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Abstract

The inverse correlation time (ICT) is a key quantity in laser speckle contrast1

imaging (LSCI) measurements. Traditionally, ICT is regarded as a metric2

of blood flow, such as speed or perfusion. However, we highlight that ICT3

not only contains important information about blood flow, but also reflects4

the underlying structure of the vascular network. In the past, ICT has been5

found to be correlated with vessel diameter. Here, we further report that ICT6

exhibits a different sensitivity to blood flow depending on vessel orientation.7

Specifically, ICT is more sensitive to blood flow speed changes in vessels de-8

scending from or arising to the tissue surface, compared with those laying9

parallel to the surface. Those findings shift our understanding of ICT from10

purely blood flow to a combination of blood flow and vascular network struc-11

ture. We also develop theories to facilitate the study of vascular network’s12

impact on ICT.13
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1. Introduction14

Laser speckle contrast imaging (LSCI) has gained attention in recent years15

for the quantification of blood flow in biomedical imaging applications1–3. It16
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is non-invasive, non-ionizing and label free. In general, the higher the blood17

flow speed, the more rapidly the speckle patterns will vary in time, leading to18

a lower speckle contrast when integrated over the camera exposure time4,5.19

Valuable information about blood flow perfusion in regions of interest can be20

extracted in real time from the continuous and wide-field 2-dimensional (2D)21

monitoring of speckle contrast6,7. Nevertheless, the speckle contrast only22

provides qualitative measurements of the underlying blood flow8. Numerous23

efforts have been put into advancing LSCI from qualitative to a quantitative24

imaging modality9–15.25

One promising path is to relate speckle contrast to the autocorrelation26

function of detected electric field, g1(τ) and extract the inverse correlation27

time (ICT) as the index of blood flow. Within a limited set of conditions, ICT28

is proportional to the typical speed of blood flow within a certain range16,17,29

and it has demonstrated great potential in quantifying cerebral blood flow30

and facilitating intraoperative flow monitoring18–21.31

In view of the promise of ICT in transforming LSCI to a quantitative32

imaging modality, the strategy to extract ICT from measured speckle dy-33

namics is gaining the significant attention. Initially this was done with34

single-exposure LSCI16,17, and more recently, multi-exposure speckle imaging35

(MESI) was developed to extract ICT more accurately from the confounding36

effects of static scattering, instrumentation noise and loss of correlation due37

to speckle averaging22–24. Recently, dynamic light scattering imaging (DLSI)38

was proposed to reduce the ICT estimating error owing to an inaccurate39

model of electric field autocorrelation function25.40

Though ICT has been mainly interpreted as a metric of blood flow, such41

as speed, or perfusion, there is increasing evidence that ICT is subject to the42

structure of the vascular network. Kazmi et al.’s experimental results showed43

that ICT might be quantifying neither volumetric flux nor flow speed but the44

product of the flow speed and vessel diameter26. Fredriksson et al. reported45

the vessel packaging effect in which the confinement of blood to vessels with46

an average diameter of 40µm could lead to a 50% reduction in perfusion47

estimation by LSCI compared with homogeneous blood distribution inside48

the tissue27. Jafari et al. found that ICT could be shifted over 10 times49

under the homogeneous assumption compared with using the actual vascular50

geometry, highlighting the significant impact of vascular geometry on ICT28.51

The impact of vessel orientation on ICT has not been fully investigated52

yet. In this work, we conducted Monte Carlo simulations and found that ICT53

of vessels perpendicular to the tissue surface, i.e. descending from/arising to54
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the surface, exhibits a higher sensitivity to blood flow changes than that55

of vessels laying on the surface. Such finding is confirmed by experimental56

validation in vivo combining MESI and 2-Photon (2P) imaging. Those results57

suggest that the structure of the underlying vascular network deserves more58

attention than it currently receives in the interpretation of ICT. We also59

develop a generalized theory to facilitate the study on the impact of vascular60

network structure. It is compatible with all extant g1(τ) models and free of61

assumptions about groundtruth blood flow speeds.62

2. Theory and Methods63

2.1. A unified theoretical framework for ICT interpretation64

According to the traditional dynamic light scatteirng (DLS) and diffusing65

wave spectroscopy (DWS) theories, in different scattering regimes (single vs.66

multiple) and flow conditions (ordered vs. unordered), different assumptions67

should be made about the form of the electric field autocorrelation function68

g1(τ) [29–33], as shown in Fig. 1A [25]. τc is the correlation time and ICT is69

defined as 1/τc. The modulation number n is the main differentiating factor70

among those models.71

In this paper, we first introduce a unified theoretical framework that is72

compatible with all extant g1(τ) models. After Monte Carlo simulation of73

photon migration inside the tissue, the electric field auto-correlation function74

g1(τ) can be calculated according to Eq. 1 (ref. [34])75

|g1 (τ)| =
∣∣∣∣∫ ∞

−∞
P (Y )ejY τdY

∣∣∣∣ (1)

where Y =
∑N

i=1 q⃗i ·v⃗i and q⃗ = k⃗o−k⃗i. N is the number of dynamic scattering76

events experienced by a single photon. N can be larger than 1 hence Eq. 177

accommodates both single and multiple scatter regimes. q⃗ is the momentum78

transfer vector defined as the difference between the scattering wave vector79

k⃗o and the incident wave vector k⃗i [35]. The direction of k⃗o and k⃗i is the80

propagating direction of the scattered light and incident light, respectively.81

The amplitudes are both equal to k0, the wavenumber. Finally, v⃗i is velocity82

of the scattering particle in the i-th dynamic scattering event experienced83

by the photon. For clarity sake, speed refers to scalars while velocity corre-84

sponds to vectors in this paper. Note that since the instantaneous velocity85

of Brownian particles is physically measurable36, we expand the definition of86

3
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v⃗i from the velocity of ordered motion as defined in ref. [34] to include both87

ordered and diffusive motions. P (Y ) is the probability density function of Y .88

When some photons generate the same Y value, their weights will be added89

together to give rise to P (Y ). Y can be interpreted as the accumulation of90

frequency shifts induced by dynamic scattering (see Supplemental Material91

section 1 for a more concise proof than ref. [37]).92

g1 (τ) =

∫ ∞

−∞
Ω (ω) ejωτdω (2)

With g1(τ) rewritten in terms of Y , we notice that g1(τ) is the Fourier93

transform of P (Y ). Considering the Wiener-Khintchine theorem, if Ω (ω)94

is the normalized power spectral density of the detected electric field, then95

g1 (τ) would be the Fourier transform of Ω (ω) (Eq. 2) (ref. [38]). Therefore,96

we arrive at Eq. 3 that P (Y ) is a shifted version of Ω (ω)97

Ω (ω̄) = P (Y ) (3)

where ω̄ = Y + ω0 and ω0 is the center frequency of the electric field.98

Substituting P (Y ) for Ω(ω) is advantageous in that P (Y ) reveals the99

mechanism of spectrum broadening in LSCI since Y is the accumulation of100

frequency shifts induced by dynamic scattering. P (Y ) and specific forms of101

g1 (τ) can be bridged by Eq. 4 and 5. For g1 (τ) = e−|τ |/τc ,102

1

τc
= Γ (4)

where Γ is the half width at half maximum of the Lorentzian P (Y ) =103

1
πΓ

(
1

1+Y 2

Γ2

)
. For g1 (τ) = e−(τ/τc)

2

,104

1

τc
=

1√
2
σ (5)

where σ is the standard deviation of the Gaussian P (Y ) = 1√
2πσ

e−
Y 2

2σ2 . See105

proof in Supplemental Material section 2.106

These two equations (Eq. 4 and 5) provide new interpretations of ICT107

(i.e., 1
τc
) from the point of view of P (Y ). For Lorentzian P (Y ), ICT deter-108

mines the half width at half maximum while in Gaussian P (Y ), ICT is a109

scaled version of the standard deviation. Note that in both cases, ICT serves110

as a kind of measure of the broadening of the spectrum of Y . In fact, as long111

4
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as the spectrum of detected light is both bandwidth- and amplitude-limited,112

a more general linear relationship113

( 1
τc
)2 ∝ Var (Y )114

can be shown to hold for any electric field auto-correlation functions taking115

the form of g1(τ) = e−(|τ |/τc)n (see Supplemental Material section 3 for proof).116

This suggests that ICT in the various g1(τ) models shown in Fig. 1a can be117

unified as the reduced case of the standard deviation of Y . Since P (Y )118

is essentially the same as the power spectral density of the electric field of119

detected light (Eq. 3), ICT can be interpreted as the scaling factor of the120

variance of the detected optical spectrum as well. Since Var (Y ) measures121

the variance of frequency shifts in the dynamics scattering process, we call it122

the variance of dynamic scattering.123

2.2. Characterizing the inherent properties of vascular network to produce124

ICT125

In this section, we aim to decouple the effects of blood flow speeds and126

vascular structure on ICT and develop tools to study the vascular network127

individually. Further analyzing the structure of Y and separate the contri-128

butions to Y by the blood flow and others, we arrive at Eq. 6129

Y = Ys + Yf = Ys + kṽ (6)

where Yf represents the contributions to Y by motions induced by blood flow130

while Ys denotes the component in Y that is independent of the blood flow.131

Yf can be expressed as the product of k and ṽ where k =
∑N

i=1 |q⃗i| cosαi,132

ṽ =
∑N

i=1 |q⃗i| cosαi·|v⃗i|∑N
i=1 |q⃗i| cosαi

and αi is the angle between q⃗i and v⃗i. The q⃗i, v⃗i and N133

follow same definition as in Eq. 1.134

Note that ṽ represents the weighted average of absolute blood flow speeds135

and the weighting is determined by the photon’s scattering geometry, i.e., the136

scattering angle and the angle between the momentum transfer vector q⃗i and137

velocity vector v⃗i. k is the sum of weights and equal to Yf when blood flow138

speeds are all unit speeds.139

Also notice that k and ṽ are well de-correlated from each other. To under-140

stand this, it is helpful to view k as the sum of weights and ṽ as the weighted141

average of blood flow speeds. When the sum of weights changes, we would142

not be able to predict how the weighted average will change if little is known143

about how the individual weight changes. The weighted average can increase144
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or decrease. It can also remain invariant if the weights increase/decrease by145

the same ratio.146

Furthermore, if we assume that blood flow speeds are uncorrelated with147

the photon’s scattering geometry (i.e., the scattering angle and the angle148

between q⃗i and v⃗i are uncorrelated with the magnitude of the flow vector), ṽ149

and k would be uncorrelated (see proof in Supplemental Material section 4).150

With this uncorrelated relationship, we arrive at Eq. 7 and 8151

E (Y ) = E (Ys) + E (k) E (ṽ) (7)

152

Var (Y ) = Var (Ys) + Var (k) E (ṽ2) + E2(k)Var (ṽ) (8)

where E (X) and Var (X) give the expectation and variance of the random153

variable X, respectively.154

Eq. 7 and 8 points out the relationship between statistical properties of155

Y and those of k and ṽ. Further approximations to Eq. 8 can be made to ac-156

commodate blood flow quantification. Either of the following two conditions157

is sufficient for Eq. 9 to be applied with good accuracy. First, the vascular158

structure sampled by detected photons is dominated by a single vessel, i.e.,159

Var (ṽ) is approximately 0. This is true for major surface vessels where dy-160

namic scattering events of detected photons are strongly localized within that161

vessel8,21,33. Second, the scattering of collected photons is fully randomized,162

i.e., E (k) is 0. This is true for parenchyma regions where dynamic scattering163

is dominated by micro-vessels whose orientation is randomized. Our simula-164

tion results of E (k) on parenchyma regions also support that as section 3.1165

will show.166

Var (Y ) = Var (Ys) + Var (k) E (ṽ2) (9)

With Eq. 9, we define the characteristic variance of dynamic scattering167

as Var (k). If we plot Eq. 9 (Fig. 2), the physical implications of Var (k) are168

evident as the slope. Var (k) can be defined for each detection point (i.e.,169

a pixel on the camera) in LSCI and it characterizes the ability of the sam-170

pled vascular network to decrease speckle contrast or increase ICT under the171

specified illumination/detection setup at the detection point. The larger the172

Var (k), the stronger the ability of the vascular network to decrease speckle173

contrast or increase ICT under the same blood flow speed, at the detection174

point. In addition, Var (k) is independent of the blood flow speed since it175
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is defined with unit speeds. Hence, it reveals the inherent properties of the176

vascular network under the specified illumination/detection setup.177

Figure 1: A unified theoretical framework for ICT interpretation. a The various
g1(τ) models proposed in treatment of the complex vascular network in LSCI. Extant
models of the electric field auto-correlation function in various cases of scattering regimes
and flow conditions. τc is the correlation time and ICT is defined as 1/τc. On the quadrant
plot, the opposite of the order motion is unordered motion (also known as diffusive motion)
and that of single scattering is multiple scattering. b Physical meaning of the characteristic
variance of dynamic scattering. The vertical axis depicts the variance of dynamic scattering
Var (Y ) which is proportional to the square of ICT. The horizontal axis is the weighted
average of blood flow speeds sampled by the photon scattering process. The slope of the
plot is Var (k). A steeper slope indicates a vascular network of higher sensitivity to flow
changes.

2.3. Monte Carlo simulation178

The simulation algorithm is based on ref. [28]. The uniform flat beam179

profile is used for simulation. The effects of ordered motion of the RBCs180

along the direction of vessels are investigated in this study. Though the181

diffusive motion of RBCs has been recently suggested as dominating the182

correlation decay in diffuse correlation spectroscopy (DCS) measurements39,183

it is unclear whether the effects are due to the radially diffusive motion of184

RBCs within vessels or axially ordered motion of RBCs along the vessel but185

within a diffusive vascular network where vessels are curved and direction-186

randomized. Nor it is clear whether the observation holds in LSCI. Jafari et187

al. found that the axially ordered motion of RBCs along the vessel adequately188

describes the particle dynamics in LSCI given the strong agreement between189
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experimental and simulated speckle contrast values28.Hence, the effects of190

radially diffusive motion of RBCs within vessels might be negligible in LSCI.191

The potential impact of radially diffusive motion of RBCs within vessels to192

findings of this study is also discussed in section 4.1.193

The simple vascular geometry for simulation is made of parallel and194

equally spaced vessels (similar to ref. [39]). Vessels in the first geometry195

are parallel to y axis, and parallel to z-axis in the second geometry (Fig. 2a).196

Some of the major settings are as follows: geometry size: 1 × 1 × 1mm3,197

the radius of vessels: 0.01 mm, space between vessels: 0.1 mm, radius of198

the incident beam: 0.25 mm, radius of the detector: 0.01 mm, NA of the199

detector: 0.2. The detector is placed in the center of the field of view and200

right above the vessels. The optical properties of vessels and tissue are the201

same as in ref. [39].202

For the realistic vascular geometry (shown in Fig. 2b), the simulation flow203

for generating the photon trajectories through the 3D geometry is detailed by204

Jafari et al.28. Briefly, parallelized Dynamic Light Scattering Monte Carlo205

(DLS-MC) simulations were launched on the Stampede2 Skylake compute206

nodes on Texas Advanced Computing Center (TACC) using the Message207

Passing Interface (MPI) protocol to simulate 80 × 109 photon trajectories208

through the geometry.209

The realistic vascular geometry was obtained through 2P imaging, fol-210

lowed by vectorization of the vascular structure40. The vectorized geometry211

was voxelized into a three-dimensional matrix of the size 277 × 277 × 303212

voxels in the X, Y, and Z directions, respectively. The voxel size was a cubic213

2 × 2 × 2µm3, yielding a total geometry size of 554 × 554 × 606µm3. A214

circular collimated wide-field beam with a flat profile was set to illuminate215

95% of the top surface of the geometry. A NA of 0.25 and detector size of216

9.8× 9.8µm2 were used in the simulation settings to reflect the typical con-217

figuration of LSCI experimental setup. For detected photons, both entry and218

exit locations as well as the photon trajectories through the volume and pho-219

ton weights were recorded. The optical properties of capillaries, non-capillary220

vessels and extra-vascular tissue as used in ref. [28] are adopted.221

2.4. In vivo experimental validation222

The MESI imaging system detailed in ref. [21, 22] is used for microfluidics223

and in vivo speckle imaging experiments. The laser wavelength is 785 nm and224

the magnification of the system is 2x. 56 MESI sequences with each sequence225

containing 15 speckle contrast images corresponding to 15 exposure times are226
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Figure 2: Vascular geometry in Monte Carlo simulation. a The diagram of simple
y- and z-directional vascular geometry. b The realistic vascular geometry scanned from
a mouse’s cerebral cortex. The geometry size is 554 × 554 × 606µm3. 3D rendering by
Blender 2.81 (ref. [41]). Color coded by vessel radius (unit: µm).

acquired. The K2 curves are calculated by averaging speckle contrast values227

over multiple MESI sequences and then squaring it. ICT values are then228

extracted by fitting the K2 curves based on the MESI model22.229

The mouse cranial window preparation procedures were detailed by Kazmi230

et al.26. During imaging sessions, the mouse (C57BL/6, Charles River Lab-231

oratories Inc.) was anesthetized with medical grade O2 vaporized isoflurane232

(3% induction, 1.5% maintenance).233

For 2P imaging, images were acquired with a custom microscope and234

laser system42,43. The same anesthesia procedure as above-mentioned was235

used. In addition, 100 µL of 70 kDa dextran-conjugated Texas Red diluted236

in saline at a 5% w/v ratio was added to the blood plasma through retro-237

orbital injection prior to imaging. The dye was then excited by an Yb fiber238

amplifier (λ = 1060 nm). 30 frames acquired with a resonant scanner were239

averaged at each depth to produce images.240

All animal procedures in this study were approved by The University of241

Texas at Austin Institutional Animal Care and Use Committee (IACUC).242

3. Results243

3.1. Monte Carlo Simulation244

The simulation results on the realistic vascular network under normal il-245

lumination are shown in Fig. 3. Figure 3a-e shows the map of the number of246
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detected dynamic photons (i.e., photons experiencing dynamic scattering at247

least once), Var (k), E (k), and Var (Y ), respectively. To counter the effects of248

wavelength, the Var (Y ), Var (k) and E (k) are normalized by the wavenum-249

ber, i.e. Var (Y/k0), Var (k/k0) and E (k/k0), unless specified otherwise.250

Figure 3: Simulation results on the realistic vascular network under normal
illumination. a The map of the number of detected dynamic photons at each camera
pixel. The dynamic photons refer to photons which experience at least one dynamic
scattering event before exiting and being detected. b-f The map of Var (k), Mean (k),
Var (Y ), E (ṽ2), and MIP2 (v), respectively. MIP2 (v) represents the square of maximum
intensity projection of flow speeds assigned in simulation. The position of bright spots in
(b), (c) and (d) is circled out correspondingly in (a).

There are several interesting observations. First, note the bright blobs in251

Fig. 3b, d and blue/orange blobs in Fig. 3c whose positions are circled in Fig.252

3a. The reason that those blobs appear in those places instead of elsewhere253

is suspected to be correlated with the underlying vascular structure and we254

find that there is always a major descending/ascending vessel in those spots255

(Fig. 2b and Supplemental Material section 5).256

Second, the major surface vessels extending in the x-y plane shown in Fig.257

3a appear even darker than surrounding parenchyma regions in the Var (k)258

map (Fig. 3b). This suggests that Var(k) might be sensitive to the orien-259

tation of vessels, namely, small for x-y plane surface vessels while large for260
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z-directional descending vessels under normal illumination. This hypothesis261

is verified by simulation results on the simple vascular geometries consist-262

ing of parallel and equally-spaced vessels. Var (k) of z-directional vessels is263

observed to increase by 7 times compared with that of y-directional vessels264

under normal illumination (Supplemental Material section 6).265

Third, among those blobs, some are blue while others appear orange in266

Fig. 3c. Further analysis on the flow vector assignment in simulation reveals267

that this is dependent on whether the flow vector is z-positive or z-negative268

(Supplemental Material section 7).269

Finally, E (k) of parenchyma regions is 0 (Fig. 3c). Hence, Eq. 9 can be270

applied with good accuracy. With Var (Ys) being 0 in simulation, we could271

calculate E (ṽ2) by dividing Var (Y ) with Var (k). As Fig. 3e shows, the E(ṽ2)272

map reveals a clearer structure of surface vessels than Var (Y ) (Fig. 3d). To273

evaluate accuracy of the absolute blood flow speed estimation given in Fig.274

3e, the square of the maximum intensity projection (MIP) of blood flow275

speeds assigned in simulation is mapped in Fig. 3f. In terms of the resolved276

vessels, the shape of x-y plane surface vessels is well preserved in Fig. 3e and277

the intensity value also shows a good match with that in Fig. 3f. However,278

for z-directional descending vessels, the vessel boundary is expanded and279

there is no clear border, which highlights their distinct properties in LSCI280

from x-y plane surface vessels.281

3.2. Experimental validation282

The enhanced sensitivity of speckle contrast to blood flow speed in z-283

directional vessels compared with x-y plane vessels is also observed in vivo.284

As highlighted by white arrows in Fig. 4a and b, the orthogonal X-Y and285

X-Z cross-sections of 2P imaging data clearly reveal an inverted “L” shaped286

vessel. At the end of its surface strand, it develops into a descending strand287

into the tissue. ROI of the two strands is shown by the white boxes in Fig.288

4d. Notice that there is no other major vessel branch on this “L” shape289

and vessel diameters of the two strands are approximately the same. Thus,290

based on blood flow conservation26, the flow speed should be approximately291

the same in these two strands. Nevertheless, we see a lower speckle contrast292

in areas corresponding to the descending strand as pointed out by the white293

arrow in Fig. 4c. It indicates an enhancement of the sensitivity of speckle294

contrast to blood flow speed in the descending strand compared with surface295

strand. More specifically, the average ICT squared of the descending strand296

is ∼78% larger than that of its surface counterpart, as highlighted by white297
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Figure 4: One example of the z-directional descending vessel inducing a more
significant decrease of speckle contrast and increase of ICT than its upstream x-
y plane surface strand in vivo. a, b Orthogonal cross-sections of the vascular structure
acquired from 2P imaging. (a) X-Y cross-section (depth: 27µm); (b) X-Z cross-section
along the yellow dashed line in (a). The yellow line in (b) indicates the z position of (a).
White arrows in (a) and (b) indicate the direction of an upside-down “L” shaped vessel
which has a surface strand extending horizontally on the surface followed by a descending
strand deep into the tissue. scale bar: 80µm. The spatial scale along the x- and z-axis is
the same in (b). c Single-exposure speckle contrast image of the vascular network. Camera
exposure time T=1ms. The white arrow indicates position of the descending vessel strand
which shows a stronger decrease of speckle contrast than its connected x-y plane surface
strand. d The map of ICT square. The two white boxes highlight the descending strand
and surface strand, respectively. The white arrow indicates the position of the descending
strand exhibiting a larger ICT value than its connected x-y plane counterpart. The black
arrow in b highlights another descending vessel branch from the main vessel. The black
arrow in c and black boxes in d indicate the compound effects of vascular structure and
blood flow in modulating speckle contrast and ICT values.
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Figure 5: Statistical comparison of ICTs between the z-directional descending
vessel strand and its upstream x-y plane surface strand in vivo. a Pairs of z
strand and x-y strand in a typical mouse cerebral window whose position is highlighted
by the dashed rectangle on the ICT squared image. The arrows point to the descending
vessel in each pair. Scale bar: 0.25mm. b The corresponding 2P images showing the
vascular structure of the four pairs of z strands and x-y strands. The first column shows
the X-Y cross-section of the vascular structure near the surface while the second column
shows the cross-section at the same location but in a deeper tissue. The red arrows point
to the z strands in the pair. c The juxtaposing of ICT squared of the z strand and that of
the contiguous x-y strand. The scatter plot shows the data of nine z and x-y strand pairs
from three mice. The linear fitting is performed and the slope is around 2, larger than
1, which indicates that the ICT of z-directional vessels could be larger than that of x-y
plane vessels even though they assume the same blood flow speed. The difference between
ICT squared of the z strand and that of the paired x-y strand is statistically significant
(paired t-test, n=9, p < 0.001).
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boxes in Fig. 4d). If the impact of Var (Ys) is negligible, it implies that298

Var (k) of the descending strand would be more than 75% larger than that299

of surface strand. Notably, similar border expansion is also observed here in300

the position of the descending strand as in simulation (Fig. 3e).301

To further evaluate the statistical significance of the enhanced sensitivity,302

9 pairs of z-directional vessels and x-y plane vessels from 3 mice are analyzed.303

Those vessel pairs are selected for analysis because their vascular structure304

has the same properties as in the example mentioned above, i.e., the upside-305

down L vessel shape and the approximately same diameter of the two strands.306

The location of four z and x-y strand pairs in a typical mouse cerebral window307

is shown in Fig. 5a and their vascular structure is acquired by 2P imaging308

(Fig. 5b). ROI of the z and x-y strands in each pair is selected in the309

similar way as shown by white boxes in Fig. 4d. The ICT squared of the z310

strand in each pair is plotted against that of the x-y strand (Fig. 5c). The311

linear fitting results in a slope of approximately 2. In addition, the difference312

between ICT squared of z strand and that of its contiguous x-y strand is313

statistically significant (paired t-test, n=9, p < 0.001). Those results provide314

direct experimental evidence for the enhanced sensitivity of ICT to blood315

flow changes in z-directional vessels compared with vessels extending in the316

x-y plane.317

Finally, the compound effects of vascular structure and blood flow should318

be noticed. As highlighted by the black arrow in Fig. 4b, there is another319

descending vessel branch from the main vessel. The blood flow in the main320

vessel splits into two portions: one goes into the above-mentioned inverted321

“L” shaped vessel and the other goes into this second descending vessel.322

Therefore, the speckle contrast and ICT in the solid black rectangle in Fig.323

4d result from not only an underlying descending vessel but also the larger324

blood flow in the main vessel. That is why they are not directly comparable325

with those of the descending strand in the white square in Fig. 4d. Interest-326

ingly, the enhanced sensitivity can be roughly examined if we compare the327

ICT squared in the solid-line black rectangle with that in the dashed black328

rectangle in Fig. 4d. Both areas cover the main vessel of the largest blood329

flow but the solid rectangle assumes larger ICT squared, which indicates the330

additional impact of the descending vessel in the solid square. Similarly, the331

joint effects of vascular structure and blood flow are observed in the region332

of vessel pair 2 in Fig. 5a where a second descending vessel is also present333

(Fig. 5b).334
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4. Discussion335

4.1. Bridging ICT to physiologically meaningful blood flow variables336

Given the volume integrated nature of LSCI and the complexity of the337

vascular network, it has been long hypothesized that if LSCI is measuring338

some physiologically meaningful blood flow variable, it measures the weighted339

average of that variable within the probed volume [22, 39]. However, it is340

unclear how the weighting is determined. Our derivation in section 3.1 and341

3.2 reveals that the weighting is determined by photons’ dynamic scattering342

process, according to the definition of ṽ (Eq. 6). Note that ṽ is physiologically343

meaningful and represents the weighted average of blood flow speeds probed344

by detected photons. In the case that all dynamic scattering events sample345

the same blood flow speed v, ṽ would be equal to v regardless the weighting.346

Combining the results in section 2.1 and 2.2, a general relationship be-347

tween ICT and physiologically meaningful blood flow variables, i.e. ṽ, can348

be established. In section 2.1, it has been shown that ICT squared is pro-349

portional to the variance of Y , which accommodates all current g1(τ) models350

in LSCI. In section 2.2, Eq. 9 further points out that the variance of Y351

assumes a linear relationship with the expectation of ṽ squared. Hence, the352

linear relationship between ICT squared and the expectation of ṽ squared is353

reached by our theoretical derivation.354

Contrary to the frequently adopted notion that ICT is proportional to355

blood flow speed, our theory concludes that the squares of the two that are356

linear to each other. The difference between the two notions is centered on357

whether Var (Ys) is zero or not. Pragmatically, the existence of Var (Ys) is358

indispensable to tackling the “biological zero” problem which refers to the359

non-zero residual signal even when no blood flow is present37,44. A non-360

zero Var (Ys) might reduce the difference of ICT values between descend-361

ing/ascending vessels and surface vessels. As observed in simulation, the362

Var (k) of z-directional vessels is 7 times larger than that of y-directional363

vessels in the simple vascular geometry, which is expected to generate a ICT364

squared difference of 7 times according to Eq. 9 if Var (Ys) is zero. However,365

ICT squared in vivo is only 60% larger on average in descending/ascending366

vessels than vessels laying on the surface. A non-zero Var (Ys) in vivo could367

play a significant role in accounting for such discrepancy. In addition, the368

scatters’ movement could be more diverse in vivo compared with our settings369

in simulation. For example, the radially diffusive motion of RBCs in vessels370

is not present in our simulation.371
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Var (k) plays a major role in bridging ICT and the physiologically mean-372

ingful blood flow variable, ṽ, as Eq. 9 points out. It provides a theoretical373

basis for extracting the physiologically meaningful blood flow variable ṽ from374

ICT. Given the Var (k) already known of the vascular network, the estima-375

tion of absolute statistical blood flow speeds could be made by dividing the376

measured Var (Y ) by Var (k) (Fig. 3e). Note that Var (Ys) is assumed 0 in377

simulation.378

Finally, our findings showed partial support for Briers et al.’s method of379

converting measured ICT values to absolute blood flow speeds. Specifically,380

the conversion is performed by vc = λ/(2πτc) where vc is named decorrelation381

velocity, λ is wavelength and τc is correlation time16,17. Our theory shows382

that this is in fact acquired by assuming Var (Ys) = 0 and approximating383

Var (k) with k2
0, the square of wavenumber (Eq. 9).384

4.2. Interpretation and practical implications of Var (k)385

Var (k) can be interpreted at both the microscopic and macroscopic scales.386

Microscopically, by definition (Eq. 6 and 8), it provides an essential char-387

acterization for the variation of photons’ dynamic scattering process inside388

the probed medium in terms of the accumulated frequency shift. Macro-389

scopically, as revealed by Eq. 9, it reflects the ability of the probed vascular390

network to induce a decrease of speckle contrast or increase of ICT for a given391

illumination and detection setup. The micro and macro-scale interpretations392

are connected due to the fact that photons’ dynamic scattering is mainly393

constrained within the vascular network.394

Var (k) also illustrates that it is challenging, if not impossible, to do abso-395

lute blood flow speed measurements through a generalized calibration since396

Var (k) is unique for a given vascular network. When the probed vasculature397

changes, Var (k) also changes.398

4.3. Physical mechanism and practical implications of the directionality sus-399

ceptibility400

The different sensitivity of ICT to the blood flow speed in x-y plane vessels401

and z-directional descending/ascending vessels is likely due to the different402

flow direction in those vessels. One might argue that in descending/ascending403

vessels, the ratio of blood volume in the overall volume sampled by detected404

photons might be larger than that in the surface vessels. And it might be405

the larger blood volume ratio in descending/ascending vessels that is caus-406

ing the higher sensitivity of ICT to the blood flow. We exclude this theory407

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 22, 2022. ; https://doi.org/10.1101/2022.07.15.500238doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.15.500238
http://creativecommons.org/licenses/by-nc-nd/4.0/


by manipulating the flow direction in simulation. If the blood volume ratio408

theory is true, then Var (k) of z-directional vessels should remain larger than409

that of x-y plane vessels even if the direction of flow is changed since the410

blood volume ratio is invariant. However, it is observed that Var (k) of the411

z-directional vascular geometry is smaller than that of y-direction vascular412

geometry after switching the flow direction in z-directional vascular geome-413

try to y-direction and that in y-directional vascular geometry to z-direction414

(Table S2). Validation on the realistic vascular geometry shows consistent415

results (Fig. 6). The bright blobs originally present in the Var (k) map416

(Fig. 3b) are removed after the amplitudes of y and z component of the unit417

velocity vector of blood flow are swapped (Fig. 6a). Instead, the position418

of y-directional vessels is highlighted. However, such phenomena would not419

appear if it is the amplitudes of x and y component that are swapped (Fig.420

6b).421

Figure 6: Map of Var (k) with the blood flow direction switched in realistic
vascular geometry. a The amplitudes of y and z components of the unit velocity vector
of blood flow are swapped in simulation. b The amplitudes of x and y components of the
unit velocity vector of blood flow are swapped in simulation.

Var (k) not only quantifies and reveals the directionality susceptibility of422

LSCI to vessel orientation, but also helps explain such susceptibility. Since423

Var (k) measures the overall variance of k of detected photons, it is suscep-424

tible to the range determined by the extreme values of k. Consider extreme425

values of k of singly scattered photons first where k = |q⃗| cosα. Under normal426
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illumination, |q⃗| ≈ 2k0 and q⃗ is along the z-axis. Therefore, k would be max-427

imized when cosα is maximized. Since α is the angle between velocity vector428

v⃗ and momentum transfer vector q⃗ which is along the z-axis, cosα would be429

maximized when v⃗ is also along the z-axis. That explains why z-directional430

vessels have larger Var (k) values than x-y plane surface vessels. Finally, for431

photons that are scattered multiple times, the randomized directions of q⃗ and432

v⃗ make it difficult to generate extreme k values since the effects of multiple433

scattering events can cancel out with each other. Hence, the directionality434

susceptibility mainly originates from the directionality susceptibility retained435

in single-scattering or few-scattering components of the detected light.436

The directionality susceptibility of LSCI has several practical implica-437

tions. First, direct comparison of ICT values in x-y plane vessels and in438

ascending/descending vessels should be avoided. If a descending/ascending439

vessel exhibits a larger ICT value, it does not necessarily imply a higher440

blood flow than its surface counterpart. Second, the special property of z-441

directional vessels, i.e., enhanced ability to induce the decrease of speckle442

contrast and increase of ICT under the same blood flow speed, might be use-443

ful in locating descending/ascending vessels. Note that those types of vessels444

are particularly prevalent in cerebral cortex and play an important role in445

the blood supply to deeper tissues.446

5. Conclusion447

The interpretation of ICT is a key topic in quantitative LSCI. Though448

it has been mainly considered as a metric of blood flow, there is increasing449

evidence that it is susceptible to the structure of vascular network. We build450

a theoretical framework to facilitate the modeling of the vascular network’s451

impact on ICT and find that ICT is modulated by vessel orientation. In both452

simulation and in vivo experimental validation, ICT of descending/ascending453

vessels exhibits a higher sensitivity to blood flow changes than in surface-454

extending vessels. The different sensitivity is shown due to the flow direction455

instead of blood volume ratio by simulation. The single-scattering compo-456

nent of the detected light might play a major role in ICT’s susceptibility to457

vessel orientation. Those results suggest that the impact of vascular network458

structure warrants more attention and investigation in the interpretation of459

ICT.460
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