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Abstract

Sleep disturbances are known to be aggravated with normal aging. Additionally, sleep
disruptions have a potentially bidirectional causal relationship with dementia due to
neurodegenerative diseases like Alzheimer’s disease. Predictive techniques that can
automatically detect cognitive impairment from an individual’s sleep data have broad
clinical and biological significance. Here, we present a deep learning approach based on
a transformer architecture to predict cognitive status from sleep electroencephalography
(EEG) data. This work uses data from N = 1, 502 subjects from the Multi-Ethnic Study
of Atherosclerosis (MESA) cohort. Our transformer model achieves 70.22% accuracy at
the binary classification task for distinguishing cognitively normal and impaired
subjects based on their sleep EEG. Our method outperforms traditional feature
handcrafting, which has an overall accuracy of 57.61% for the same task. We use a
sparse regression model to understand and interpret the information captured by each
learned feature from our transformer model. To our knowledge, this is the first effort to
use deep learning to predict cognitive impairment from sleep metrics.

Introduction 1

Changes in sleep macro- and micro-architecture are a hallmark of healthy aging [12]. 2

Normal aging is known to be associated with many sleep macro-architectural changes, 3

including reductions in total sleep duration, deep sleep time, rapid eye movement 4

(REM) sleep time, and sleep efficiency, and increased compensatory light sleep time, 5

sleep latency, and sleep fragmentation [24]. Sleep micro-architectural changes, including 6

reduction in oscillatory activity such as slow waves and spindles, are also known to 7

occur as people get older. Sleep disruptions are strongly associated not only with 8

normal, age-related cognitive decline but also with dementia due to neurodegenerative 9

diseases such as Alzheimer’s disease (AD) [13, 10]. Epidemiological studies have 10

reported strong associations between reduced self-reported sleep duration and cognitive 11

impairment in the elderly [8]. Research suggests that sleep behavior is intricately linked 12

to amyloid and tau accumulation, the two main neuropathologies implicated in AD 13

[15, 22, 23, 9, 11]. While many interesting open questions remain about potential 14

bidirectional causal connections between sleep and AD, nonetheless sleep metrics have 15

emerged as promising candidates for noninvasive biomarkers for AD [20]. In fact, 16

sleep-based predictors could be used to identify at-risk individuals for cognitive 17
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evaluations for recruitment to secondary prevention trials for AD[15]. At the same time, 18

sleep disturbances are considered a modifiable risk factor for AD[6]. There is a need for 19

predictive tools that can automatically detect cognitive impairment from sleep. 20

While much of the existing research on the links between sleep and cognition relies 21

on simple self-reported [14] or actigraphic [2, 5] sleep duration measures, recent analyses 22

of objective metrics from electroencephalography (EEG) capturing sleep macro- and 23

micro-architecture have provided new insights on how quantitative sleep traits relate to 24

different types of cognitive functions [4]. A key contribution of this study was the 25

identification of 23 (out of over 150) objective sleep metrics that were associated with 26

cognitive performance and processing speed in two large human cohorts: Multi-Ethnic 27

Study of Atherosclerosis (MESA) and Osteoporotic Fractures in Men (MrOS). This 28

analysis, however, was based on a predefined set of handcrafted EEG features. 29

The data science revolution of the last decade has been fueled by representation 30

learning techniques that implicitly learn suitable features from the data and tend to 31

outperform traditional machine learning techniques that rely on feature handcrafting. 32

Here, we present a deep learning approach to predict cognitive status from sleep EEG 33

data using features that are learned directly from the raw data. We show that a 34

representation learning model based on a transformer architecture [19] which predicts 35

features from the raw EEG time series data is more accurately able to detect cognition 36

than a more traditional model where a large array of precomputed sleep features are 37

input into a fully-connected neural network. Additionally, we use a sparse regression 38

model to understand the information captured by each learned feature from our 39

transformer model. To our knowledge, this is the first effort to use deep learning to 40

predict cognitive impairment from sleep measures. In the subsequent sections, we 41

describe our methodology (including the network architecture, cohort details, and 42

training/validation strategies) and results (model accuracy assessment and 43

interpretation). 44

Methods 45

Sleep architecture is analyzed by examining EEG data, which is typically collected as 46

part of an overnight multimodal sleep study known as polysomnography (PSG). Here, 47

we use sleep EEG and cognitive testing data from an elderly cohort to train and validate 48

a transformer model for our prediction task. We rely on a publicly available dataset for 49

developing and validating the transformer model. Our methodology is described below. 50

Data Description 51

The Multi-Ethnic Study of Atherosclerosis dataset (MESA) is a multi-center 52

longitudinal study that aims to investigate the shift from subclinical to clinical 53

cardiovascular disease. The MESA study included 6,814 asymptomatic men and women 54

of black, white, Hispanic, and Chinese-American ancestry, 2,237 of whom were also 55

participants in the MESA Sleep Study, an ancillary study under MESA. The sleep 56

research participants underwent one full night of unattended PSG. Data were collected 57

across six sites across the United States: Wake Forest University, Columbia University, 58

Johns Hopkins University, University of Minnesota, Northwestern University, and 59

University of California Los Angeles. MESA protocols were approved by the 60

Institutional Review Board at each field center, and all participants gave written 61

informed consent at their respective sites [25, 3]. 62
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PSG 63

PSG data were collected using the Compumedics® Somte PSG system (Compumedics 64

Ltd., Abbotsford, Australia). The recording montage included cortical EEG, bilateral 65

electrooculography (EOG), chin electromyography (EMG), bipolar electrocardiography 66

(ECG), thoracic and abdominal respiratory inductance plethysmography (RIP) with 67

auto-calibrating inductance bands, airflow measured by nasal-oral thermocouple and 68

nasal pressure cannula, leg movements, and finger pulse oximetry. The data were scored 69

by trained sleep technicians following American Academy of Sleep Medicine (AASM) 70

guidelines to generate epoch-by-epoch sleep labels assigning each 30-s epoch into the 71

five categories wake, REM, N1, N2, and N3, where the last three are non-NREM 72

(NREM) subcategories. The entire cohort’s sleep data were scored at a central Sleep 73

Reading Center. In this study, we utilize raw EEG data and sleep stage labels as inputs 74

to the machine learning model. MESA EEG includes central, frontal, and occipital EEG 75

data sampled at 256 Hz and captured by three channels: Fz-Cz, Cz-Oz, and C4-M1. We 76

utilize the C4-M1 EEG channel as our primary input. 77

Handcrafted Sleep Features 78

For rigorous benchmarking of our feature learning capability, we use a handcrafted 79

feature set as a reference. For handcrafted feature computation, we referred to 80

Djonlagic et al. [4], which generated an exhaustive list of 173 sleep metrics from the 81

MESA dataset. In our analysis, we relied only on objective sleep metrics that are 82

computable from EEG, which reduced the set to a final total of 132 handcrafted 83

features. For a head-to-head comparison between learned and handcrafted features, we 84

separately train a 4-layer fully-connected neural network that receives the 132 85

handcrafted features as inputs. For model interpretation, we assign these features into 86

10 broad data-driven domains: 1) total sleep time (TST), 2) sleep efficiency, 3) sleep 87

macro architecture, 4) absolute (slow) power, 5) slow, delta relative power, 6) alpha, 88

sigma, beta power (NREM), 7) alpha, sigma, beta relative power (REM), 8) slow 89

spindles, 9) fast spindles, and 10) spindle frequency. 90

Neuropsychological Testing 91

The Cognitive Abilities Screening Instrument (CASI) is widely used to assess global 92

cognitive function [17]. It is offered in multiple languages and was explicitly developed 93

for cross-cultural studies of dementia. This test includes 25 items from 9 cognitive 94

domains summed to provide an overall cognitive function score on a 0–100 point scale. 95

A score of less than 90 is considered to be indicative of mild cognitive impairment (MCI) 96

[21]. 97

Data Assembly 98

Only high-quality PSG data were used in this study. MESA evaluates PSG quality 99

using a 1-7 point scale based on the duration of artifact-free data across the channels 100

(highest quality score: 7, lowest quality score: 1). We used data from all subjects with a 101

PSG quality rating > 6 and a sleep duration of 7.5 hours to ensure data integrity. 102

Additionally, our analysis included only those subjects from whom all 132 handcrafted 103

EEG features were reliably computed as determined by outlier analysis. This led to a 104

total cohort size of N = 1, 502. Cohort demographics are provided in Table 1. 105
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Table 1. Demographic characteristics of MESA participants with sleep and cognition
data used in this study.

Variable Value

Age [mean ±SD] 68.09± 9.05

Female [N (%)] 813 (54.13%)

Race/ethnicity [N (%)]
White/Caucasian 559 (37.22%)
Chinese American 183 (12.18%)
Black/African-American 384 (25.57%)
Hispanic 376(25.03%)

Site [N (%)]
Wake Forest University 238 (15.84%)
Columbia University 249 (16.58%)
Johns Hopkins University 192 (12.78%)
University of Minnesota 298 (19.84%)
Northwestern University 270 (17.98%)
University of California Los Angeles 255 (16.98%)

CASI [mean ±SD] 87.41± 10.91

BMI [mean ±SD] 28.62± 5.63

Network Architecture 106

The deep learning model used in this study is based on the transformer network design 107

with a sequence-to-sequence (Seq2Seq) architecture [16]. A Seq2Seq model typically 108

consists of an encoder and a decoder subnetwork. Because the purpose of our study is 109

to predict a low-dimensional variable (cognition score), we only use the transformer 110

encoder subnetwork. The encoder in our model employs a multi-head attention layer, 111

which is a module for calculating attention for each input feature so that the network 112

can focus on only the most important features during training. 113

A schematic of the transformer encoder network is depicted in Figure 1. The 114

network receives time series from the whole night as input, with the duration set to 115

span 1200 30-s epochs (10 hours). The transformer encoder employs a constant latent 116

vector of fixed length (denoted d) across all of its layers. To keep this length fixed, we 117

utilize a trainable projection module consisting of 3 fully-connected layers to map a 30-s 118

EEG signal window with 7, 680 samples (256 Hz × 30 s) to a d - 1 dimension and then 119

concatenate the output with a PSG sleep stage label value derived from a subject’s 120

hypnogram. After the projection and the concatenation, the input size to the 121

transformer encoder that consists of 2 transformer encoder layers is 1201 × d with a 122

start token, whose state at the output of the transformer encoder combines all the 123

extracted information across all the epochs. Therefore, the output of the second 124

transformer encoder layer at the start position, with size 1× d, which captures all 125

relevant information, is alone fed into the next level, which is a fully-connected neural 126

network with 4 layers. Age, sex, race, and site – four baseline covariates are included as 127

additional inputs to this fully-connected network which generates the predicted CASI 128

score as its output. In addition, we retrieve attention from the output of the multi-head 129

module in the second transformer encoder layer to determine which transformer features 130

are significant. 131
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Figure 1. Network overview. (A) The transformer encoder network architecture
with raw EEG time-series inputs concatenated with sleep stage labels (wake, REM, N1,
N2, N3), which uses two encoder layers for feature extraction. Attention values from
32 features from the transformer encoder layers and four covariates (age, sex, race, and
site) are passed into a fully-connected neural network with 4 layers, which generates
the predicted CASI cognition score as the final output. (B) A reference neural network
architecture with 4 fully-connected layers that receives as inputs a set of 132 handcrafted
sleep features (precomputed from the EEG and the sleep labels) and four covariates (age,
sex, race, and site) and generates the predicted CASI cognition score as the final output.

133

Network Training 134

The network was implemented and trained on PyTorch using an NVIDIA RTX 3090 135

graphics card. The hyper-parameters of learning rate and batch size were set to be 136

0.0001 and 20 respectively. The constant latent vector length d was set to 32. The 137

network was trained using an L2 loss function, and the loss was minimized using the 138

Adam optimization algorithm for 500 iterative epochs [7]. The full dataset comprising 139

N = 1, 502 MESA participants was split into a training subset of size 1, 042 and an 140

independent validation subset of 460. 141

Evaluation Metrics 142

To evaluate the transformer model, we utilize a set of model performance metrics widely 143

relied upon in the machine learning field to assess classifier performance. The 144
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quintessential tool capturing the details of a classification model’s performance is the 145

confusion matrix. Correct and incorrect classification proportions are represented by the 146

diagonal and off-diagonal components, respectively. The accuracy for each class is thus 147

represented by the diagonal members. In addition to providing the confusion matrix, we 148

also compute the sensitivity, specificity, precision, and recall. We also report the F1 149

score, which is the harmonic mean of precision and recall. Because it overlooks actual 150

negatives, we note that, despite its popularity, the F1 score’s effectiveness is limited. 151

We, therefore, also calculate the Matthews Correlation Coefficient (MCC), which is the 152

only metric that captures all of the elements in the confusion matrix in a single scalar 153

value. The MCC computes the correlation between observed and predicted binary 154

classes and hence is symmetric to both positive and negative class definitions. 155

Model Interpretation 156

A key challenge with representation learning models is their “black-box” nature which 157

makes them less intuitive and difficult to interpret. To understand the features 158

generated by the transformer model, we perform feature analysis by comparing the 159

transformer features with the handcrafted feature set via sparse regression. We use 160

Least Absolute Shrinkage and Selection Operator (LASSO), which is a regression 161

approach that combines variable selection and regularization [18]. LASSO aims to 162

preserve a small but most important set of regression coefficients, while setting the rest 163

to zero. In this manner, the LASSO extracts only the most meaningful features in a 164

linear model regression model. 165

Results 166

Accuracy Comparison 167

As shown in Figure 2, our transformer encoder network trained using whole-night raw 168

sleep EEG and sleep stage labels has an overall accuracy of 70.22%. The neural network 169

trained using the 132 handcrafted sleep features, on the other hand, has an overall 170

accuracy of 57.61%. The feature learning approach, therefore, outperforms the feature 171

handcrafting approach by a margin of 12.61% in terms of overall accuracy. As shown in 172

Table 2, other evaluation metrics too exhibited sizable margins of improvement for 173

feature learning over feature handcrafting: 14% improvement in sensitivity, 12% in 174

specificity, 12% in precision, 13% in F1 score, and 25% in MCC. The results are based 175

on 32 transformer features vs. 132 handcrafted features. This suggests that the 32 176

features are more information-rich and potentially less redundant despite their lower 177

dimensionality than the predefined feature set. 178

Table 2. Comparison of classifier performance metrics for feature handcrafting and
transformer-based feature learning.

Metric Handcrafted Features Transformer Features

Sensitivity/Recall 0.59 0.73

Specificity 0.56 0.68

Precision 0.59 0.71

F1 score 0.59 0.72

MCC 0.15 0.40

Transformer Feature Characterization 179

Figure 3 displays transformer feature ranking based on attention, which is derived by 180

averaging each element from the output of the multi-head layer in the second 181

6/12

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 18, 2022. ; https://doi.org/10.1101/2022.07.17.500351doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.17.500351
http://creativecommons.org/licenses/by-nc-nd/4.0/


Accuracy: 70.22%

72.5%
174

27.5%
66

32.3%
71

67.7%
149

Pr
ed
ic
te
d

Observed

CASI
(<90)

CASI
(>=90)

CASI
(<90)

CASI
(>=90)

Pr
ed
ic
te
d

Observed

CASI
(<90)

CASI
(>=90)

CASI
(<90)

CASI
(>=90)

Accuracy: 57.61%

58.8%
141

41.3%
99

43.6%
96

56.4%
124

Handcrafted Features Transformer Features

0.8

0

Figure 2. MESA CASI binary classification. Confusion matrices comparing the
prediction accuracies of feature handcrafting (overall: 57.61%) and transformer-based
feature learning (overall: 70.22%).

transformer encoder layer at the start epoch across two subject groups, one with high 182

CASI (above 90) and another with low CASI (below 40). By doing so, we determine 183

which transformer characteristics are statistically relevant to the classifier outcome. We 184

observe that significant features in the high-CASI group receive negative or no attention 185

in the low-CASI group and vice versa. More specifically, transformer encoder features 5, 186

9, and 22 in the red boxes in Figure 3 receive higher attention in the high-CASI group 187

but receive negative attention in the low-CASI group. Transformer encoder features 3, 188

12, and 13 in the green boxes, on the other hand, receive higher attention in the 189

low-CASI group but negative attention in the high-CASI group. 190

191
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Figure 3. Feature ranking. Transformer feature ranks based on attention for high-
CASI (above 90) and low-CASI (below 40) groups. The attention was derived from
the second transformer encoder layer’s multi-head attention module at the start point.
Features 22, 9, and 5 (located in red boxes) receive more attention from the transformer
model in the high-CASI group but less attention in the low-CASI group. Features 12, 3,
and 13 (located in green boxes) receive more attention in the low-CASI group but less
attention in the high-CASI group.

Transformer Feature Interpretation 193

To understand and interpret the information content captured by each transformer 194

feature, we computed sparse regression coefficients mapping the transformer features to 195

the handcrafted feature set. Figure 4 displays a summary of the information content of 196

all 32 features. For this visualization, we accumulated the LASSO coefficients into 10 197

domains capturing different facets. These domains are based on a data-driven grouping 198

of all handcrafted features as described in Djonlagic et al. [4]. 199

For the low-CASI group, 4 out of the top 7 transformer features (12, 13, 16, 31), 200

which contain more total sleep time (TST) information, receive more attention from the 201

model. 5 out of the top 7 transformer features (3, 12, 13, 19, 25) contain sleep efficiency 202

information. 3 out of the top 7 transformer features (3, 19, 31) contain 203

macro-architecture information. 3 out of the top 7 transformer features (3, 13, 19) 204

capture slow spindles. 3 out of the top 7 transformer features (3, 19, 31) contain fast 205

spindles information. Lastly, only 1 out of the top 7 transformer features (31) contain 206

slow, delta relative power information. 207
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For the high-CASI group, the top 7 transformer features (1, 2, 5, 9, 14, 17, 22), 208

which contain less TST information, receive more attention from the model. 6 out of 209

the top 7 transformer features (1, 2, 9, 14, 17, 22) contain sleep efficiency information. 5 210

out of the top 7 transformer features (1, 9, 14, 17, 22) contain slow spindles information. 211

4 out of the top 7 transformer features (2, 5, 9, 14) contain macro-architecture 212

information. 4 out of the top 7 transformer features (1, 5, 9, 22) contain slow, delta 213

relative power information. 3 out of the top 7 transformer features (1, 9, 22) contain 214

fast spindles information. 215

216
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Figure 4. Transformer feature interpretation. LASSO coefficients for the 32
transformer features grouped into 10 broad domains.

Discussion 218

We have presented a machine learning framework for predicting a person’s cognitive 219

status from their full-night sleep EEG data. While the predictive value of sleep metrics 220

has been studied before, to our knowledge, this is the first attempt to build a machine 221

learning model for mapping an individual’s sleep (as quantified by PSG) to their 222

cognition (measured using the CASI score). We show that our feature learning 223

approach, which relies on a transformer model, outperforms traditional feature 224

handcrafting by a sizable margin in terms of an array of performance evaluation metrics. 225

Although, the MESA dataset used in this study has good representation for mildly 226

impaired individuals (CASI<90), very low CASI scores (CASI<60) are 227

under-represented. This leads to some data imbalance that may affect the underlying 228

model which is set up for a regression task. Owing to this limitation, we report only 229

binary classification results for this model. The threshold of 90 is consistent with a 230

clinical MCI diagnosis based on CASI. Since there is good overall representation of each 231

binary class for this threshold, the model’s performance for this classification task is 232

robust. 233

In our current setup, we use attention from the second transformer encoder layer at 234

the start point which combines information from all the epochs from the first encoder 235

layer. As future work, we plan to utilize the first encoder layer to see which epochs are 236

important and receive more attention. This will allow us to go further and examine 237

which features each of those epochs carry and thus conduct an epoch-by-epoch 238

interpretation. 239

One limitation of this study is that it is based on only one night of data from each 240

subject. Since humans tend to have a high degree of night-to-night variability in their 241

sleep patterns, a single night’s data may not be able to capture a person’s sleep habits. 242

Given the cost and complexity of PSG studies, these are rarely conducted for more than 243
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one or two nights for a single subject. Improved sleep monitoring accuracy for 244

easy-to-use wearable EEG devices [1] could enable multi-night data acquisition, which, 245

in turn, could produce a longer-term and more complete picture of a person’s sleep 246

habits. Such longer-term assessments may be more meaningful for sleep-cognition 247

mapping efforts such as ours and represent a significant future research direction related 248

to this topic. 249
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