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 2 

Abstract 20 
 21 
Crop pathogens pose severe risks to global food production due to the rapid rise of resistance to pesticides 22 

and host resistance breakdowns. Predicting future risks requires monitoring tools to identify changes in 23 

the genetic composition of pathogen populations. Here we report the design of a microfluidics-based 24 

amplicon sequencing assay to multiplex 798 loci targeting virulence and fungicide resistance genes, and 25 

randomly selected genome-wide markers for the fungal pathogen Zymoseptoria tritici. The fungus causes 26 

one of the most devastating diseases on wheat showing rapid adaptation to fungicides and host resistance. 27 

We optimized the primer design by integrating polymorphism data from 632 genomes of the same 28 

species. To test the performance of the assay, we genotyped 192 samples in two replicates. Analysis of 29 

the short-read sequence data generated by the assay showed a fairly stable success rate across samples to 30 

amplify a large number of loci. The performance was consistent between samples originating from pure 31 

genomic DNA as well as material extracted directly from infected wheat leaves. In samples with mixed 32 

genotypes, we found that the assay recovers variations in allele frequencies. We also explored the 33 

potential of the amplicon assay to recover transposable element insertion polymorphism relevant for 34 

fungicide resistance. As a proof-of-concept, we show that the assay recovers the pathogen population 35 

structure across French wheat fields. Genomic monitoring of crop pathogens contributes to more 36 

sustainable crop protection and yields.  37 
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 3 

Introduction  38 

Approximately 30 percent of all crop diseases are caused by fungi [1]. Plant pathogenic fungi affect crops 39 

at various life cycle stages and plant tissues, including seeds, root and leaf development, and 40 

inflorescence [2–5]. Yield reductions by pathogenic fungi cause food insecurity and economic losses 41 

[6,7]. Crop protection is primarily achieved through the application of a variety of fungicides and 42 

resistance breeding [8,9]. However, fungal pathogens have evolved resistance to all major fungicides 43 

currently in use [10].  In addition, efforts to breed resistant crop varieties have repeatedly been defeated 44 

by rapid evolutionary change in pathogen populations allowing them to circumvent resistance 45 

mechanisms [9]. Predicting future breakdowns in fungicide efficacy and crop resistance remains 46 

challenging. Fungicide resistance is monitored across the European continent by analyzing mutations in 47 

known target genes related to the fungicide mode of action [11,12]. However, the rise of pathogen strains 48 

defeating crop resistance is not comprehensively monitored. Notable exceptions include the screening of 49 

rust fungi [13–16]. Notably, MARPLE (mobile and real-time plant disease) is a genomics-informed 50 

monitoring tool developed to quickly detect wheat rust fungal pathogens in situ using using Nanopore 51 

sequencing [17]. To reduce damage caused by plant pathogens, a timely and accurate detection of both 52 

fungicide resistance mutations and mutations associated with the defeat of crop resistance is essential.  53 

 54 

Fungal plant pathogen populations that evolved resistance to specific fungicides harbor numerous 55 

mutations in or nearby the genes encoding the targets of the chemical compounds [10,18–20]. Similarly, 56 

pathogen populations virulent on previously resistant crop varieties have often mutated or deleted a 57 

specific set of genes that encode proteins recognized by the plant immune system [21–24]. Fungicide 58 

resistance has traditionally been detected using in vitro fungicide sensitivity assays [25,26]. Such analyses 59 

require the isolation and culturing of individual fungal strains that can then be tested for growth on media 60 

containing different fungicide concentrations. The fungicide dose that effectively inhibits growth by 50% 61 

is determined for comparison among samples (i.e., EC50)  [25,27]. The method is laborious and limited to 62 
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fungal species that can be cultured in absence of the host. With advances in molecular techniques, a 63 

number of genetic screening methods have been developed including Sanger sequencing, TaqMan assays 64 

based on fluorescently-tagged, allele-specific probes [28]. In general, such screening approaches are 65 

labor-intensive and have low potential for multiplexing large numbers of individual loci. Virulence 66 

surveillance of fungal plant pathogens has been implemented  using simple sequence repeat (SSR) 67 

markers [29,30] to distinguish the virulent Ug99 race from other P. graminis f. sp. tritici lineages 68 

[30,31]. However, these SSR makers have been less useful in distinguishing different Ug99 race group 69 

members [32]. Besides, virulence monitoring was also performed using loop-mediated isothermal 70 

amplification (LAMP), see e.g. for the wilt Fusarium oxysporum f. sp. lycopersici (Fol) [33]. However, 71 

LAMP assays can be expensive given costs of individual probes.  72 

 73 

The advent of next generation sequencing (NGS) approaches has removed a series of limitations in 74 

pathogen monitoring. The most general application of NGS techniques is whole genome sequencing 75 

(WGS) that can be used to detect single nucleotide polymorphisms (SNPs) and structural variation [34]. 76 

Applications of WGS have contributed to the mapping and characterization of virulence and resistance 77 

factors primarily through genome-wide association mapping [10,23,35,36]. Low-cost, high-throughput 78 

methods based on NGS include reduced representation sequencing genotyping methods such as 79 

restriction-site-associated DNA sequencing (RAD-seq) and Genotyping-by-Sequencing (GBS), both 80 

methods rely on restriction enzymes to reduce genome size and complexity and exploring SNPs adjacent 81 

to restriction enzyme sites [37,38]. However, such genotyping approaches assess only mutations near 82 

restriction enzyme cut sites. Applications in fungal pathogens include fine-grained population structure 83 

analyses, assessments of recombination rates, mapping of quantitative traits as well as the ability to 84 

establish virulence profiles for clonal pathogens [39–44]. The analysis of individual regions involved in 85 

fungicide resistance has been improved by the recent development of a PacBio long-read sequencing 86 

assay based on the multiplex amplification of target genes in fungal wheat pathogen Zymoseptoria tritici. 87 

The main advantage is the ability to generate long-reads capturing significant haplotype information of 88 
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individual strains revealing a series of alterations conferring increased resistance in response to different 89 

commercial fungicides. However, due to the varying  amplicon sizes  generated by this assay two separate 90 

multiplex PCRs were required to separate shorter and longer amplicons [26]. High degrees of 91 

multiplexing for amplicons and samples were recently achieved using two parallel approaches for animal 92 

and plant species. Genotyping-in-thousands by sequencing (GT-seq) is based on multiplex PCR targeted 93 

amplicon sequencing to simultaneously genotype thousands of loci and hundreds of samples in a single 94 

Illumina sequencing run [45]. A limitation of this approach is the extended time required for its 95 

development (about ~4 months according to [46]. One challenge to overcome is imbalanced amplification 96 

of individual loci and samples. Such bias can be reduced by the use of Fluidigm microfluidics assays, 97 

which physically separate sets of amplicons and samples [47]. The fungal pathogen Z. tritici causes one of 98 

the economically most important wheat diseases called Septoria tritici blotch (STB) [48]. The pathogen 99 

has emerged at the onset of wheat domestication in the Middle East [49] and has since spread to all 100 

wheat-producing areas of the world [50]. Populations have evolved resistance to all commercially used 101 

fungicides and repeatedly across continents [23]. Major routes to resistances included the rise of 102 

mutations in genes encoding the targets of the fungicide, in particular in CYP51 encoding the target of 103 

azoles [8,10]. Furthermore, upregulation of the transporter gene MFS1 due to the insertion of transposable 104 

elements in the promoter region contributed to azole resistance [20]. The rise of succinate dehydrogenase 105 

inhibitor (SDHI) resistance mutations are the most recent of the observed gains in resistance (Fungicide 106 

Resistance Action Committee, FRAC, 2021). In parallel to the rapid evolution to resist fungicides, Z. 107 

tritici has also surmounted most known resistance factors segregating among wheat cultivars [51]. 108 

Association mapping in Z. tritici has recently revealed specific mutations underlying the gain of virulence 109 

on previously resistant wheat cultivars including cultivars carrying the resistance gene Stb6 and others 110 

[35,52,53]. Recently, Amezrou et al. (unpublished) identified an additional 58 candidate pathogenicity 111 

related genes based on association mapping on 12 wheat differential cultivars. The genes linked to gains 112 

of virulence are typically referred to as effector genes and show rapid evolutionary change in populations 113 

of Z. tritici [22,52,53]. Gene flow among Z. tritici populations is leading to significant weak 114 
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differentiation at the continental scale and high local diversity [50,53,54]. Monitoring of fungicide 115 

resistance mutations is mainly achieved through the sequencing of target genes including the recent 116 

development of long-read sequencing assays [26]. A joint monitoring of pathogenicity related mutations 117 

and genetic diversity is lacking though. 118 

 119 

Here, we report the design and validation of a microfluidics based multiplex targeted amplicon 120 

sequencing assay that allows the simultaneous monitoring of mutations in fungicide resistance genes and 121 

effector genes associated with a wide range of host resistance factors. In addition, we enable the 122 

monitoring of hundreds of equally spaced polymorphisms along chromosomes to identify recent changes 123 

in the genetic composition of pathogen populations. We validate the performance of the assay using 124 

replication, sensitivity analyses to low input DNA, mixed samples as well as the performance on DNA 125 

directly obtained from infected wheat leaves.    126 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2022. ; https://doi.org/10.1101/2022.07.18.500446doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.18.500446
http://creativecommons.org/licenses/by/4.0/


 7 

Results  127 

Marker design based on whole-genome sequenced individuals across species 128 

We used whole-genome sequencing datasets of 632 Z. tritici isolates collected in Oceania (Australia, New 129 

Zealand), the United States, Switzerland, France, and Israel to identify segregating SNPs and improve the 130 

design of a total of 798 amplicons of ~200 bp of length (except for the MFS1 and ZtSDHC3 loci). The 131 

short and largely identical amplicon lengths improve PCR efficiency and balance among loci. Known 132 

polymorphism within the species was used to mask sites to avoid primer mismatches and amplification 133 

drop-outs (Fig. 1A). We designed 25 amplicons across genes associated with fungicide resistance 134 

including CYP51, alternative oxidase (AOX), beta-tubulin (TUB1), SDH1-4 genes including ZtSDHC3, as 135 

well as cytochrome b (CYTB) (Table B in the File S1). For each gene, we prioritized amplicons covering 136 

non-synonymous substitution if available. Due to the complexity of the transposable element insertion 137 

polymorphism in the promoter region of the transporter gene MFS1, we designed a total of 16 primer 138 

pairs for amplicons matching known sequence variants near three insertion sites [20] (Table B in File S1). 139 

For loci associated with pathogenicity on diverse cultivars, we retained a set of 67 amplicons successfully 140 

passing primer design (Table B in File S1). We also randomly selected SNPs at ~50 kb distances to 141 

monitor the genetic make-up of populations for a total of 691 designed amplicons across all chromosomes 142 

(Table B in File S1). The random SNP set also included by chance the previously selected fungicide 143 

resistance gene cytochrome b (CYTB). 144 

 145 

Assessment of loci quality across the targeted sequencing assay 146 

We performed targeted sequencing of all 798 loci based on the Fluidigm Juno system in a single run 147 

using microfluidics (Fig. 1B). The 192 samples included four sets of pure DNA from different isolates 148 

mixed in equal proportions, ten samples including each DNA of the same three isolates in different 149 

proportions, and 178 samples constituted from extracted leaf material from different wheat fields across 150 

France mostly (i.e. n = 172), Belgium, Ireland and the United Kingdom. The complete set of samples was 151 
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replicated once for the amplification and Illumina sequencing step. The total sequencing output over both 152 

replicates was 2,418,905,407 read pairs and 338.89 Gb. For 31 samples, the amplification and Illumina 153 

sequencing procedures failed in either one of the two replicates of each sample, therefore the failed 154 

replicates were eliminated. Across a replicate run (i.e. FC2), samples produced between 5,976-155 

173,049,611 read pairs with numbers broadly consistent between the two replicate runs (Fig. 2A). We 156 

found that the mapping rate against the reference genome ranged from 96.93-100% among most sample 157 

replicates (Fig. 2B). 158 

 159 

To assess the faithful amplification of individual loci, we first focused on the four samples with mixtures 160 

of pure fungal DNA of 26 to 30 isolates. Combining the two replicates, we used eight samples to evaluate 161 

sequencing read coverage across the 782 amplicons designed outside of the MFS1 region. We found 17 162 

loci with a read depth of 0. The highest read depth was 1,779,927 for an effector locus on chromosome 1. 163 

For the set of genome-wide, equally spaced amplicons on core chromosomes, we accepted the locus if the 164 

read counts were between 20,000 and 100,000 in the retained samples (Fig. 2C). We considered this read 165 

count range to reflect the loci consistently amplifying across samples and not showing evidence for 166 

duplications. With this filter, we discarded 149 loci falling outside of the read count range (Fig. 2D). For 167 

randomly selected markers on accessory chromosomes, we expected lower amplification success because 168 

not all isolates of the species carry the locus. We retained loci with a read count between 10,000 and 169 

100,000 in the set of reference samples leading to the rejection of 21 loci (Fig. 2C-D). For randomly 170 

selected mitochondrial markers, we found read counts ranging from 203,502 to 1,372,965 in the set of 171 

reference samples reflecting the high copy number of mitochondria compared to the nuclear genome. All 172 

12 randomly selected mitochondrial loci were kept. For effector loci, the number of mapped reads ranged 173 

from 502 to 1,779,927 reads indicating significant variation in the amplification success and possibly 174 

copy number (Fig. 2C). We retained all 67 designed amplicons due to the general interest in 175 

polymorphism at such loci (Fig. 2D). For resistance gene loci, the number of mapped reads ranged from 176 

2,986-1,372,965 reads (Fig. 2C). As for effector gene loci, all 24 designed amplicons were retained (Fig. 177 
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2D). In addition, we retained the amplicon for the mitochondrial resistance locus of CYTB with a read 178 

count of 1,372,965. In summary, we retained 521 high-quality loci representing 75% of the randomly 179 

selected markers designed for genetic structure analyses, as well as all 67 effector and 24 fungicide 180 

resistance loci (Fig. 2D). 181 

 182 

Reproducibility among replicate assays and recovery of allele frequencies 183 

To assess the reproducibility of the sequencing assay, we repeated the amplification and sequencing 184 

procedure two times. We found that the number of read pairs recovered for each sample were positively 185 

correlated between replicates (r = 0.78, p-value < 0.0001; Fig. 3A). We also found a positive correlation 186 

in the mapping rate of reads recovered from the same samples (r = 0.85, p-value < 0.0001; Fig. 3B). To 187 

investigate effects on allele frequencies assessed for mixed samples, we compared the pooled DNA of 188 

population 41 sample. We used allele frequencies estimated from read depth for the reference and 189 

alternative allele at SNP loci. Reference allele frequencies at 201 SNP loci calculated in both replicates of 190 

each sample were highly correlated (r = 0.89, p-value < 0.0001) with outliers corresponding to poorly 191 

covered loci in either one of the two replicates of the same sample (Fig. 3C). 192 

 193 

Furthermore, we analyzed allele frequencies in ten samples (i.e. G1-G10) constituted from a mix of pure 194 

DNA from the same three isolates in different proportions (INRA10-FS1006, INRA10-FS1022, IPO-195 

09455; Fig. 4; Table A in Supplementary File S1). We used existing whole genome sequencing and SNP 196 

calling data for the three isolates to assess polymorphism across the genome [55]. Using the known 197 

dilutions of pure DNA, we established the expected frequencies of reference alleles (i.e. matching the 198 

allele present in the reference genome IPO323) or alternative alleles across loci. Then, we analyzed 199 

mapped reads from the targeted sequencing assay from the mixed samples G1-G10 across all amplicons 200 

to identify the proportion of reads matching the reference allele (Fig. 4). If the targeted sequencing assay 201 

faithfully amplified DNA in mixed samples, the expected reference allele frequency in the mixed samples 202 

should match the recovered proportion of reads matching the reference allele. Across the ten different 203 
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 10

mixed samples, the match in reference allele frequencies was high in most samples (linear regression with 204 

R2 > 0.55 in 7 out of 10 mixtures). The mixed sample G1 showed no association between DNA dilutions 205 

and recovered allele frequencies and two additional samples (G5 and G6) showed weak associations (R2 = 206 

0.27-0.45). 207 

 208 

SNP monitoring in fungicide resistance genes 209 

We investigated the amplification success for the amplicons covering the CYP51 locus using eight sets of 210 

mixed pure fungal DNA samples with read counts ranging from 10,115 to 31,323 reads. The genotyping 211 

of infected wheat leaf samples from the field revealed that the target SNPs were indeed polymorphic. For 212 

CYP51 and the other fungicide resistance associated genes such as TUB1, AOX, SDH2 and SDH3 the 213 

dominant genotype per wheat leaf varied among samples (see File S1, Tables D and E). The reference 214 

genome isolate IPO323 is generally susceptible to different fungicide classes. Hence, the allele carried by 215 

the reference genome is likely associated with higher susceptibility. Consistent with recent gains in 216 

fungicide resistance, mutations in the beta-tubulin and CYP51 locus tended to be different from the 217 

reference genome (i.e. the alternative allele, Table E in File S1). Loci without recent strong recent gains 218 

more likely retained the IPO323 genotype (i.e. reference allele, Table E in File S1). 219 

 220 

Amplicons for the promoter region of MFS1 221 

The amplicons designed for the promoter region of MFS1 are matching known haplotypes differing in 222 

their insertion of transposable element sequences. Due to the sequence complexity, we chose to first 223 

cluster sequencing reads into individual amplicons instead of directly mapping reads to a MFS1 224 

haplotype. Analyzing the 10 samples with different DNA mixtures of three isolates including replicates, 225 

we identified 10 sequence clusters with at least 22 reads (lowest number observed in sample G3). We 226 

used BLAST to retrieve the subset (n =10) of the clustered sequences matching the MFS1 promoter 227 

region. The sequences matched positions from 1-4946 bp (for sample G9) on the consensus MFS1 228 

sequence with all being upstream of the coding sequence as expected (Fig. 5A). We did not recover any 229 
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amplicon matching forward and/or reverse primer positions based on the amplicon design (Fig. 5B). 230 

However, all amplicons did not match the expected amplicon length most likely due to the complexity of 231 

the underlying sequence. Furthermore, the pooled amplification of multiple primer pairs matching the 232 

promoter region has likely produced chimeric amplicons in some contexts. We used the retrieved 233 

amplicons matching the promoter region to form clusters of near identical BLAST matches based on 234 

alignment length and positions. We identified 10 well supported amplicon clusters showing variation in 235 

abundance among the analyzed samples (See Table C in File S1). 236 

 237 

Genetic differentiation in French and European wheat field populations  238 

We used the 158 wheat leaf samples infected by Z. tritici collected from fields across France with at least 239 

five genotyped samples per location and additional samples from Belgium, Ireland and the United 240 

Kingdom to assess the genetic structure using the genome-wide marker set (Supplementary Figure 1 in 241 

File S2). Based on a principal component analysis of 85 genome-wide SNPs, we found no clear 242 

differentiation among samples originating from different countries (Fig. 6A). Focusing on the genetic 243 

differentiation among French regions (n = 82 genome-wide SNPs for the French populations only), we 244 

found some modest differentiation of genotypes from wheat fields in Midi-Pyrénées and Champagne 245 

(Fig. 6B). However, the overall differentiation of the field samples was low with the first and second 246 

principal component explaining only ~4%.  247 

  248 
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Discussion  249 
 250 
We developed a microfluidics-based amplicon sequencing assay combining the advantages of high-251 

throughput sequencing and multiplex PCR. We assessed the performance of 798 loci to reliably and 252 

sensitively genotype randomly selected genome-wide markers, as well as pathogenicity and fungicide 253 

resistance-related genes in a diverse set of Z. tritici samples. We show that a large portion of the designed 254 

markers can be amplified consistently across samples, used to monitor the emergence of relevant 255 

mutations and provide an assessment of allele frequencies in mixed samples. The set of genome-wide 256 

markers provides means to assess the genetic structure of the pathogen directly from field collected wheat 257 

leaves. 258 

 259 

Within-species polymorphism can lead to amplification failures due to mismatching primers. We 260 

considered this issue particularly relevant for the wheat pathogen Z. tritici as the species harbors 261 

genetically highly diverse populations within single fields [53]. As expected, we detected a high number 262 

of SNPs in regions intended for amplicon design leading to the rejection of amplicon candidates prior to 263 

the genotyping stage. Furthermore, we noticed targeted regions with weak amplification success. The 264 

poor performance of some primer pairs is most likely explained by a combination of factors. First, we 265 

ignored low-frequency SNPs at the masking stage to be able to proceed to the amplicon design for more 266 

loci. Second, our species-wide genomic survey of SNPs may have missed polymorphisms present in the 267 

assayed samples. The filtering thresholds can be adjusted and more genome sequencing datasets could be 268 

included in future amplicon design efforts. Despite some failed attempts at amplifying individual loci, we 269 

obtained high degrees of sequencing read coverage for most loci. Most samples yielded hundreds to 270 

thousands of reads for each locus. Such deep coverage across the amplicon assay provides a detailed 271 

picture of genotypic diversity particularly for mixed samples directly obtained from infected leaves. A 272 

major limitation with the multiplexed amplicon sequencing assay is the shortness of the amplified 273 

sequence (~200 bp). The short amplicon length ensures a high degree of multiplexing by providing stable 274 
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amplification across the entire assay. However, longer amplicons would be needed to recover entire 275 

sequences (i.e. haplotypes) of the azole resistance locus CYP51 or several effector genes of interest. A 276 

potential solution would be to design overlapping amplicons to cover an entire locus. However, this 277 

approach was unsuccessful e.g. for the effector gene AvrStb6 providing no sufficiently conserved sections 278 

inside or adjacent to the coding sequence for an overlapping amplicon design. Limitations in amplicon 279 

length and haplotype resolution can be overcome using long-read sequencing as developed to monitor 280 

fungicide resistance loci in Z. tritici [26]. Long-read sequencing may also help to overcome issues with 281 

amplifying the highly polymorphic promoter region of MFS1. Long amplicons could capture the entire 282 

promoter region instead of focusing on individual insertion points. However, long-read approaches are 283 

not well-suited to amplify hundreds of loci consistently across many samples. Ultimately, a combination 284 

of different approaches performing highly multiplexed short reads sequencing and separate long-read 285 

sequencing for the most complex loci will be required. 286 

 287 

A versatile pathogen genotyping assay should perform well with low-input pure fungal DNA as well as 288 

mixed samples containing DNA both from multiple strain genotypes and the host (i.e. wheat plants). We 289 

find that the assay replicated well across most of the tested sample types both in terms of the number of 290 

recovered reads per sample as well as the proportion of reads that could be mapped to the Z. tritici 291 

reference genome. Besides, we found that in mixed samples (i.e. containing more than one genotype), the 292 

assay reproduces well the allele frequencies across the two independent genotyping runs. We also 293 

assessed the ability of the assay to recover allele frequencies of mixtures of known isolates. Using known 294 

genotypes of three isolates as a control, the amplicon assay recovered well the allele frequencies in most 295 

tested mixtures. The weak performance of some individual mixtures is likely due to errors during 296 

handling rather than a general issue of reproducing allele frequencies. The accurate recovery of allele 297 

frequencies in a mixed sample is clearly contingent on sufficient sequencing depth though and we have 298 

evaluated the performance only at loci with ≥50 mapped reads. The genotyping of transposable element 299 

insertions in the MFS1 promoter region was not conclusive. The overlapping amplicons and very high 300 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2022. ; https://doi.org/10.1101/2022.07.18.500446doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.18.500446
http://creativecommons.org/licenses/by/4.0/


 14

levels of sequence polymorphism prevented a clear assignment of amplicons to transposable element 301 

insertion genotypes, but our data opens up a path for a more comprehensive design strategy to capture 302 

inserted sequences.  303 

 304 

The microfluidics-based multiplex PCR targeted amplicon sequencing requires bioinformatics analyses 305 

both for the design of the amplicons and for the genotyping after a successful run. Nearly all designed 306 

amplicons and associated primer sequences could be used also outside of a microfluidics protocol. A 307 

technically less demanding version of our approach is typically referred to as GT-seq, which consists in 308 

amplifying loci in large pools of primer pairs and indices to distinguish samples [45]. Given the short 309 

amplicons, using individual primer pairs for targeted qPCR assays would also be possible. The number of 310 

recovered loci for targeted amplicon sequencing remains below untargeted approaches such as RAD-seq 311 

and GBS. Untargeted reduced-representation approaches provide however only genome-wide information 312 

on genetic differentiation. This may be informative e.g. for virulence profiles in clonal pathogens [43], 313 

however this approach is unsuitable to recover genotypes at specific loci. Targeted amplification such as 314 

the microfluidics based multiplex PCR performs also well in mixed samples. RAD-seq and GBS are 315 

unlikely to perform well if substantial proportions of plant DNA are present, because large plant genomes 316 

will typically contain many more restriction sites compared to fungal genomes.  317 

 318 

The developed microfluidics-based targeted amplicon assay allows a cost-effective and reproducible 319 

monitoring of hundreds of loci to track mutations at pathogenicity loci and fungicide resistance evolution 320 

in field populations. The integration of genome-wide markers greatly enhances the quality of pathogen 321 

monitoring by providing information about patterns of gene flow. Our study revealed only weak 322 

differentiation across Western European countries and among French regions consistent with high levels 323 

of gene flow and genetic diversity [55]. Knowledge of genetic structure can help identify recent 324 

movements of the pathogen due to natural or human-mediated dispersal. The rapid rise in resistance of Z. 325 

tritici populations after the application of fungicides can more effectively be monitored due to the large 326 
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number of loci that can be assayed simultaneously. Furthermore, tracking mutations at effector loci opens 327 

new opportunities to track adaptation to different wheat cultivars across regions. With the availability of 328 

whole genome sequencing data for an increasing number of crop pathogens, the targeted amplicons could 329 

be expanded to simultaneously or separately genotype other major pathogens including rusts to improve 330 

the surveillance and management of crop diseases globally.  331 

 332 
  333 
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Methods 334 

Genome sequences used for the design of the assay 335 

The amplicons were designed based on known polymorphisms within the species. Polymorphic sites were 336 

used both to select SNPs to amplify but also to mask polymorphisms to avoid primer binding mismatches. 337 

For this, we used whole genome sequencing information from 632 Z. tritici isolates collected across the 338 

global distribution range of wheat. Isolates included six different populations with a sample size of 29-339 

178. A total of 88 isolates were collected in Australia including Tasmania in 2001 and 2015 [22]. 340 

Additional isolates from Oceania included 75 isolates collected in New Zealand in 2013 and 2015 [55]. A 341 

total of 154 isolates were collected in Oregon, USA, in 1990 and 2015 [22]. 178 isolates were in wheat 342 

fields near Zurich in Switzerland in 1999 and 2016 [22,53] and 29 isolates were isolated in the Nahal Oz 343 

region in Israel in 1992 [22]. Finally, 108 isolates were retrieved from a panel of French isolates [35].  344 

 345 

SNP calling and identification of polymorphisms for the amplicon design 346 

We performed read alignment and SNP discovery for the generated genomic datasets, as previously 347 

described [22,35]. In summary, we trimmed raw Illumina reads using Trimmomatic v. 0.38 [56] and 348 

mapped retained reads to the reference genome IPO323 [57] using bowtie v2.3.5 [58]. We used the 349 

Genome Analysis Toolkit (GATK) v4.0.1 [59] including the HaplotypeCaller tool to identify candidate 350 

SNPs. We filtered for a set of high-quality polymorphisms using the GATK VariantFiltration tool and 351 

vcftools v.0.1.15 [60]. A more extensive description of the filtering procedures and validations are 352 

available [61]. 353 

 354 

Polymorphism selection for neutral markers, pathogenicity and fungicide resistance genes 355 

Effector candidate genes were retrieved from GWAS focused to identify candidate effectors interacting 356 

with major wheat resistance genes (Amezrou et al., unpublished)[52,61]. We included 65 candidate 357 

effector genes showing a significant association for symptom development on at least one wheat cultivar. 358 
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We designed at least one amplicon overlapping the most significantly associated SNP in each of the 359 

effector genes. If a significantly associated SNP could not be reproduced in the worldwide isolate 360 

collection, a random nearby SNP (within ~200 bp) was selected as the target for the amplicon design. If a 361 

different SNP was selected, we filtered for SNPs with a minor allele count of 5 and a minimal genotyping 362 

rate of 80%. For the effector gene AvrStb6, we designed two additional amplicons to cover polymorphism 363 

in the coding sequence. To monitor fungicide resistance gene mutations, we covered 25 genes related to 364 

fungicide resistance in Z. tritici populations including the mitochondrial genes CYTB and AOX, the 365 

nuclear genes beta tubulin 1 (carbendazim resistance), CYP51 (azole resistance), as well as SDH1, SDH2, 366 

SDH3 and SDH4 (SDHI resistance). The amplicons covered resistance mutations if known for the 367 

species. If no mutation was previously documented in Z. tritici, the amplicon covered randomly selected 368 

SNPs in the coding sequence. Similar to the procedure for effector loci, if a known SNP associated with 369 

fungicide resistance could not be recovered, we selected a SNP within ~100 bp (minor allele count of 3, 370 

minimum genotyping rate 80%). The broader inclusion of polymorphisms for filtering was possible due 371 

to the generally lower degree of detected variants in resistance genes. We defined an additional amplicon 372 

to target the paralog of SDH3 (ZtSDHC3) [62]. For this, we analyzed the paralog sequence discovered in 373 

the pangenome of Z. tritici [63].  374 

 375 

Multidrug fungicide resistance in Z. tritici is mediated by transposable element insertions in the promotor 376 

region of the transporter MFS1. We designed 16 amplicons covering three previously reported 377 

transposable element insertions and haplotypes [20]. The amplicons were designed to either amplify if an 378 

insertion was present or not. Amplicons were designed on a consensus sequence of previously described 379 

haplotypes [20]. In addition to polymorphisms related to pathogenicity and fungicide resistance, we 380 

randomly selected equally spaced polymorphisms along all 21 chromosomes to capture neutral population 381 

structure. For this, we selected 691 SNPs with a minor allele frequency of 5% and a minimal genotyping 382 

rate of 80%. SNPs were selected at a distance of 50 kb (if available) using the --thin option in vcftools. In 383 

summary, a total of 798 amplicons were designed for pathogenicity, fungicide resistance as well as gene 384 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2022. ; https://doi.org/10.1101/2022.07.18.500446doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.18.500446
http://creativecommons.org/licenses/by/4.0/


 18

flow tracking across Z.tritici populations. See Table B in File S1 for details on all selected effector and 385 

fungicide resistance genes as well as whole genome neutral markers.   386 

 387 

Amplicon design 388 

For genome-wide markers and markers in effector and fungicide resistance genes (except ZtSDHC3 and 389 

MFS1), we extracted a 401 bp sequence from the reference genome centered on the SNP to target. The 390 

extracted sequence was centered around the target SNP, which was marked by IUPAC code and 391 

parentheses according to company instructions. The sequence was then used to define primers amplifying 392 

a ~200 bp stretch of DNA including the target SNP. The amplicon length was limited to ~200 bp to 393 

ensure efficient and balanced amplification across loci. To improve amplification success across a broad 394 

range of Z. tritici genotypes, we masked known polymorphic sites on the sequence containing the targeted 395 

SNP to prevent accidental primer design in known polymorphic regions. We used bcftools v1.9 [64] to 396 

mask non-target sites showing evidence for polymorphism in the panel of 632 analyzed isolates using the 397 

-I option of the consensus command and re-wrote sequences with samtools v1.9 [65]. For resistance and 398 

pathogenicity loci, we used a minor allele count of 3 and 5, respectively to consider the polymorphism for 399 

masking. For genome-wide markers, we used a minor allele frequency cut-off of 5%. If the resulting 400 

sequence contained more than 10% masked sites, the amplicon was not considered further. Additional 401 

sequences were excluded by Fluidigm Inc. if the sequences failed to yield adequate primer candidates for 402 

the desired ~200 bp amplicons. If the initial amplicon design had failed, we repeated the procedure for 403 

effector loci but relaxed the filter to consider only SNPs with a minor allele count of ≥25.  404 

 405 

Samples included for the validation of the amplicon sequencing assay 406 

We assessed the performance of the microfluidics assay using different sets of samples collected from 407 

wheat fields in Europe. Four samples included equimolar DNA mixtures of 26 to 30 isolates obtained by 408 

culturing single spore isolates from field-collected wheat leaves. Three single spore isolates identified as 409 

INRA10-FS1006, INRA10-FS1022 and IPO-09455 were collected in 2009 and 2010 in the Ile-de-France 410 
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region and were used to create DNA mixtures in ten different proportions (samples G1-G10). Finally, 178 411 

samples were obtained by extracting DNA directly from infected wheat leaves collected in different 412 

regions of France, Belgium, Ireland and United Kingdom (Table A in File S1). No permit is required to 413 

collect naturally infected wheat leaves.  414 

 415 

DNA extractions and microfluidics assay 416 

DNA extractions to test the microfluidics assay were performed using the following procedures. For pure 417 

cultures and directly from infected wheat leaves using DNeasy® Plant Mini Kit (Qiagen, Hilden, 418 

Germany). DNA was quantified using a Qubit 2.0 fluorometer (Thermo Fisher, Waltham, Massachusetts, 419 

USA). We followed the Fluidigm Inc. (San Francisco, California, USA) JunoTM targeted amplicon 420 

sequencing protocol according to the manufacturer’s protocol. As input DNA, we used the following 1.5-421 

200 ng of total amount (See Table A in Supplementary File S1). We performed the entire microfluidics 422 

procedure twice independently on different Juno LP 192.24 integrated fluidic circuits plate (IFC). 423 

Libraries were prepared following the manufacturer's protocol. Target amplicons were generated for each 424 

sample and pools of primers using PCR on a specialized thermocycler (Juno system; Fluidigm).  Illumina 425 

sequencing was performed in paired-end mode to generate 100 bp reads on the NovaSeq™6000 platform 426 

at Integragen Inc. (Evry, France) and produced 363.89 Gb of raw sequencing data for both independent 427 

chips combined.  428 

 429 

Amplicon sequence data analyses  430 

We used Trimmomatic v0.38 [56] with the following parameters: LEADING:3 TRAILING:3 431 

SLIDINGWINDOW:4:15 MINLEN:36. Due to the short amplicon length compared to the read lengths, 432 

we used FLASH v1.2.11  [66] to merge forward and reverse reads per pair into single pseudo-reads. 433 

Finally, pseudo-reads were aligned to the IPO323 reference genome using bowtie2 v2.3.5 [57,58]. We 434 

assessed individual read counts at each analysis step using MultiQC v.1.7 [67]. After individual 435 

genotyping using the GATK HaplotypeCaller tool, we performed multi-sample genotype calling using 436 
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CombineGVCFs and GenotypeGVCFs [68]. Variant sites were removed if these met the following 437 

conditions: QD < 5, MQ < 20, -2 > ReadPosRankSum > 2, -2 > MQRankSum > 2, -2 > BaseQRankSum 438 

> 2.  439 

 440 

The DNA mixtures (G1-G10) contained three isolates INRA10-FS1006, INRA10-FS1022 and IPO-09455 441 

with existing SNP genotyping information [55]. Isolates in mixed samples were diluted in different 442 

proportions to cover a range of isolate mixtures. To assess the reproducibility of allele frequencies of the 443 

mixed DNA samples, we analyzed mapped reads at each SNP genotyped using the amplicon sequencing 444 

assay. Expected proportions of reference alleles (matching the reference genome IPO323) were inferred 445 

in mixed samples using the known genotypes of the isolates. Only amplicon sequencing loci with a 446 

minimum read coverage of 50 were considered to reduce noise in allele frequency assessments. For 447 

amplicons targeting the promoter region of MFS1, we first used seqtk [69] to subsample 10.000.000 reads 448 

from large merged paired-end reads FASTQ files and we then performed a clustering analysis of Illumina 449 

reads to obtain read sets originating from the same locus. We used CD-HIT-EST [70] with an identity 450 

threshold set to 100% to cluster sequencing reads. For each cluster, the representative sequence identified 451 

by CD-HIT-EST was aligned to the MFS1 promoter consensus sequence using BLASTn 2.12.0 [71]. 452 

Only BLASTn best hits with a bit score above 100 and identity > 90% were kept. To identify clusters of 453 

nearly identical hits based on position and identity, we performed k-means clustering with the R packages 454 

{factoextra}[72], {clustertend} [73], {cluster} [74], {NbClust} [75]. For each sample, we identified the 455 

optimal number of clusters (K = 1–10) by performing a silhouette analysis [76].  456 

 457 

Data visualization and population genetic analyses  458 

Data analyses were performed using R 4.0.4 [77]. The R packages included in {tidyverse}  [78] were 459 

used for summarizing and plotting coverage across loci, visualizing retained SNPs, the outcomes of 460 

different filtering stages and genotyping. We used bcftools v1.9 [64] to calculate allele frequencies at 461 

SNP loci. The allele frequency correlation between both flow cells chips was analyzed with the R 462 
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package {report} [79] and visualized using {ggpubr} [80] and {ggplot2} [81]. To analyze genetic 463 

diversity and population structure, we performed a principal component analysis (PCA) using the R 464 

packages {vcfR} [82], {adegenet}[83], {ade4} [84] and {ggplot2} [81]. For population analyses, we 465 

focused only on the second replicate (flow cell) and genome-wide SNPs without effector and resistance 466 

gene loci to reflect neutral population structure. Loci were filtered for a minor allele frequency of 0.05 467 

and allowing for 20% missing data (--max-missing 0.8). 468 

 469 

Data availability: Raw sequencing data is available on the NCBI Sequence Read Archive (SRA) under 470 
BioProject PRJNA847707 (https://www.ncbi.nlm.nih.gov/bioproject/ PRJNA847707). 471 
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Figure legends 744 

 745 

Figure 1: Schematic overview of the targeted amplicon assay design. A) Design of individual 746 
amplicons (~200 bp) with primers designed to not overlap known polymorphic sites. B) Schematic 747 
overview of the microfluidic chambers of a Fluidigm Juno chip accommodating up to 192 samples and 24 748 
pools of primers (each up to 100 primer pairs). Following amplification in microfluidic wells, barcoded 749 
products are pooled and finalized for Illumina sequencing. C) Genotypes of individual samples (pure or 750 
mixed individuals) are assessed by analyzing mapped reads at each locus in the genome. Markers were 751 
designed for three different categories including effector genes, genes encoding targets of fungicides and 752 
genome-wide evenly spaced markers. 753 
 754 
Figure 2: Sequencing data recovered for the amplicon assay and loci assessment. A) Read pairs 755 
recovered per sample and replicate. Each sample was amplified and sequenced two times (two different 756 
microfluidic flow cells). B) Ranking of percent mapped reads to the reference genome per sample 757 
(including both replicates if available). C) Number of reads mapped per locus for the three different 758 
categories of markers. The read numbers correspond to the total obtained from four pooled samples 759 
performed in replicates. D) Summary of loci retained after read number filtering. Only genome-wide 760 
markers were removed if they failed filtering criteria. E) Overview of retained markers per category 761 
across the 21 chromosomes and mitochondrion.  762 
 763 
Figure 3: Consistency between replicate runs of the amplicon assay. A) Read numbers per sample and 764 
B) percentage of reads mapped to the reference genome. C) Comparison of alternative allele frequencies 765 
within samples between the two replicate runs for each sample. 766 
 767 
Figure 4: Evaluation of mixed sample analyses. Ten samples (G1-G10) contained mixed DNA of three 768 
different isolates (INRA10-FS1006, INRA10-FS1022, IPO-09455) varying in proportions. Genotypes of 769 
each of the isolates were retrieved from whole-genome sequencing of pure isolates and assigned as 770 
reference alleles (i.e. matching the allele present in the reference genome IPO323) or alternative alleles. 771 
Using known genotypes of the three isolates, reference allele proportions were defined according to the 772 
dilutions in mixed samples G1-G10. Amplicon sequencing data of mixed samples was screened for all 773 
genotyped SNPs to assess the proportion of the reference allele among all mapped Illumina reads. Only 774 
SNPs with a minimum read coverage of 50 were used. Regression R2 were calculated based on a linear 775 
model.  776 
 777 
Figure 5: Analyses of amplicons designed on polymorphic transposable element insertions 778 
upstream of the multidrug transporter gene MgMFS1. A) Overview of the location of amplicons 779 
designed for each of three transposable element insertion site (1-3). Multiple amplicons were designed for 780 
each insertion site. The aligned reads are shown for positions near the coding sequence of MgMFS1 for 781 
sample G9 (only positions with >10 reads mapping are shown). B) After read clustering for sample G9, 782 
consensus sequences were blasted against positions near the coding sequence of MgMFS1. The horizontal 783 
bars indicate the extent of a BLASTn alignment with colors indicating the percent identity of the 784 
alignment. The vertical position indicates the number of sequences that were clustered for the aligned 785 
consensus sequence. 786 
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 787 
 788 
Figure 6: Population structure analyses based on genome-wide markers genotyped on leaf-789 
extracted assemblies of Zymoseptoria tritici strains. A) Principal component analysis of wheat leaf 790 
samples collected in France, Belgium, Ireland and the United Kingdom and B) the subset of wheat leaf 791 
samples collected in France colored by region. 792 
 793 
 794 
  795 
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Supporting Information files 796 
 797 
File S1: Supplementary Tables A-E. 798 
 799 

Table A: Samples and sample mixtures included in the microfluidics assay. 800 
 801 
Table B: Designed amplicons targeting neutral markers, fungicide resistance and effector genes. 802 
Loci check: coverage based assessment of amplification success (see methods). If an originally 803 
targeted locus was not recovered in the species-wide SNP call set used for the amplicon design, a 804 
nearby SNP was chosen (see last columns for newly selected loci). 805 
 806 
Table C: Clustering of reads using CD-HIT-EST followed by mapping to the MFS1 promoter 807 
region. Similar blast hits were grouped into K-means based clusters. 808 
 809 
Table D: Dominant genotype recovered for wheat leaf samples at fungicide resistance loci. The 810 
reference allele refers to the allele known from the reference genome isolate IPO323. Sample 811 
genotypes are given as 1 and 0 for reference and alternative allele, respectively. 812 
 813 
Table E: Dominant genotype recovered for wheat field samples across fungicide resistance loci. 814 
The reference allele refers to the allele known from the reference genome isolate IPO323. 815 
 816 

 817 
File S2: Supplementary Figure 1. 818 
 819 

Figure 1: Wheat leaf samples collected in France, Belgium, Ireland and the United Kingdom 820 
separated by the cultivar of origin or unknown cultivar ("NA"). See File S1 (Table A) for details 821 
on the sample origins. 822 
 823 
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