Abstract
Reliable, easy-to-handle phenotypic screening platforms are needed for the identification of anti-SARS-CoV-2 compounds. Here, we present caspase 3/7 activity as a read-out for monitoring the replication of SARS-CoV-2 isolates from different variants, including a remdesivir-resistant strain, and of other coronaviruses in a broad range of cell culture models, independently of cytopathogenic effect formation. Compared to other cell culture models, the Caco-2 subline Caco-2-F03 displayed superior performance, as it possesses a stable SARS-CoV-2 susceptible phenotype and does not produce false-positive hits due to drug-induced phospholipidosis. A proof-of-concept screen of 1796 kinase inhibitors identified known and novel antiviral drug candidates including inhibitors of PHGDH, CLK-1, and CSF1R. The activity of the PHGDH inhibitor NCT-503 was further increased in combination with the HK2 inhibitor 2-deoxy-D-glucose, which is in clinical development for COVID-19. In conclusion, caspase 3/7 activity detection in SARS-CoV-2-infected Caco-2F03 cells provides a simple phenotypic high-throughput screening platform for SARS-CoV-2 drug candidates that reduces false positive hits.
Competing Interest Statement
The authors have declared no competing interest.