terms of the shape and rate140

parameters, respectively. This same uninformative prior on Ne was previously used in a method aimed141

at building dated phylogenies (Didelot et al. 2018).142

The posterior distribution in Equation 9 assumes that there are no imports into the local population,143

so that all coalescent intervals are distributed according to Equation 7. The estimated value of Ne144

could therefore be biased upwards compared to the correct value of Ne in the local population, since145

any import is likely to have higher coalescent interval values. There are three reasons why this is not a146

concern in practice. Firstly, we expect only a relatively small number of the leaves to be new imports.147

Secondly, the distribution of coalescent intervals in the local population (Equation 7) is permissive to148

high values, so that a few high values do not push up the estimated mean dramatically. Thirdly, if Ne149

is overestimated, then we are less likely to detect imports due to having unexpectedly high coalescent150

intervals. The method is therefore conservative in the detection of imports, rather than having false151

positives.152

We can use a Monte-Carlo approach to generate a sample of M values (N1
e , ..., N

M
e ) from the posterior153

distribution in Equation 9, and we can then adapt Equation 8 to compute a posterior predictive p-value154

(Gelman et al. 1996) to test if the leaf sk+1 is the result of a previously undetected import as:155

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.15.500228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.15.500228
http://creativecommons.org/licenses/by/4.0/


pk =
1

M

MX

i=1

exp

✓
�Ck

N i
e

◆
(10)

General case of an unknown variable population size156

The distribution in Equation 6 represents the model for coalescent intervals if only local transmission157

occurred and the population size was the function Ne(t). However, this equation can not be used in158

the general case because the demographic function Ne(t) is unknown. Phylodynamic methods can be159

applied to reconstruct the Ne(t) function either at the same time as reconstructing a dated phylogeny160

(Pybus and Rambaut 2009; Ho and Shapiro 2011; Baele et al. 2016) or in a subsequent step (Lan et al.161

2015; Karcher et al. 2017; Volz and Didelot 2018; Didelot et al. 2021a). However, all these methods162

make some assumptions about the demographic function. Furthermore, even if this function was163

known the resulting distribution for the coalescent intervals in Equation 6 would not be computable164

analytically. Since our aim here is not to estimate this function but rather to detect imports, we take165

a di↵erent approach.166

In the general case, Ne(t) is not constant, but with a densely sampled population the coalescent time167

ck�1 is likely to be soon before the sampling date sk, so that Ne(t) should be approximately constant168

between ck�1 and sk and Ck is approximately exponential as in Equation 7. We therefore consider169

that the coalescent intervals Ck are exponentially distributed with a mean µ(sk) which depends on the170

date of sampling sk.171

To perform Bayesian inference under this model, we need to define the joint prior172

⇡(µ(s2), µ(s3), ..., µ(sn)). We use a Gaussian process with mean zero and covariance function k(s, s0)173

equal to the the Matérn kernel with smoothness ⌫ = 3/2 (Genton 2002; Williams and Rasmussen174

2006):175

k(s, s0) = ↵2

 
1 +

p
3r

l

!
exp

 
�
p
3r

l

!
with r = |s� s0| (11)

The spectral density function of this kernel in one dimension is:176

S(!) = 4↵2

 p
3

l

!3✓
3

l2
+ !2

◆�2

(12)

This kernel is characterised by two parameters: the length scale l which represents how quickly the
distance between two points reduces their correlation, and the scale ↵ which represents the marginal
standard deviation of the kernel. Specifying the prior on these two parameters completes the definition
of the prior model:

l ⇠ InvGamma(al, bl)

↵ ⇠ Half-Normal(�↵)

log(µ(s)) ⇠ GP{l,↵}(0, k(s, s
0))

(13)
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This prior is applied to the dated phylogeny rescaled in the interval [�1, 1], so that the root is at time177

t = �1 and the most recent leaf at time t = 1. This ensures that the timescale used in the dated178

phylogeny does not a↵ect the analysis: for example the same dated phylogeny with branch lengths179

measured in years or in days will produce exactly the same results. In all examples shown here we180

used hyperparameter values al = bl = �↵ = 5. We will show that the choice of these values has little181

e↵ect on our results.182

We want to perform inference in a way that is not computationally intensive even for large phylogenetic183

trees. Combining this objective with the necessary assumption of dense sampling, together with the184

assumption that the coalescent rate does not fluctuate too wildly, lends itself naturally to the use of an185

approximation of the full-rank Gaussian Process. We resort to using a Hilbert space Gaussian process186

(HSGP) approximation recently described (Riutort-Mayol et al. 2020; Solin and Särkkä 2020). This187

requires setting two approximation parameters M and L corresponding to the number of terms in the188

expansion and the domain size, respectively. We use M = 20 and L = 2 as previously suggested189

(Riutort-Mayol et al. 2020).190

This model is fitted to the data using the Hamiltonian Monte Carlo method implemented in Stan191

(Carpenter et al. 2017). For each leaf sk, this results in a Monte-Carlo sample of size M denoted192

(µ1(sk), ..., µM (sk)) from the posterior distribution of µ(sk). We can then use these values to detect193

imports using a similar posterior predictive p-value as in Equation 10, namely:194

pk =
1

M

MX

i=1

exp

✓
� Ck

µi(sk)

◆
(14)

Implementation195

We implemented the simulation and inference methods described in this paper in a new R package196

entitled DetectImports which is available at https://github.com/xavierdidelot/DetectImports.197

We used the cmdstanr package (https://mc-stan.org/cmdstanr/) as interface to Stan (Carpenter198

et al. 2017) and the posterior package (https://mc-stan.org/posterior/) to store and analyse the199

results. Our default settings (used throughout this article) use 4 chains with 4000 iterations each200

(1000 for warmup and 3000 for sampling) and an adaptation target acceptance statistic � = 0.9. This201

number of chains is a choice of convenience, to show that good results can be obtained on a standard202

laptop, but users have the option to increase this number if wanted. We made sure that no divergent203

transitions occurred during the sampling phase. Convergence and mixing of the algorithm were verified204

by checking that for all parameters the improved bR statistics were lower than 1.05 (Vehtarh et al. 2021)205

and the e↵ective sample sizes greater than 2000. All code and data needed to replicate the results206

are included in the “run” directory of the DetectImports repository.207
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Figure 2: Illustrative application to a single simulated dataset showing that ignoring variations in the
local population size can lead to false positives in the detection of imports. A: Simulated phylogeny. B:
Inference of imports under the model with constant population size. C: Inference of imports under the
model with variable population size. In parts B and C, the inferred mean and 95% credible intervals
of the mean coalescent intervals over time are shown in blue.
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RESULTS208

Accounting for variations in the local population size is necessary to209

correctly identify imports210

We can show that the model with constant population size (Equation 10) is insu�cient to capture211

even relatively simple realistic scenarios, and statistical inference based on the variable population size212

model (Equation 14) is necessary to correctly identify imports. The simulated phylogeny in Figure213

2A includes 100 samples taken uniformly throughout a single year, from the 1st January to the 31st214

December. The ancestral process is the standard coalescent model without any import, but the local215

e↵ective population size increased five fold in the second half of the year compared to its previous216

level, from Ne = 0.2 year to Ne = 1 year. Consequently the branches tend to be longer in the second217

half of the year (Figure 2A). We first attempted to detect imports in this phylogeny under our model218

assuming a constant local population size.This took approximately one second on a standard laptop,219

and the result is shown in Figure 2B. The mean coalescent interval was estimated to be 0.44 year (with220

95% credible interval 0.37-0.54), with the three samples with the largest coalescent intervals having221

been identified as likely imports (ie. with a posterior predictive p-value p < 0.01). This is because222

these three tips had coalescent intervals higher than would be expected by chance if the population223

size had been constant, whereas these values were in fact caused by the increase in the population size224

in the second half of the year. We then inferred using our full model which accounts for variations in225

the local population size.This took approximately three seconds on a standard laptop, and the results226

are shown in Figure 2C. The mean coalescent interval was inferred to have increased significantly from227

the start until the end of 2020, from 0.19 (0.11-0.36) to 1.33 (0.74-2.54). Consequently, the three tips228

with the largest coalescent intervals were no longer detected as imports, ie the using the full model229

removed the false positives.230

The example in Figure 2 shows that ignoring the variations in the local population size can lead to231

the detection of imports that are not real. Conversely, it is important to account for variations in232

the local population size to avoid real imports going undetected. To illustrate this, we simulated a233

phylogeny shown in Figure S1A in which the local population starts on 1st January, with a single234

import happening on 1st April. Both the original and imported strains follow the same linear growth235

in e↵ective population size Ne(⌧) = 10⌧ where ⌧ is measured in years since the strain introduction. The236

original and imported strains coalesce together soon before the 1st January. A total of 500 genomes237

were sampled between the 1st January and the 31st December, with sampling happening at a rate238

proportional to the e↵ective population size of each strain. When inferring imports under the constant239

population size model as shown in Figure S1B, the correct import was not detected (p = 0.19) but240

five spurious imports were detected (p < 0.01). On the other hand, when inferring imports under241

the variable population size model as shown in Figure S1C, the correct import was the only one to242

be detected (p = 0.002). The run times were approximately 2 and 13 seconds on a standard laptop243

computer, for the inference with constant and variable population size, respectively.244

We performed one hundred repeats of a similar simulated scenario to the one described above, except245

that after the local population was initiated on the 1st January, there were two imports in each246

simulation on the 1st April and on the 1st July. A total of 500 genomes were sampled throughout the247

year between the 1st January and the 31st December, with sampling happening at a rate proportional248

to the e↵ective population size of each of the three strains (initial plus two imports). We performed249

inference under both models with constant and variable population size, and computed the sensitivity250

and specificity of both import classifiers at di↵erent values of the posterior predictive p-values. This251

resulted in the receiver operating characteristic (ROC) curves shown in Figure 3. The ROC curve252
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for the model with constant population size is far from perfect, with an area under the curve (AUC)253

of 0.895. This AUC value represents the probability of giving a lower posterior predictive p-value of254

import to an imported sample compared to a sample that was not imported. In contrast, the model255

with variable population size has an almost perfect ROC curve, with an AUC of 0.997 (Figure 3).256

Considering p = 0.01 as the cuto↵ for significance, the inference under the constant population size257

model has a specificity of 98.6% and a sensitivity of only 40.5%, whereas the inference under the258

variable size model has a specificity of 99.7% and a sensitivity of 97.0%. To ensure that our choice of259

the prior did not have undue e↵ect on the results, we repeated this ROC analysis with hyperparameter260

values al = bl = �↵ = 2 and found that it made little di↵erence (Figure S2).261

This ROC analysis (Figure 3) confirms the result illustrated with specific examples in Figures 2 and262

S1 about the importance of accounting for the variations in the local population size in order to detect263

imports with good specificity and sensitivity, and the variable population size model will therefore be264

used throughout the rest of this paper.265

Inference on simulated datasets from the structured coalescent model266

The simulations above were considering only the phylogenetic process within the local population.267

Here we consider a more complex model in which the global population is structured into several268

locations, also known as demes, with migrations potentially occurring from any deme to any other.269

The corresponding genealogical process is described by the structured coalescent model (Notohara270

1990; Hudson 1990; Muller et al. 2017). We used the software Master, a stochastic simulator of birth-271

death master equations, (Vaughan and Drummond 2013) to simulate under this model with D demes272

which all had the same e↵ective population size Ne = 1 year. The backward-in-time migration rate273

from any deme to any other was sampled uniformly at random between 0 and 0.5/(D� 1), so that the274

expected waiting time until a migration was the same for all values of D. Only one of the D demes275

was sampled 500 times with dates taken uniformly at random over a period of a year. We performed276

100 simulations with D = 5, D = 3 and D = 2, each.277

For each simulated dataset, we counted the correct number of imports into the local population by278

looking through the whole migration history for migrations into the local deme that led directly (ie279

without any other migration event on the phylogenetic path) to at least one sampled leaf. We also280

inferred the number of imports based on the dated phylogeny of the samples from local deme, which281

took between 15 and 20 seconds to run for each simulated dataset. Figure 4 compares the correct and282

inferred number of imports in each simulation. The number of detected imports is correlated with the283

correct number of imports in all three cases with D = 5 demes (Figure 4A), D = 3 demes (Figure 4B)284

and D = 2 demes (Figure 4C). However, in all three cases we find that the number of imports has285

been estimated, with on average only 81%, 76% and 69% of imports being detected for D = 5, D = 3286

and D = 2 demes, respectively. This increasing relationship between the number of demes and the287

ability to detect imports into one of the demes is as expected: when the number of demes is larger,288

the local population represents a smaller proportion of the global population. Each import becomes289

more clearly separated in the phylogenies and therefore easier to detect. The fact that some imports290

remain impossible to detect in all three cases is also expected, since there is always the possibility that291

a lineage going back in time migrates out of the local population and back into it quickly afterwards,292

making it basically undetectable. Finally, the case with D = 2 demes is especially interesting since in293

this case there are just two populations of equal sizes, one which is sampled and the other one not.294

Detecting imports is clearly challenging in these conditions, harder than we would envisage in most295

applications to real data where the local population would typically be a small fraction of the global296

population. It is therefore encouraging to see that even in this di�cult case our method was able to297

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.15.500228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.15.500228
http://creativecommons.org/licenses/by/4.0/


0 5 10 15 20

0
5

10
15

20

Correct number of migrations

In
fe

rre
d 

nu
m

be
r o

f i
m

po
rts

0 5 10 15 20

0
5

10
15

20

Correct number of migrations

In
fe

rre
d 

nu
m

be
r o

f i
m

po
rts

0 5 10 15 20

0
5

10
15

20

Correct number of migrations

In
fe

rre
d 

nu
m

be
r o

f i
m

po
rts

A

B

C

Figure 4: Application to simulated datasets from the structured coalescent model with 5 demes (A),
3 demes (B) and 2 demes (C).

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.15.500228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.15.500228
http://creativecommons.org/licenses/by/4.0/


detect the majority of the imports (Figure 4C).298

Application to real datasets299

We also considered applications to real datasets, and considered how our inference compares with300

accepted epidemiological wisdom about a number of outbreaks originated by diverse pathogens.301

First we analysed a small dataset of 132 genomes from an outbreak of Neisseria gonorrhoeae (Didelot302

et al. 2016). The genomes were collected between 1995 and 2000 as part of a prospective study on303

gonorrhoea in She�eld (Ward et al. 2000), and all belonged to ST12 which was the most prevalent304

NG-MAST type in this setting (Bilek et al. 2007). In the previous study of this data (Didelot et al.305

2016), a dated phylogeny was built using BEAST (Suchard et al. 2018) as shown in Figure S3A.306

Analysis took approximately 5 seconds and the result is shown in Figure S3B. No import was found in307

this dataset, confirming that all the genomes belonged to the same outbreak and can be analysed as308

such as previously performed (Didelot et al. 2016). In particular, there was a gap of about 2 years in309

the sampling in 1998 and 1999, with most genomes originating before this gap and only seven genomes310

corresponding to cases afterwards. In principle, this gap could have been explained by a clearance and311

reintroduction of ST12 in the region, but our analysis shows that this is not the case. Instead, the later312

cases are descended from the earlier ones through chains of unsampled transmission intermediates, as313

previously proposed (Didelot et al. 2016) using outbreaker (Jombart et al. 2014).314

Second, we analysed a collection of 155 Vietnamese genomes from the VN clade of the emerging enteric315

pathogen Shigella sonnei (Holt et al. 2013). These genomes were sampled between 1995 and 2010,316

and a dated phylogeny was built using the additive relaxed clock model in BactDating (Didelot et al.317

2021b). The import analysis took approximately 6 seconds and the result is shown in Figure 5. A single318

import was found (isolate labelled 30451) with a posterior predictive p-value of 0.0057. This isolate319

may not look remarkably di↵erent at first sight on the phylogeny (Figure 5A), but it is the second320

most recent isolate in the collection and has by far the largest coalescent interval (Figure 5B). We321

repeated this analysis for 100 phylogenies from the posterior sample produced by BactDating (Figure322

S4). The results were robust to phylogenetic uncertainty, with only isolate 30451 being a likely import.323

The p-values for this isolate had an interquantile range between 0.007 and 0.014 (Figure S4). Given324

these p-values we can not be absolutely certain if this isolate was indeed imported, but if so it would325

most probably represent a relatively quick migration out and back into the Vietnamese population,326

for example via a neighbouring country.327

We also analysed a collection of 1031 genomes of Ebola isolated from Sierra Leone between the 25th328

May 2014 and 12th September 2015. A dated phylogeny was built for these genomes using BEAST329

(Suchard et al. 2018) in a previous study (Dudas et al. 2017). The import analysis took 50 seconds. The330

results are shown in Figure 6, with a total of 26 imports found. All the inferred imports correspond331

to isolates from 2015, despite most (544/1031) isolates in this collection being from 2014, which is332

statistically significant (Fisher’s exact test, p < 10�4). This result coincides well with the incidence333

of Ebola over time in Sierra Leone and the two other badly a↵ected neighbouring countries Guinea334

and Liberia (Shultz et al. 2016). The end of 2014 and beginning of 2015 corresponds to the time335

when Sierra Leone managed to greatly reduce the number of Ebola cases, whereas other countries took336

longer to do so. It is also interesting to compare our results with a phylogeographic study of genomes337

from Sierra Leone, Guinea and Liberia (Dudas et al. 2017). This study found that the vast majority338

of cases in Sierra Leone were descended from an initial introduction of Ebola from Guinea in early339

2014, but that a few sporadic cases were linked with several reintroduction events from Guinea dated340

between January and April 2015, which is in very good agreement with our results based on genomic341
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Figure 5: Application to Shigella sonnei dataset. A: Dated phylogeny with imports highlighted in red.
B: Inference of imports. The inferred mean and 95% credible intervals of the mean coalescent intervals
over time are shown in blue.

16

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.15.500228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.15.500228
http://creativecommons.org/licenses/by/4.0/


Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016

0
20

40
60

80
10

0
12

0

Jan 2014 Jul 2014 Jan 2015 Jul 2015 Jan 2016

Not imported
Imported

A

B

Figure 6: Application to Ebola dataset. A: Dated phylogeny showing the imports (red) and locally
transmitted descendants of imports (blue). B: Histogram showing the number of locally transmitted
(blue) and imported (red) isolates over time.

17

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2022. ; https://doi.org/10.1101/2022.07.15.500228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.15.500228
http://creativecommons.org/licenses/by/4.0/


data from Sierra Leone only (Figure 6).342

Finally, we analysed a set of 3797 SARS-CoV-2 genomes isolated in Scotland between March 2020 and343

June 2022. This collection was obtained by downsampling the ⇠200,000 Scottish sequences that have344

been deposited in GISAID since the beginning of the COVID-19 pandemic; for each day for which data345

was available, at most 5 genomes were randomly selected from those having no ambiguous or unknown346

base. We then cleaned up the multiple sequence alignment retrieved from GISAID by only keeping347

the relevant rows, eliminating columns entirely made of dashes, and trimming sequences at both sides348

by the minimum amount of nucleotides needed to make the stretches of dashes at the beginning and349

the end of each genome, which indicate unknown sequence, entirely disappear for all the genomes350

selected. The resulting alignment was given as input to FastTree (Price et al. 2010) to generate a351

phylogeny which was then dated using BactDating (Didelot et al. 2018). The inference of imports352

took approximately 20 minutes to compute, resulting in a total of 50 detected imports, as shown in353

Figure 7 and listed in Table S1. Interestingly, no imports were found until August 2020, perhaps as354

an e↵ect of the first lockdown which started at the end of March 2020 and was progressively relaxed355

throughout Spring 2020. During August 2020 15 imports were identified, which was the largest for any356

month in the analysis. Many of these imports may be associated with Summer holidaying. According357

to our analysis the alpha variant was imported in November 2020, soon after it had been reported in358

England (Davies et al. 2021). Several imports corresponded to low frequency variants, including Beta359

in December 2020, Zeta in December 2020 and Eta in March 2021. Fewer imports were detected in360

the first few months of 2021, which may be the result of the second lockdown in January and February361

2021. The Delta variant was imported in April 2021, soon before it became dominant throughout the362

UK (Elliott et al. 2021). From then on, the Alpha variant was reimported three times and the Delta363

variant nine times with the last imports occurring in December 2021. The Omicron variant (Cao et al.364

2022) was first imported in December 2021, and reimported three times from January to March 2022,365

by which time this variant had become dominant in the UK and globally.366

DISCUSSION367

When studying the occurrence of an infectious disease in a geographically limited population, it is368

often important to distinguish cases that have been transmitted within the population from cases that369

have been imported from external origins. Genomic data has the potential to distinguish between these370

two types of cases, since new imported cases would usually be more distantly related from previous371

cases than cases arising from local transmission. We developed a statistical method that can quickly372

establish which cases have been imported. Application to simulated datasets showed that our method373

has excellent specificity, which means a very low probability that a locally transmitted case would374

be inferred to have been imported. Our method also has good sensitivity to detect cases that have375

been truly imported, although this is not perfect since there is always a chance that an import will376

be genetically similar to the locally transmitting population. We also showed that our method can be377

useful in four very di↵erent real applications: an outbreak of gonorrhoea in a single city, a country-wide378

expansion of a bacterial clone causing enteric disease, the 2013-2016 epidemic of Ebola virus disease379

in Sierra Leone, and the COVID-19 pandemic.380

Our approach uses only genomic data from within the location of interest, without making assumptions381

about the genomic epidemiology of the disease outside of this location. This problem is therefore382

analogous to the inference of recombination coming from external unsampled sources (Didelot and383

Falush 2007; Didelot and Wilson 2015) rather than recombination within a single population (Didelot384

et al. 2010). In this case, genomes from other populations are sometimes used subsequently, by385
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Figure 7: Application to SARS-CoV-2 dataset. A: Inference of imports. The inferred mean and 95%
credible intervals of the mean coalescent intervals over time are shown in blue. B: Histogram showing
the number of locally transmitted (blue) and imported (red) isolates over time.
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comparing them with the inferred recombination tracts to determine if they might be the origin of the386

recombination events (Didelot et al. 2011, 2012; Ozer et al. 2019). In the same way, for the problem of387

detecting imports into a location we are interested in here, any information about the genetic diversity388

at other locations could be used to assess the likely origin of the detected imports, simply by comparing389

the genomic sequences of the inferred imports with the genomes collected from other locations.390

Our method requires first to compute a dated phylogeny from the genomes before detecting imports,391

and therefore fits within the framework of step-by-step approaches from microbial genomes to392

epidemiology (Didelot and Parkhill 2022). There are several advantages to this type of approach,393

including scalability to large datasets as we demonstrated here with the analysis in a matter of394

seconds of datasets containing hundreds of pathogen genomes. There are however also drawbacks395

to such an approach compared to a more integrated approach (Didelot and Parkhill 2022). A first396

issue concerns the fact that the model used to build the dated phylogeny is contradicted here by the397

presence of imports. As previously noted (cf Methods), this is unlikely to have a significant e↵ect398

as long as imports are relatively rare, but in any case the e↵ect would be to overestimate the local399

e↵ective population size, thus making the method more specific and less sensitive, as desired. Another400

inaccuracy of the step-by-step approach is that a single dated phylogeny is used as input, which does401

not capture the uncertainty in the phylogenetic reconstruction. A solution is to apply the method to402

a posterior sample of the dated phylogenies (Nylander et al. 2008), which is feasible here since our403

method to detect imports is very fast. We applied this idea to one of the real datasets we analysed404

and found that the detection of imports was relatively robust even when using a single consensus tree405

(Figure S4). This is as expected since imports correspond to long branches of the tree which are406

unlikely to have much uncertainty.407
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