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HIGHLIGHTS 

 

● Neural codes for “neuroethogram” in macaque dorsomedial parietal cortex 

● Parietal neural codes exhibit mixed selectivity of event features 

● Dorsomedial PPC neurons support a long temporal receptive window for episodes 
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SUMMARY 

The dorsomedial posterior parietal cortex is part of a higher-cognition network implicated in 

elaborate processes underpinning memory formation, recollection, episodes reconstruction, and 

temporal processing. Neural coding for complex episodic processing is however largely 

undocumented. Here we revealed a set of neural codes of “neuroethogram” in the primate 

parietal cortex. Analyzing neural responses in macaque dmPPC to naturalistic videos, we 

discovered several groups of neurons that are sensitive to categories of ethogram-items and to 

low-level sensory features. The amount of information coded within these multiplex 

representations in turn increases our trained classifier decodability for different video-types. 

We further discovered that the processing of category and feature information by these neurons 

is sustained by accumulation of temporal information over a long timescale, corroborating its 

role at the apex of the cortical hierarchy of temporal receptive windows. Taken altogether, these 

neural findings explain how dorsomedial PPC weaves fabrics of ongoing experiences together 

in real-time and realize a multiplex representation of an organism’s past. The high 

dimensionality of neural representations should motivate us to shift the focus of attention from 

pure selectivity neurons to mixed selectivity neurons, especially in increasingly complex 

naturalistic task designs.  
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INTRODUCTION 

In an ever-changing environment, massive amounts of multidimensional information 

embedded in continuous events rushes into the cognitive system. The neural system has to 

extract pieces of meaningful information, integrate, and encode them into memory systems in 

time for future needs. The dorsomedial posterior parietal cortex (dmPPC), which consists of 

the paracentral Area 7 and precuneus (Cavanna & Trimble, 2006), is part of the posterior-

medial memory system (Ranganath & Ritchey, 2012) and has strong and wide-spread 

anatomical connections with its adjacent structures, including the early visual cortex, 

sensorimotor regions, medial temporal areas, and prefrontal cortex in both macaque monkeys 

and humans (Cavanna & Trimble, 2006; Kravitz et al., 2011; Morecraft et al., 2004). 

A wealth of studies demonstrated that the dmPPC plays critical roles in multifaceted cognitive 

processes, including visual-spatial attention and locomotion processes in egocentric 

environment (Bartels et al., 2008; Ghaem et al., 1997), sensorimotor transformation processes, 

such as object manipulation (Gardner et al., 2007), execution and observation of reaching-to-

grasp behaviors (Evangeliou et al., 2009), representations of enumeration (Harvey et al., 2013), 

decision making (Hutchinson et al., 2015; Murray et al., 2017), self-related processing 

(Cavanna & Trimble, 2006), and episodic memory formation and retrieval (Brodt et al., 2018; 

Brodt et al., 2016). The dmPPC is part of an integral hub for extracting and scaffolding 

information in real-time from the environment (Reagh & Ranganath, 2021) as well as with 

other agents (Freedman & Ibos, 2018; Kravitz et al., 2011). 

Given the region’s myriad functions, the conventional logic of stimulus-response models might 

not be adequate for studying neuronal responses to complex stimuli and their interactions. For 

example, neurons in high-order brain areas especially in associative areas, such as the prefrontal 

cortex (Rigotti et al., 2013) could show mixed selectivity properties to different stimuli (Fusi 

et al., 2016; Wallach et al., 2021). Recently, Platt and his colleagues confirmed that neurons in 

PFC and OFC were engaged in valuing social information with a measure known as 

“neuroethogram” (Adams et al., 2021). A neuroethogram is defined as fitting neural activities 

to dimensional ethograms, which is a technique for annotating species-typical behavior frame-

by-frame. Considering that the primate Area 7 is part of a social interaction network (Sliwa & 

Freiwald, 2017) and a posterior-medial memory network (Ranganath & Ritchey, 2012), we 

predict that dmPPC neurons process information embedded within complex behaviorally 

meaningful events in a multiplex manner.  

In addition to leveraging on multifunctional features contained in naturalistic videos, we were 

mindful that temporal information is another fundamental aspect of events (Clewett et al., 2019). 

Since information is carried out over distinct timescales, we know that the ability of information 

accumulation changes from the primary sensory cortex to the high-order cortex (Hasson et al., 

2015; Hasson et al., 2008). These studies propose that brain areas are organized with 

hierarchical time receptive windows (TRW) so that brain regions with long TRW will 

accumulate transient sensory signals from short TRW brain areas for flexible processing. The 

primate precuneus plays an essential role in temporal information processing (Murray et al., 

2014) involved in time estimation (Onoe et al., 2001) and temporal information integration of 

movies of up to 12 s (Andric et al., 2016; Hasson et al., 2008). It is unclear how neurons in the 

dmPPC might dynamically assemble such temporal details to support such episode processing.  

To address these two issues on processing multiplex content and passage of time, we combined 

an ethogram methodology with dynamic cinematic material, together with multi-unit 

extracellular electrophysiology in awake macaque monkeys, to elucidate how dmPPC neurons 

process mixed selectivity representation of naturalistic content over time.  

RESULTS  
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To study mixed selectivity coding, we had 3 monkeys view 18 different movies (categorically 

into Primate/Non-Primate/Scenery content-type) while we performed extracellular action 

potential recording on their dorsomedial posterior parietal cortex. On each day, the monkeys 

watched 3 different movies, each for 30 repetitions. These movies were custom edited to 

contain both content and temporal information (Figure 1A; Table S1). In total, we recorded 

extracellular activities of 375 units (monkey J: 164; monkey M: 157; monkey G: 54) (Figure 

1B, Figure S1; STAR Methods; Movie S1).  

Classification of neurons by their specificity to video’s content-type.  

By comparing the neural spiking rates to each of the three video content types, we observed 

that 33.07% (124/375) of the neurons exhibited significant (one-way ANOVA, Ps < 0.05) 

content-sensitive activity in the videos (Figure 1C-H), while 66.93% (251/375) showed no 

difference on firing rate across video contents (content-insensitive, Figure 1I). Among these 

content-sensitive neurons, 52.4% (65/124) of the units had a higher mean firing rate for Primate 

videos (Primate), whereas 8.9% (11/124) and 16.9% (21/124) had a higher mean firing rate to 

Non-primate (Non-primate) and Scenery (Scenery) videos, respectively (Figure 1C-E). In 

contrast, 10.5% (13/124) of these content-sensitive neurons discharged less to Primate videos 

(Non-primate-Scenery, Figure 1F), and 3.2% (4/124) and 8.1% (10/124) discharged less to 

Non-primate (Primate-Scenery, Figure 1G) and Scenery contents (Primate-Non-primate, 

Figure 1H). We found that the dorsomedial parietal neurons respond differentially to different 

video content-types, with some of them to the primate content, which is consistent with 

previous findings that a portion of this part of the monkey medial parietal cortex is activated by 

social interaction of conspecifics (Sliwa & Freiwald, 2017). 

 

Figure 1. Experimental procedure, recording sites, and neuron classification. (A) Example 

video (a Primate-video) used in the study. Each day, the monkeys watched three different 30-s 

videos, each for 30 repetitions in 6 blocks; (B) Reconstruction of recording sites (circled in red) 

overlaid on T1 images; (C-I) Raster plots (left panels) and firing rate comparisons (right panels) 
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of 7 representative neurons responding to different video content-types. All show a significantly 

higher firing rate during video viewing than pre/before and post/after video presentation (Ps < 

0.05). In raster plots, the X-axis indicates the time course of the video, and vertical lines 

represent the onset or offset of video display; each row is associated with a trial. Trials are re-

ranked by video content-types (yellow: Scenery, blue: Non-primate, green: Primate). Three 

example content-sensitive neurons showed significantly higher firing rates to primate 

(C:#PC0056, Primate), non-primate (D:#PC0040, Non-primate), and scenery (E:#PC0114, 
Scenery) content-type. Firing rates of three content-sensitive neurons exhibited the lowest 

activity to primate (F:#PC0232, Non-primate-Scenery), non-primate (G:#PC0205, Primate-

Scenery), and scenery (H:#PC0249, Primate-Non-primate) content-types. (I) A Content 

Insensitive example neuron (#PC0192) exhibited equal firing rates across different video 

content-types. Error bars: SEM. * P < 0.05, ** P < 0.01, *** P < 0.001.  

Multiplex representation of ethogram-items and low-level features in dmPPC neurons.  

We analyzed the videos in detail by employing a frame-by-frame annotation of ethogram 

schema, which contains a subset of binary time series of multiple social behaviors and non-

social events for each video (Adams et al., 2021). To investigate how individual neuron encodes 

the dimensions of informative dynamic natural context, we fit a LASSO elastic network 

regulation regression for each neuron to fit the averaged single neural activities with the binary 

labeling of the 52 ethogram-items (Table S2) and four low-level visual features (Figure S2). 

The analysis produced a collection of non-zero coefficients. As shown with an example neuron, 

the model with the lowest mean squared error would be chosen (Figure S3A-C). We then 

validated the chosen model by demonstrating a significant relationship with the predicted neural 

firing rates (F(1, 450) = 121.5, R2 = 0.213, P < 10-5; Figure S3D). By applying this feature 

selection procedure for all neurons, our model indicated that the activity of a large percentage 

of neurons would either positively or negatively be influenced by a number of ethogram-items 

depicted in the videos (range from 3.73% to 74.13%; Figure 2A-B). The proportion of the 

neurons modulated by each of the features are higher than chance (see STAR Methods Chi-

squared Simulation) (Figure 2). For example, the category “camera movement” including 

multiple camera motions modulate the discharge of about 83.20% (312/375) percentage of all 

units (Figure 3C). The category “count”, that is the number of animals visible, influenced a 

significant portion of all units (92.27% (346/375), Figure 3C).  

A large proportion of units respond to facial (visible face: 57.87%; side face: 47.47%; direct 

face: 74.13%; eye contact: 60.27%) and genital (visible genitals: 57.60%; prominent genitals: 

53.87%; male genitals: 33.07%; female genitals: 22.4%) features (Figure 2A-B). With some 

particularly prominent ethogram-items, we ran one-sample t-tests to test for their modulatory 

effects. The results revealed that eye contact (t(225) = 2.921, P = 0.004, Cohen’s d = 0.194), 

prominent genitals (t(201) = 2.249, P = 0.026, Cohen’s d = 0.158), holding food in mouth (t(132) 

= 2.298, P = 0.023, Cohen’s d = 0.199), allogroom (t(43) = 2.561, P = 0.014, Cohen’s d = 

0.386), mounted threaten (t(48) = 2.911, P = 0.005, Cohen’s d = 0.416), and mutual aggression 

(t(13) = 2.643, P = 0.020, Cohen’s d = 0.706) significantly enhanced neuron firing rates, 

whereas holding food (t(50) = -2.750, P = 0.008, Cohen’s d = 0.385) reduced neuron activities 

(Figure 2C). By factoring in a detailed classification of spiking selectivity to video content, we 

divided all the neurons into 7 types according to their responses to content-types. We found an 

even more refined pattern for the corresponding results for these 7 types of neurons (Figure S4).  

We also checked whether dmPPC neurons would play a role in the processing of low-level 

features (cf. monkey early visual cortex in (Russ & Leopold, 2015)). In the same LASSO model, 

low-level features tuned a very large proportion of the dmPPC neuronal responses (“low level 

features” in Figure 2A & dark red bars in 2B). A large subset of neurons was tuned by 

luminance (70.40%, 264/375), contrast (73.07%, 274/375), saturation (72.00%, 270/375), and 

optical flow (73.60%, 276/375) respectively. Considering it with the more detailed neuron types, 
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we found an even more refined pattern for the corresponding results (Figure S4). 

Figure 2. dmPPC neurons respond to social and non-social events in videos. (A) Effects of 

neuronal responses to 4 low level features (dark red) and 52 ethogram-items (seven categories 

of the ethogram organized by 7 different colors) obtained by a least absolute shrinkage and 

selection operator (LASSO) regression analysis. Each row stands for an item out of all 56 items, 

while each column refers to one neuron. (B) Proportion of neurons responsive to each item. (C) 

LASSO coefficient for each item tested against zero. Error bars: SEM. * P < 0.05, ** P < 0.01, 

*** P < 0.001. 

To reflect this multiplex nature, we performed an intersection analysis and found that almost 

all (94.4%; 354/375) units showed mixed selectivity representations to at least three ethogram 

categories, 1.6% (6/375) neurons modulated by the combination of two ethogram categories, 

and only 4% (15/375) units selectively respond to one single ethogram category (Figure 3 & 

Movie S2). 
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Figure 3. dmPPC neurons demonstrate mixed selectivity representations. (A) Distribution of 

neurons and their composition for mixed selectivity representations. Gray bars show the 

numbers of units exclusively modulated by combinations of mixed ethogram features, with 

their composition shown in the bottom panel. (B) Demonstration for dmPPC cell ensembles for 

their mixed selectivity coding. Each small yellow dot denotes a neuron. The eight circles with 

labels refer to the eight feature categories (low-level features and 7 ethogram categories), with 

their size proportional to the number of neurons modulated by that category. The connecting 

lines refer to the relationship between neurons and feature categories. See also an interactive 

illustration of the multiplex behavior of individual neurons on www.kwoklab.org. (C) Number 

of neurons that responded to each of the ethogram categories. Color coding here is the same as 

Figure 2 and Figure 3B.  

Information coded for multiplex representation of features increases decodability for 

video content-types.  

To examine whether and to what extent the temporal spiking patterns during viewing can 

differentiate the representations of categorical content, we trained a linear multiclass support 

vector machine (SVM) classifier with firing rate within 1-s time bins using a leave-one-out 

cross-validation approach for each neuron (see STAR Methods Content Discriminability). 

Overall, 40.80% (153/375) of the neurons exhibited a significant decoding ability when 

compared to a label-shuffled permutation statistical threshold (valid neurons, Ps < 0.05), while 

59.20% (222/375) of the neurons showed insignificant decoding performance (invalid neurons, 

Ps > 0.05).  

We then verified the multiplex representation of ethogram-items results with their relationship 

with decoded discriminability for each of the video’s content-type. The group of neurons which 

produce a significant decoding accuracy per video content-type implicated significantly more 

selected features (t(373) = 6.125, P < 0.001, Cohen’s d = 0.644; Figure 4A). A GLM regression 

revealed that the decoding accuracy of the valid decoder neurons was also significantly 

correlated with the number of selected features (R2 = 0.037, P < 0.017; Figure 4B). On an 

individual neuron level, we found that neurons increased their decoding ability with the number 

of selected features for the Primate videos (R2 = 0.103, P < 5 × 10-5; left panel in Figure 4C) 

but not for the Non-primate (R2 = 0.005, P = 0.374) or Scenery videos (R2 = 0.002, P = 0.610; 

Figure 4C). Specifically for Primate videos, when we considered the 8 regressors (7 ethogram-
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items categories and 1 low-level category) separately, the relationship between decoding ability 

with the number of selected features was not present any more (F(8,144) = 1.471, R2 = 0.076, 

P = 0.173), confirming a multiplex representation of features.  

We observed that the percentages of neurons modulated for each selected feature were similar 

between valid and invalid decoding groups (Chi-square test: Ps > 0.8; Figure S5). LASSO 

coefficients are stronger in the valid decoder neurons for items carrying social information (e.g., 

“prominent genitals”, “allogroom”, and “flee”; Ps < 0.05; Figure S6C-D), but not for less social 

items such as “camera tracking” (Figure S6A) and “count” of animals (count > 1; Figure S6B). 

These results support the hypothesis that dmPPC neurons are implicated in episode processing 

for rich, naturalistic details. 

 

Figure 4. Relationship between mixed selectivity representation and individual neuronal 

decoding performance. (A) Neurons with valid decoding performance (greater than chance 

level, valid neurons) implicated more features than those neurons at chance level decoding 

performance (invalid neurons). (B) The number of selected features was significantly related 

to individual neuron’s overall content-type discriminability (C) This relationship is significant 

for primate video content (left panel) but not for non-primate (middle panel) or scenery (right 

panel) video content-type. Lines represent linear regression of valid neurons. Dots refer to valid 

neurons. Error bars: SEM. *** P < 0.001. 

Long temporal receptive window sustained by dmPPC neurons. 

In light of the proposal that the parietal association cortex exhibits information accumulation 

over long timescale (Honey et al., 2012; Murray et al., 2014; Runyan et al., 2017), we 

hypothesized that the dmPPC cells might help scaffold the dynamic events temporally. To test 

this hypothesis, we constructed a multiclass SVM classier with stepwise accumulated 

sequential spiking using 1-s time bins across the videos (light green dots/line in Figure 5A; see 

STAR Methods Temporal Accumulation). Here, for this example neuron (#PC0361), we 

showed that accumulated 1-s epoch decoding produced a significantly better decoding 

performance than shuffled data (t(29) = 11.013, P < 0.001, Cohen’s d = 2.011; dark green 

dots/line in Figure 5A), with prediction accuracy increased as a function of accumulated time 
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points (R2 = 0.757, P < 10-5). Moreover, for statistical inference, an identical SVM decoding 

procedure was applied but using neural activity for each 1-s time bin independently (yellow 

dots/line in Figure 5A). We ascertained that the prediction accuracy was not better than the 

permuted chance level (t(29) = -5.285, P < 0.001, Cohen’s d = -0.965; slope not different from 

zero: R2 = 0.006, P = 0.689; dark red in dots/line in Figure 5A). Planned paired t-tests confirmed 

that evidence accumulation is inherent in the temporal sequences rather than the single 

moments during which neurons fire (t(29) = 12.154, P < 0.001, Cohen’s d = 2.219). 

On a population level, 37.25% (57/153) of the neurons showed statistically significant 

information accumulation throughout the time course of videos. To assess the strength of the 

information accumulation, we compared the slopes by crossing two factors, Sequence 

(Accumulative/Individual) × Approach (Real/Shuffle) and found a two-way interaction (F(1,56) 

= 339.307, P < 10-5, η2 = 0.531). These effects were derived from the stronger effects in 

accumulated real firing sequences than momentary neural firing (Real-Accumulated vs. Real-

Individual: t = 25.603, P < 10-5, Cohen’s D= 2.919; left panel in Figure 5B) and no differences 

between the two shuffled conditions point (t = 0.645, P = 0.520; right panel in Figure 5B). 

These findings show that dmPPC neurons accumulate information of dynamic events in a 

progressively additive manner over the course of video viewing. 

 

Figure 5. dmPPC neurons accumulate temporal evidence with long temporal receptive windows. 

(A) The decoding performance of the example neuron (#PC0361) positively correlates with 

cumulative spiking sequences (light green) but not with momentary neural activity (yellow). 

We used two sets of SVM decoding exercises to verify this property. First, we used cumulative 

spikes in 1-s time bins for 1st to 30th timepoint (accumulated sequence; light green) and 

compared it to chance level (dark green). Second, we used spikes in each individual time-point 

(yellow) and compared it with chance level (dark red). The four lines represent linear regression 

for these four SVMs for an example neuron. The dots refer to decoding performance of each 

timepoint. (B) A Sequence (Accumulative/Individual) × Approach (Real/Shuffle) two-way 

ANOVA revealed that the mean slope of population neurons (n = 57) was higher for real and 

cumulative sequences than for both shuffled control data and individual 1-s time binned spike 

data (Ps < 0.001). × indicates the Sequence × Approach two-way interaction. Error bars: SEM. 

*** P < 0.001. ns: not significant. 

DISCUSSION  

Our findings revealed that neurons in the dorsomedial posterior parietal cortex (dmPPC) exhibit 

responses to an array of cinematic features. We demonstrated that dmPPC neurons showed 

mixed selectivity responses to different categories of ethograms and low-level visual features. 

The amount of information embedded within neuronal spiking sequences were modulated by 

the convergence of multiple representations which in turn contribute to the read-out of different 
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content-types. The processing of category and feature information by these neurons is sustained 

by accumulation of temporal information over a long timescale, corroborating its role at the 

apex of the cortical hierarchy of temporal receptive windows.  

The neurons in the dmPPC demonstrate mixed selectivity representations to distinct features 

(e.g., aggressive behavior and allogroom) or combinations of dimensional features that appear 

sequentially over the course of dynamic videos, implying a flexible and efficient computational 

function of dmPPC in the processing of multiplex information in rich fast-changing 

environment (Fusi et al., 2016; Johnston et al., 2020; Murray et al., 2017). According to dual-

process models in social cognition, the medial posterior parietal cortex is part of the reflective 

system corresponding to a controlled social cognition processing (Lieberman, 2007; Satpute & 

Lieberman, 2006). We hypothesize that the posterior parietal cortex plays an interface role in 

the integration of multifaceted information for social cognition. Neurons in dmPPC are 

consistently modulated by the observation of social interactions, such as inner group grooming 

behaviors (allogroom and scratch) and aggression performance (chase, strike, flee). Apart from 

Klein’s observations that neuronal activity in primate LIP (lateral intraparietal) signaled values 

of conspecific genital cues (Klein et al., 2008), the modulation of neural activation is now also 

observed in dmPPC neurons in the present study, which could be accounted for by the inner 

anatomical connections in the posterior parietal lobe (Andersen et al., 1987; Leichnetz, 2001). 

Moreover, we observed that a large proportion of neurons respond to the presentation of 

foraging behaviors, which might be related to some previous findings that PGm (central 

precuneus) responds to observed and execution of reaching to grasp movement (Evangeliou et 

al., 2009). The neural modulation of these stimuli was likely due to the strong anatomical 

connections of Area 7 with PFG (Leichnetz, 2001) and suggests that this region shares the 

general function of visual spatial and action coding (Andersen, 1997; Andersen & Cui, 2009). 

We have now seen evidence suggesting that neurons in macaque’s Area 7 express its intentions 

before actions (Snyder et al., 1997) and that Area 7 strongly responds to conspecific social 

interactions in comparison to non-social interactions by inanimate objects (Sliwa & Freiwald, 

2017). 

Our findings demonstrated that neurons in the monkey dmPPC accumulated mixed selectivity 

representations across the duration of video to support the construction of episodes, providing 

evidence that the PPC sustains a long temporal receptive window. Indeed, the dmPPC has been 

proposed to code information with long timescales (Hasson et al., 2015; Runyan et al., 2017). 

An fMRI study that presented movies to human participants reported that medial posterior 

parietal cortex (precuneus) accumulates information up to 12 s (Hasson et al., 2008). We argued 

that the long TRW allows the dmPPC to accumulate the continuous information of multifaceted 

representations from unimodal or integration of cross-modal inputs (Gilissen & Arckens, 2021) 

to support processing stream of past experiences for episode. This aligns with the higher 

temporal dynamics in the precuneus when remembering the unfolding of events that included 

a high density of experience units (Jeunehomme et al., 2022). Notably, the primate dmPPC has 

dense connections to the hippocampal formations in the primate (Kravitz et al., 2011). Given 

the known importance of schema cells in the primate hippocampus (Baraduc et al., 2019) and 

how such cells might code for information about space and nonspatial elements of the 

environment for both perceptual and mnemonic experiences (Gulli et al., 2020; Zhang et al., 

2022), it is likely that the two structures support an information abstraction system that is driven 

by a broad range of behaviorally relevant inputs.  

Indeed, the dmPPC is part of the posterior memory network (Ranganath & Ritchey, 2012). A 

recent study demonstrated that precuneal lesions impaired the time orientation as well as the 

damage of memory retrieval (Skye et al., 2022), implying that the dmPPC contribute to 

implementing and organizing transitions between experience units during memory formation 

and temporal unfolding of past events (Brodt et al., 2016; Foudil et al., 2020). Our neuronal 

results confirm prior findings that the temporal dynamics in the precuneus contribute to the 

processing of encoding remembered duration (Dušek et al., 2012), the representation of 
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temporal structure and order of moments of past events (Aly et al., 2018; Kwok et al., 2012), 

as well as the experience-based planning in the future (Madore et al., 2016). Considering that 

the homolog of our target brain region (Area 7a) between humans and monkeys is separated by 

a stark divergence of around 25 million years (Bruner et al., 2017), our current findings carry 

important insights into the neural correlates of the primordial form of our episodic processing 

ability.  

Functional MRI studies using dynamic movie stimuli demonstrated that the medial PPC is 

involved in the motion information processing in both humans and monkeys (Bartels et al., 

2008; Russ & Leopold, 2015). This is in line with our observation that neural activity in dmPPC 

were modulated by motion features, including optical flow (Raffi & Siegel, 2007) and motions 

caused by camera movement and animal appearance (count), aggressive behaviors (e.g., chase, 

strike, flee), and other features correlated with the fluctuations in early visual areas (Russ & 

Leopold, 2015). Neuronal responses to the convergence of multiplex dimensional stimuli 

suggest that dmPPC is involved in the integration of inputs from inner projections in the PPC 

(Andersen et al., 1987), from the early visual cortex (Robinson et al., 1978), and with the 

hippocampus (Baraduc et al., 2019; Gulli et al., 2020; Zhang et al., 2022). 

Compared to static stimuli, the use of dynamic naturalistic videos, which meets the ethological 

validation from sensory to social cognition research (Adams et al., 2021; Mosher et al., 2014; 

Testard et al., 2021), helped us yield significant findings in the present study. We acknowledge 

that the analyses and their conclusions are based on correlational measures between action 

potentials and cognitive indices. In future work, micro-stimulation by electrical or targeted 

pharmacological intervention would be instrumental for a detailed elucidation of the complex 

cognitive roles carried out by the primate dorsomedial posterior parietal neurons. 
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STAR*METHODS 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Chemicals, peptides, and recombinant proteins 

Tolfedine Vetoquinol N/A 

Baytril Bayer HealthCare LLC. N/A 

Zoletil Virbac N/A 

Dexamethasone Jilin Huamu Animal Health 

Products CO., Ltd. 

N/A 

Refine Bright Yamahachi Dental MFG.CO. N/A 

Super Bond Sun Medical Co., Ltd N/A 

Palacos Heraeus Medical N/A 

Gadopentetate dimeglumine Shanghai Xudong Haipu 

Pharmaceutical Co., Ltd 

N/A 

Glucose-saline Sake-biotech N/A 

Experimental models: Organisms/strains 

Rhesus Macaque (Macaca Mulatta) Beijing Institute of Xieerxin 

Biology Resource 

http://www.xexbio.com/cn 

Software and algorithms 

MATLAB MathWorks Inc. https://www.mathworks.co

m/ 

Horn-Schunk N/A https://www.mathworks.co

m/matlabcentral/fileexchan

ge/22756-horn-schunck-

optical-flow-method 

Python 3.1.0 N/A https://www.python.org/ 

OpenCV N/A Python package 

PsychoPy 3.1.2 N/A https://www.psychopy.org/ 

R 4.1.0 N/A https://www.r-project.org/ 

glmnet N/A R package 

Tinbergen Alpha N/A https://zenodo.org/record/13

009#.YnKNs9pByiM 

Offline Sorter 4 Plexon https://plexon.com/products

/offline-sorter/ 

NeuroExplorer 5 Plexon https://plexon.com/products

/neuroexplorer/ 

Video Studio X8 Corel Corporation https://www.videostudiopro

.com/ 

3D Slicer N/A https://www.slicer.org/ 

Gephi NA https://gephi.org/  

(Bastian et al., 2009) 

Other 

SC32 Gray Matter Research N/A 

Ceramic bone screws Gray-Matter Research N/A 

Polyether-ether-ketone (PEEK) Gray-Matter Research N/A 

LMA single shank Microprobes N/A 

RHD2000 Intan Technologies N/A 

SmartBox NeuroNexus Technologies Inc. N/A 

Microdrive FHC Inc. N/A 

5-RLD-D1 Crist Instrument Co., Inc., U.S. N/A 

Eyelink 1000 SR Research N/A 
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RESOURCE AVAILABILITY  

Lead contact. Further information and requests for resources should be directed to the Lead 

Contact, Sze Chai Kwok (sze-chai.kwok@st-hughs.oxon.org). 

Data and code availability. Raw electrophysiological data, analysis code, and processed data 

supporting the conclusions of this study are available upon request. 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  

Subjects 

Three male rhesus macaques (Macaca mulatta) (8.7 ± 0.46kg) with a mean age of 6.67 years 

old served as subjects in this study (monkey G: 8y, 9.2kg; monkey J: 6y, 8.3kg; monkey M: 6y, 

8.6kg). All monkeys were single-housed with a 12:12 (7: 00am/7:00 pm) light-dark circle and 

kept within the temperature range of 18 - 23℃ and humidity between 60% - 80%. The animals 

were fed twice a day with each portion of at least 180g monkey chow and pieces of apple (8:30 

am/4:00 pm). Water was limited during recording days. All animal care, experimental, surgical 

procedures, and pre/post surgical care were approved by the Institutional Animal Care and Use 

Committee (permission code: M020150902 & M020150902-2018) at East China Normal 

University. 

Before this study, monkey J and monkey M participated in a temporal order judgment 

behavioral experiment (Wang et al., 2020; Zuo et al., 2020). Monkey G was trained on fixation 

and saccadic tasks and participated in several oculomotor studies while neuronal activities were 

recorded from right medial temporal (MT) and medial superior temporal (MST) areas using 

single-tetrode tungsten electrodes in a different study. 

METHOD DETAILS  

Experimental procedure and overview 

During this study, the monkeys sat in a custom-manufactured Plexiglas monkey chair (29.4 cm 

× 30.8 cm × 55 cm) with a head-fixed (see Surgery) in front of a 19-inch screen (An-

190W01CM, Shenzhen Anmite Technology Co, Ltd., China) which mounted on a stainless-

steel platform. Monkeys’ eyes are about 60 cm and 62 cm away from the screen’s top edge and 

bottom edge, respectively. Water was delivered by a distributor (5-RLD-D1, Crist Instrument 

Co., Inc., U.S.) as a reward. 

In each session, the monkeys watched 3 different 30-s video footage presented with PsychoPy 

(PsychoPy 3.1.2, PsychoPy), each for 30 repetitions arranged in 6 blocks. The same list was 

repeatedly presented in two consecutive days (12 days in total). Each video was watched 60 

times. 15 videos were continuously and automatically displayed in each block for monkey J 

and monkey M. 1ml water was delivered at the beginning of each video, and following a 6-s 

blank period at the end of the video, another 1.8ml water was delivered.The monkeys took a 5-

minute break between blocks (Figure S1A). 

Experimental stimuli 

The stimuli used in this study were downloaded from YouTube. Next, we applied Video Studio 

X8 (Corel Corporation, Canada) to edit these videos into 720P segments with 25 frames per 

second. In total, we prepared eighteen 30-s footage that were classified into three categories: 1) 

Primate content: with depictions of activities of monkeys; 2) Non-primate content: with 

activities of other species, including deers, lions, hippopotamus, hyenas, storks, rhinoceros, 

ostriches, penguins, and giraffes; 3) Scenery content: with depictions of dynamic naturalistic 

scenes without any animals. 
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Ethogram analysis 

Ethogram is used to systematically describe a set of archetypal naturalistic behaviors by using 

descriptive terms and phrases of a species. For the collection of videos (see Stimuli), we 

constructed an inventory of behaviors by adapting the ethogram framework for macaque 

monkeys (Adams et al., 2021; Partan, 2002) and coordinating behaviors for non-primates 

displayed in used videos (Dinerstein, 2003; Gottschalk et al., 2019; Kahl, 1966; MacNulty et 

al., 2007; Sauer & Sauer, 1967; Seddon, 1991; Seeber et al., 2012; Stanton et al., 2015; Wark 

et al., 2019; Zhigang, 2006). The most common behaviors and related definitions of these 

distinctive animals presented in the videos were summarized in Table 2. The binary value of 

the time series of perceptible behaviors for each video was manually registered by Tinbergen 

(Adams, 2014). 

Low-level features extraction 

Measures of video low-level features were extracted by applying Python and MATLAB for 

further modeling (Figure S2A-S2C). OpenCV package (Bradski & Kaehler, 2000) was called 

in Python for the calculation of luminance, contrast, and saturation. Luminance of each video 

frame was the mean of the pixel-wise luminosity, which was computed with the following 

equation lpixel = 0.299 * R + 0.587 * G + 0.114 * B (Jack, 2008). Contrast of each frame was 

the standard deviation of the pixel-wise intensity distribution of the grayscale frame (Perfetto 

et al., 2020). Saturation was the mean pixel-wise S value of HSV color space that transformed 

from RGB color space (Jack, 2008). Motion was evaluated by the mean velocity magnitudes of 

optical flow by using the in-built Horn-Schunk algorithm in MATLAB (Bartels et al., 2008; 

Sliwa & Freiwald, 2017). 

Electrophysiological recording and spike sorting 

By using chronically implanted glass-coated electrodes from the right hemisphere (SC32, Gray 

Matter Research, LLC, USA;) on monkeys J and M, and by using single-wire tungsten 

microelectrode with 24 probes (LMA single shank, Microprobes, USA) on monkey G. In each 

recording session, the monkeys sat in chairs with their heads fixed. Headstage of multi-channel 

utility was connected to the SmartBox (NeuroNexus technologies, Inc., USA) acquisition 

system via an amplifier Intan adapter (RHD2000, Intan Technologies, USA) with 32 unipolar 

inputs. Microelectrodes impedance of each channel was in the range of 0.5 to 2.5 MΩ and 

measured at the beginning of the session. Spike waveforms above a set threshold were identified 

with a 1000 Hz online high-pass filter. Electrophysiological data collection was band-pass 

filtered from 0.1 to 5500 Hz and digitized at 30 kHz. Electrophysiological data from different 

sessions were treated as separate ones. Single units and their spikes were then identified based 

on peak amplitude, principal component, auto-correlation, and spike width by using Offline 

Sorter (Plexon Inc., USA). Units with an overall mean firing rate of fewer than 1 Hz across 

video presentations were excluded from further analysis.  

Before recording, for monkeys J and M, channels without spikes were manually advanced anti-

clockwise to detect promised spike waveform. On any given day, the individual electrode was 

advanced at most 8 rounds (1 mm) with the step of one-eighth to 1 round (15.625 to 125 μm). 

For monkey G, a custom-designed recording grid (Delrin, 56 mm × 33.5 mm, 5 mm in thickness) 

with interlaced holes (0.8 mm in diameter and 0.8 mm apart from each other) was fixed on the 

plastic chips in the head-post. Then, an accommodated guide tube leads the 24 probes tungsten 

microelectrode (LMA single shank, Microprobes, USA), with 0.1 mm spacing between 

adjacent probes, through the skull and dura. A hydraulic microdrive (FHC Inc., USA) was used 

to drive the microelectrode into the target cortex, which was determined by the fMRI image. 

By the end of the study, monkey J and M were imaged with CT, the location of each electrode 

was confirmed by mapping the CT image to fMRI T1 structures (Figure S1B). Histological 

recording sites were reconstructed based on the penetration depth of each electrode with the 
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chamber coordinates and angles to the transverse plane. 

Surgical procedure for head-post and electrodes implantation  

For monkeys J and M, the whole surgeries consisted of 2 stages: head-post installation and 

electrodes implantation. Each stage was followed by a recovery period during which one dose 

of analgesic (Tolfedine, Vetoquinol, New Zealand) and antibiotics (Baytril, Bayer HealthCare 

LLC., Germany) were daily given via intramuscular injection according to body weight for one 

week. All medical operations and health care pre-post surgeries comply with the Institutional 

Animal Care and Use Committee guidelines at East China Normal University. 

Head-post installation. Food and water were limited to 12 h before surgery. Forty-five minutes 

before the surgery, one dose of atropine sulfate (Shanghai Pharma, Changzhou Pharmaceutical 

Factory Co., Ltd., China) was injected to reduce saliva secretion during operations. Ten minutes 

later, one dose of Zoletil (Zoletil, Virbac, New Zealand) was injected for anesthetization before 

monkeys were transferred to the preparation room for shaving the head skin. Once the skin was 

prepared, the monkeys were placed on the stereotaxic apparatus mounted on the operating table. 

A mixture of oxygen and isoflurane was inhaled with the help of a ventilator. Dexamethasone 

(0.5mg/kg, Jilin Huamu Animal Health Products CO., LTD, China) was administered via 

intravenous transfusion with a 5% glucose-saline (Sake-biotech, China) injection at the 

beginning of the surgery to reduce the intracranial pressure and avoid bone inflammation during 

or after the surgery. Respiration, heart rate, blood pressure, expired CO2, and oxygen saturation 

were monitored during the whole surgical procedure. Body temperature was sustained at 37℃ 

with a constant temperature heater under the operating table. After successfully opening the 

epidermis and removing the subcutaneous tissues, an MRI-compatible polyether-ether-ketone 

(PEEK, Gray-Matter Research, Bozeman, USA) head post was cemented by acrylate cement 

(Refine Bright, Yamahachi Dental MFG.CO., Japan) which was then anchored with ceramic 

bone screws (Gray-Matter Research, Bozeman, USA) distributed on the anterior part of the 

skull. Sterilized saline was dropped to cool the hardened cement rapidly and clean the smoothed 

crumbs around the wound. Analgesics and anti-inflammatory were injected as required, when 

the ventilator was turned off and intravenous injection withdrew. MRI anatomical scans were 

acquired 4 months afterwards to aid subsequent implantation of the recording chambers. 

Recording chamber implantation. Preoperative preparations were identical to the first stage. 

After opening the epidermis and removing the subcutaneous tissues, a craniotomy (5/8 inch in 

diameter) was manually drilled over the right hemisphere of the monkey, while the center of 

the chamber was pre-determined by the simulation of 3D Slicer (Kikinis et al., 2014). Next, the 

surface around the craniotomy was polished into a plane, and the medial wall was smoothed to 

only accommodate the chamber of the acquisition system. Then, 12 ceramic screws were placed 

for chamber fixation, and 2 stainless steel screws were anchored for grounding purposes. After 

that, the surrounding areas of the screws were tightly sealed with Super Bond (Sun Medical 

Co., Ltd., Japan), and the chamber was fixed with Palacos (Heraeus Medical, US) and acrylate 

cement.  

Immediately after that, the monkey was transferred into an MRI scanner and imaged with a 

fiducial filled with gadopentetate dimeglumine (Shanghai Xudong Haipu Pharmaceutical Co., 

Ltd, China) that diluted 750 times. The center of the chamber was re-coordinated based on the 

modeling with fiducial marker by using 3D Slicer (monkey J: anterior-posterior (AP): -16.4 

mm, medial-lateral (ML): 5.8 mm lateral to medial, 28° angle to the right and 14° angle to the 

posterior of the transverse plane; monkey M: AP: -15.422 mm, ML: 7.549 mm, 25° angle to 

the right and 9.1° angle to the posterior; Figure S1CB & 1C), covering paracentral of area 7a. 

Lastly, twenty-four hours later, the asepsis electrode-set was fitted into the chamber when 

monkeys were awake, and 44 rounds (5.5 mm) of each single electrode were gradually lowered 

anti-clockwise to penetrate through the dura and pia. 
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For monkey G, T1 images were scanned before surgery. After exposure of the skull and removal 

of the hypodermis, a lightweight acrylic cap was anchored by six titanium screws with acrylate 

cement for head-fixation. Then, the cavity of the chamber was filled with a layer of cement, 

and two custom-designed plastic chips (10 mm × 56 mm, 5 mm in thickness) were stabilized 

over the hardened cement for recording grid restriction. At the end of the surgery, an acrylic 

resin cap was covered over the chamber to keep inside free from pollution. The monkey was 

allowed to rest for recovery (Jia et al., 2021). 

QUANTIFICATION AND STATISTICAL ANALYSIS  

Data analysis was performed using custom software written in R, Python, and MATLAB. 

Feature selection with LASSO regression  

To evaluate the modulation of perceived behaviors to the neural activity, the ‘glmnet’ package 

(Friedman et al., 2017) in R language was employed to build a linear model with elastic net 

regulation LASSO (least absolute shrinkage and selection operator) feature selection algorithm 

(Tibshirani, 1996). In contrast to the commonly used general linear model, LASSO regression 

has advantages for the present study. Annotation of ethograms produced a schematic binary 

time-series with 52 dimensions embedded within all the videos. An important feature of the 

ethogram is that some items are linearly correlated. For example, if the count of animals is 

larger than 2, the animal count must be larger than 1.  A large number of regressors and multi-

collinearity of simultaneous happenings tend to cause overfitting, which will increase the value 

of cost function, and reduce the explanatory power of the model. The LASSO regression will 

scale all variables, and shrink coefficients of less important predictors to 0 to filter out these 

redundant items from the model. In short, the LASSO algorithm selects features with non-zero 

coefficients by minimizing the prediction error of the model (Muthukrishnan & Rohini, 2016; 

Tibshirani, 1996; Zou & Hastie, 2005), which allowed us to determine which selected feature 

modulates the neural activity. 

For each neuron, we first concatenated the sequences of average superposed spike counts in 40 

ms time-bin over 30 repetitions, as well as the time-series of ethograms, in the order of Non-

primate, Primate, and Scenery video. A LASSO regression was constructed to model the 

modulation of 52 ethogram items and 4 low level features as variables on neuronal activity. 

With an increasing parameter λ, the algorithm iteratively penalized coefficients of all items 

gradually shrinking to zero (Figure S3A and S3B). An optimal λ was obtained by an in-built 

cross-validation procedure when the LASSO algorithm reached a minimum residual sum of 

squares. With the optimal λ parameter, these features with non-zero coefficients were then 

selected into the model (Figure S3C), implying that neural activity was effectively modulated 

by these selected features. Finally, for model validation, we performed a cross-validation with 

a model with features using random 80% of the sample data to predict the remaining 20% of 

the data. (Figure S3D). 

Decoding Analysis 

Content Discriminability. A support vector machine (SVM) classifier with a leave-one-out 

cross-validation approach was performed on trial spike counts sequence binned in 1 s bins to 

quantify the representations of categorical natural episodes within neuronal activity with the 

help of the ‘e1071’ (Meyer et al., 2019) package in R. For each neuron, a multi-class decoder 

was trained on 87 trials (29 trials of each video), and tested on left 3 trials using a one-versus-

all method. Overall decoding performance was estimated as the average accuracy over 30 

repetitions. At the same time, the decoding accuracy of each video content was taken as the 

percentage of trials correctly predicted. To test the significance of decoding ability, we trained 

a multi-class classifier using spike sequences with randomly shuffled labels of training data and 

tested the left shuffled-label trials over 1000 repetitions. The statistical significance of real 
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decoding performance was determined in comparison to the 95% percentile of shuffled 

decoding accuracy. 

Temporal Accumulation. We iteratively trained the SVM decoder utilizing spike counts in 1 s 

time bins from the 1st to the 30th time bin for the temporal accumulation decoding analysis. A 

proposed leave-one-out cross-validation training-testing SVM decoding approach was 

implemented at each accumulation timepoint. Spike count in the 1st time-bin, for example, was 

used for the 1st accumulation timepoint. The spike count sequences from the 1st to 2nd time bins 

were used in the decoding technique for the 2nd accumulation timepoint, while sequences of 

spike count from the 1st, 2nd, and 3rd time bins were used in the decoding approach for the 3rd 

timepoint, and so on. We performed a similar decoding study for all individual timepoints to 

confirm that the accumulating effect is an intrinsic neural function rather than a momentary 

response activity to stimuli. For the estimation of statistical significance, a similar permutation 

SVM decoding technique was used for corresponding accumulation and individual timepoints, 

respectively. 

We defined three criteria to verify the accumulation neuron; (1) decoding accuracy in real firing 

sequences is significantly higher than corresponding label-shuffled firing sequences; (2) 

decoding accuracy in real firing sequences is significantly higher than corresponding individual 

timepoint decoding performance; (3) decoding performances in real firing sequences as a 

function of accumulated time point. 

Chi-squared simulation 

A Chi-squared simulation procedure is used to determine the chance level of percentage of units 

modulated by specific selected features. The chance level is determined at 7.2% (or 27 /375 

neurons, see dashed line in Figure 2B).   
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