
Versatile Multiple Object Tracking in Sparse 2D/3D

Videos Via Diffeomorphic Image Registration

James Yu1, Amin Nejatbakhsh2, Mahdi Torkashvand1, Sahana Gangadharan1, Maedeh Seyedolmohadesin1, Jinmahn Kim1, Liam
Paninski2, and Vivek Venkatachalam 1,

1Department of Physics, Northeastern University, Boston, MA 02115
2Department of Neuroscience, Columbia University, New York, NY 10025

Tracking body parts in behaving animals, extracting fluorescence1

signals from cells embedded in deforming tissue, and analyzing cell2

migration patterns during development all require tracking ob-3

jects with partially correlated motion. As dataset sizes increase,4

manual tracking of objects becomes prohibitively inefficient and5

slow, necessitating automated and semi-automated computational6

tools. Unfortunately, existing methods for multiple object tracking7

(MOT) are either developed for specific datasets and hence do not8

generalize well to other datasets, or require large amounts of train-9

ing data that are not readily available. This is further exacerbated10

when tracking fluorescent sources in moving and deforming tis-11

sues, where the lack of unique features and sparsely populated im-12

ages create a challenging environment, especially for modern deep13

learning techniques. By leveraging technology recently developed14

for spatial transformer networks, we propose ZephIR, an image15

registration framework for semi-supervised MOT in 2D and 3D16

videos. ZephIR can generalize to a wide range of biological systems17

by incorporating adjustable parameters that encode spatial (spar-18

sity, texture, rigidity) and temporal priors of a given data class. We19

demonstrate the accuracy and versatility of our approach in a vari-20

ety of applications, including tracking the body parts of a behaving21

mouse and neurons in the brain of a freely moving C. elegans. We22

provide an open-source package along with a web-based graphical23

user interface that allows users to provide small numbers of anno-24

tations to interactively improve tracking results.25

cell tracking | C. elegans26
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Introduction28

Imaging sparse fluorescent signals has become a standard tool29

for observing neuronal activity. To place that activity in the con-30

text of behavior, it becomes increasingly important to perform31

that imaging in naturally behaving animals (1). Tracking the32

fluorescent sources through the moving and deforming tissue of33

these behaving animals is a challenging instance of a multiple34

object tracking (MOT) problem, and this step is typically a bot-35

tleneck for extracting clean measures of activity (2).36

Recently, deep learning with convolutional neural networks has37

been leveraged for many MOT problems with video data includ-38

ing controlling self-driving cars, inferring postural dynamics in39

humans and animals (DeeperCut (3), DeepLabCut (4), etc.40

(5)), and computational video editing (non-tracking CGI prob-41

lems). These advances don’t immediately generalize to videos42

of fluorescence reported dynamics in living tissue for several43

reasons.44

(1) In contrast to applications like human or vehicle tracking 45

where each object has unique identifiers that can be exploited, 46

two fluorescence signals in the same video are often generated 47

by nearly identical sources and therefore lack distinguishable 48

features (4–7). (2) While transfer learning has been success- 49

fully implemented in scientific applications involving natural 50

videos (a horse galloping) (4, 8), the low-level spatial and tem- 51

poral features detected by these networks rarely reflect struc- 52

tures found in fluorescence microscopy data (9, 10). Thus, this 53

approach rarely reduces the quantity of additional training data 54

required (4, 8, 11–13). Approaches that successfully reduce 55

training data must make hard assumptions about the underly- 56

ing structure via direct parameter reduction, regularization, or 57

data augmentation (14–17). (3) At the finest spatial scale, 58

convolutional networks rely on images composed of many dis- 59

criminable textures that typically fill an image (18). Fluores- 60

cence microscopy data, however, often has regions of interest 61

with similar fluorescent cells surrounded by voids of black pix- 62

els. The combination of sparse global distributions and locally 63

dense homogeneous peaks are less well-suited to convolutional 64

networks, as it becomes harder for convolutional networks to 65

extract useful features for downstream tasks (19, 20). Some 66

methods are proposed to improve the performance of convolu- 67

tional networks on sparse data but their utility is not shown in 68

the context of MOT (19, 21). (4) Biological videos often exhibit 69

complex motion patterns with nonlinear deformations whereas, 70

in contrast, most vehicle and pedestrian tracking algorithms use 71

linear models or random walks to capture the motion (22). 72

With sufficiently high frame rates, temporal information can 73

be used to search the vicinity of a cell’s previous location and 74

match identities by minimizing displacement over time. How- 75

ever, motion can often preclude achieving such a frame rate, es- 76

pecially when serially imaging slices of a volume or attempting 77

to recover a signal from a dim fluorescent source. Furthermore, 78

this motion often provides critical context for the problem being 79

investigated (e.g. imaging neuronal dynamics to understand be- 80

havior (23)). In these cases, it becomes beneficial to constrain a 81

motion model by maintaining relative positions of cells, corre- 82

lated motion, and priors for fluorescence dynamics. 83

Cell tracking methods can be categorized into the following two 84

groups: (1) detect and link, and (2) registration-based. Detect 85

and link algorithms have two distinct steps (6, 11, 13, 14, 16, 86

24): (1) Detection, where identity-blind candidate locations for 87

objects are proposed by a segmentation or keypoint detection 88

algorithm at each time frame independently. (2) Linking, where 89
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temporal associations between detected objects are determined90

to establish a single continuous worldline across all frames for91

each individual object. A major drawback of this two-step ap-92

proach is the propagation of errors from the detection step. Er-93

rors that occur in the detection step are difficult to recover from,94

and they can have detrimental effects on linking and overall95

tracking quality. Several linking methods have been proposed96

that are robust to detection outliers, but they either require train-97

ing with large amounts of manually produced ground-truth data,98

or are not scalable to lengthy videos (11, 24).99

An alternative approach is to directly operate in the image space100

and optimize some transformation parameters that align a frame101

to some other frame (4, 12, 17, 25–28). This is done by map-102

ping the underlying image grid from the source to the refer-103

ence space using the transformation parameters and interpolated104

pixel values. The transformation parameters must be optimized105

for each new image over a number of iterations.106

Fortunately, recent advances in spatial transformers and differ-107

entiable grid sampling have dramatically decreased computa-108

tional burden and increased performance via GPU acceleration109

(25, 28–31). Similarly, modern optimization packages such as110

PyTorch allow the construction of dynamic computational graphs111

that support more complex nonlinear transformation families112

and novel cost functions with various regularizers.113

Here, we build upon these recent advances to develop ZephIR, a114

semi-supervised multiple object tracking algorithm with a novel115

cost function that can incorporate a diverse set of spatio-temporal116

constraints that can change dynamically during optimization.117

Our proposed method is capable of efficiently and accurately118

tracking a wide range of 2D or 3D videos. It allows the user to119

tune a number of easily interpretable parameters controlling the120

relative strengths of the registration loss and other constraints,121

and hence generalizes well to a wide range of biological as-122

sumptions. To showcase the efficacy and versatility of our method,123

we demonstrate its performance on a number of biological ap-124

plications, including cell tracking and posture tracking.125

Methods126

ZephIR tracks a fixed set of keypoints within a volume over time127

by matching keypoints between an annotated reference frame128

and an unlabeled child frame. This matching is done by mini-129

mizing a loss function L with four contributions:130

L = ⁄RLR +⁄N LN +⁄DLD +⁄T LT = ⁄⁄⁄ ·LLL

We measure overlap of local image features around the key-131

point via LR. We measure relative elastic motion between key-132

points via LN . We measure the distance of each keypoint to133

the nearest candidate location from a precomputed set via LD.134

We measure smoothness of keypoint-determined dynamical fea-135

tures (e.g. fluorescence or motion) via LT . Each is described in136

more detail below.137

The relative weights of each term, ⁄⁄⁄, can be freely adjusted by138

the user to better fit a particular dataset. The user can also set 139

the relative weights to change while tracking a single frame to 140

allow the algorithm to shift focus to different loss components 141

over a number of optimization iterations. 142

Image registration, LR. The first term of our algorithm mea- 143

sures overlap of local image descriptors. 144

For each keypoint i in a child frame, I
(c), an image descriptor (a 145

low-dimensional representation of the local image information), 146

D, is sampled according to a sampling grid centered around that 147

keypoint’s coordinates, fl
(c)
i . We define a set of parameters, ◊

(c)
i , 148

that is closely related to fl
(c)
i but may include additional trans- 149

formation models, such as rotation, to characterize the sampling 150

grid, i.e. how each descriptor is sampled from the child frame: 151

D(I(c)
,◊

(c)
i ). 152

The descriptors are foveated to prioritize more local informa- 153

tion relative to the neighboring features. In lieu of image pyra- 154

mids (32), we dynamically increase the effective resolution of 155

the descriptors by applying a Gaussian blur at the start of opti- 156

mization. The blur is decreased in magnitude every few regis- 157

tration iterations. Doing so avoids vanishing or exploding gra- 158

dients, both of which can occur in regions with sharp, well- 159

defined edges surrounded by a uniform background. On the 160

other hand, restoring the original resolution of the image still 161

provides the best available information for fine-tuning tracking 162

results towards the end of the optimization loop. 163

Similarly, a set of reference descriptors that serve as registration 164

targets are sampled from a reference frame, I
(r). These are 165

sampled around the user-defined annotations for that reference 166

frame, fl
(r)
i , according to a fixed set of parameters, ◊

(r)
i . 167

Using the two sets of image descriptors, our registration loop 168

optimizes the transformation parameters, ◊
(c)
i , to minimize the 169

following loss term: 170

LR(◊(c)) =
ÿ

i

Ë
1≠CorrCoef

1
D(I(r)

,◊
(r)
i ),D(I(c)

,◊
(c)
i )

2È

The optimized parameters ◊
(c)
i are then used to calculate the de- 171

sired results, the keypoint coordinates for the child frame, fl
(c)
i . 172

Note that these coordinates are also used for different loss com- 173

ponents below, but as fl
(c)
i is calculated from ◊

(c)
i , gradients are 174

always accumulated at ◊
(c)
i . 175

Spatial regularization, LN . Cellular motion within a tissue tends 176

to be highly correlated, but these correlations can be hidden 177

in sparse fluorescent movies that only highlight a small num- 178

ber of cells (or subcellular features) (33). Even in less sparse 179

movies, correlations between nearby keypoints may not be well- 180

captured by descriptors, especially when deformations, noise, 181

or lighting conditions prevent descriptor alignment. In order 182

to reintroduce a similar spatial structure to the data without re- 183

lying on highly specialized skeletal models, we add an elastic 184
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A. 3D-5D Input

D. Verification

C. Tracking:

B. Frame Sorting
C. elegans neurons
(time, channel, XYZ)

Mouse
(time, channel, XY)

Hydra
(time, XY)

Fluorescent cells
(time, XYZ)

grid sample
from child

grid sample
from reference

Springs connect each keypoint to
m nearest neighbors

Stiffness of each spring determined
by covariance of connected pairs
in reference frames

update keypoint
coordinates

register to
reference

backwards
propagation
& gradient
descent

Model Selector

Computer vision
algorithms

(e.g. threshold)

Model-based
algorithms

(e.g. RL-deconvolution)

Convolution layerOther SotA
algorithms

(e.g. StarDist)
ReLU activation
2x2 Max Pool
Sigmoid activation
Upsample

16

32 32

Branch chronologically from root frame

Identify poor
tracking results

Manually fix
key results

Reanalyze frame to
correct nearby results

Minimize parent-child similarity distance

Identify good
tracking results

Figure 1. Overview of ZephIR algorithm. A. Examples of input datasets. ZephIR can track keypoints in various biological systems, including fluorescent cellular nuclei in a tissue
and body parts that summarize a posture. Input dimensions can range from 3D (time, XY) to 5D (time, channel, XYZ). Colored dots indicate example keypoints to be tracked. B.
Frame sorting schemes. A branch defines an ordered queue of frames to be tracked. Each branch begins at a manually annotated reference frame (orange), (cont. on next page)
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Figure 1. (cont. from previous page) B. but subsequent parent (blue) and child (green) frames in a single branch can be sorted either by chronology (top) or by minimizing the
similarity distance between each parent-child pair (bottom). C. Overview of tracking loss. Tracking loss is comprised of four terms: 1) overlap of local image features around each
keypoint, sampled from the current frame and its nearest reference frame, 2) elastic connections between neighboring keypoints with varying stiffnesses based on covariance of
the connected keypoints, 3) proximity to features detected by a shallow model selector network that takes in a number of existing feature detection software as input channels, 4)
smoothness of temporal dynamics at each keypoint position. D. Overview of steps for manual verification and additional supervision. Users can verify tracking results as correct
or identify incorrect results. After fixing a few key incorrect results, ZephIR can use those new annotations as well as the verified correct tracking results to improve tracking
results for all other keypoints in that frame (and all its child frames).

spring network between neighboring keypoints (33–35). The185

resulting penalty to relative displacement of neighboring key-186

points prevents unreasonable deformations, providing a simple187

and flexible spatial heuristic of the global structure and motion188

present in the data.189

Each of the i keypoints being tracked is connected to j nearest190

neighbors to define the following loss term:191

LN =
ÿ

i,j

kij

--d(c)
ij ≠d

(r)
ij

--

where192

d
(t)
ij = Îfl

(t)
i ≠fl

(t)
j Î

describes the distance between keypoints i and j in the frame t.193

When multiple reference frames are available, the stiffness of194

each spring connection, kij , is further adjusted to better model195

the spatial patterns in the data:196

kij = cov(fl(r)
i ,fl

(r)
j )

This ensures that connections between highly covariant key-197

points are made stronger while connections between keypoints198

with more weakly correlated motion are weakened or cut ac-199

cordingly.200

Feature detection, LD . For this component of the algorithm, we201

solve an easier problem of identity-blind feature detection, as202

such detection algorithms have been shown to be fruitful in the203

context of tracking (6). Namely, we identify key features (such204

as the center of a cell) present in a volume without matching205

them to a specific feature in some other volume.206

This object or feature detection problem has been well-studied,207

and a wide variety solutions have been proposed. Solutions can208

range from more parameter-free algorithms (e.g. Richardson-209

Lucy deconvolution (36, 37)), to algorithms requiring more fine-210

tuning (e.g. watershed (38)). More recently, deep convolutional211

neural networks have shown to be powerful, effective solutions212

as well (e.g. StarDist (10)). Importantly, each of these ap-213

proaches may work better or worse on different classes of im-214

ages. Generalization to new datasets can be hard to predict, es-215

pecially for neural networks that are trained on data generated216

from a single source.217

Our approach is to automatically evaluate simple combinations218

of these established algorithms by using a shallow model-selecting219

network. After identifying a set of candidate models, we pro- 220

vide the outputs of these models as input channels to a shallow 221

and narrow convolutional neural network (CNN). If a particular 222

model is best suited for a dataset, network weights for the cor- 223

responding input channel are increased during training while 224

suppressing other channels. The low number of learnable pa- 225

rameters in the network also allows fast training for each new 226

type of data or imaging condition, which in turn allows rapid 227

experimentation with new selections of models to test as inputs. 228

The ultimate output of this selector network, C(I(c)), is formu- 229

lated as a probability map, where each pixel of the original im- 230

age is assigned some probability of being a desired feature. We 231

use this information to push tracking results towards detected 232

features: 233

LD =
ÿ

i

!
1≠C(I(c))[fl(c)

i ]
"

Temporal smoothing, LT . Given a sufficiently fast imaging rate, 234

we expect pixel intensity values to be smooth across a small 235

local patch of frames, even for cellular datasets where pixel 236

intensities represent smoothly-varying dynamical signals (39, 237

40). Thus, we attempt to maintain smoothly-varying local pixel 238

intensities as a form of temporal regularization. For datasets 239

where expected dynamics are appreciably slower than the imag- 240

ing rate, the strongest version of this regularization is to penalize 241

any deviation from a local zeroth-order fit. We apply this across 242

a small patch of frames (c ≠ ‘, ..., c + ‘) that are registered at 243

once, and add this to the loss for the center frame, c: 244

LT =
ÿ

i

c+‘ÿ

t=c≠‘

--I(t)[fl(t)
i ]≠ I

(c)[fl(c)
i ]

--

Note that since the loss term is applied for the center frame 245

only, it does not affect the results for the other frames despite 246

registering all frames in the patch together. Additionally, this 247

component of the algorithm requires registration (or approxi- 248

mate registration) of nearby frames, making it more appropriate 249

in low-motion conditions or after initial coarse registration is 250

complete. 251

Frame sorting. Using all or some of the loss terms listed above, 252

a single child frame is registered to a reference frame, and all 253

keypoints in the frame are tracked simultaneously. To fully an- 254

alyze a movie, we need to register every frame to a reference 255

frame. 256

For many datasets, it is best to register every child frame di- 257

rectly to a coarsely similar reference frame, and let annotations 258
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Figure 2. Overview of frame sorting strategies. Orange indicates fully annotated
reference frames, blue indicates parent frames with at least one child frame, and
green indicates child frames. A. In the simplest strategy, all frames are initialized by
the closest reference frame. B. Frames are sorted into ordered queues based on
similarity. Each of these branches start with a reference frame, and new child frames
are added such that the parent-child similarity distance is minimized, naturally
clustering similar frames around each reference frame. C. Frames are sorted
chronologically, branching both forward and backwards from each reference frame.

for that reference frame provide initial guesses for keypoints259

in the child frame (Fig. 2A). For this, we must identify a set260

of representative reference frames that capture the range of de-261

formation patterns present in the movie, and we must assign262

each remaining frame to one of those reference frames. A pair-263

wise distance between all pairs of frames is determined by some264

similarity metric (e.g. correlation coefficient) applied to low-265

resolution thumbnails. A k-medoids clustering algorithm is ap-266

plied to these pairwise distances to identify a small number of267

median frames to best serve as reference frames for all other268

frames in the corresponding cluster (Fig. 2) (4, 26).269

In other datasets, the registration results from one frame in a270

cluster may provide useful insight into the solution for a differ-271

ent frame in that cluster. For example, a frame that is close (in272

deformation space) to the reference may be easy to track. The273

tracked results from that frame, in turn, may provide a better274

guess for keypoints in a frame that is further away from the ref-275

erence. This can reduce the distance between the initial guess276

and correct positions, and thus reduce the difficulty of the opti-277

mization problem. Thus, every child frame being registered is278

associated not only with a reference frame (a registration target),279

but also a previously registered parent frame, which provides280

the initialization prior to optimization (Fig. 2B).281

Additionally, the learning rate for the child frame is partly de-282

termined by the distance between the parent and child frames.283

We expect that when a parent-child pair are close in the de-284

formation space, the keypoints do not undergo significant local285

displacements. Hence, a low learning rate is applied for a sim-286

ilar parent-child pair, scaling up to a high learning rate in the287

case of a dissimilar pair to allow tracking of features much fur-288

ther away. The combination of these effects produces a flexible289

limit on the range of possible optimization results for the child290

frame based on coarse similarity to its parent frame (41–43).291

To take full advantage of this parent-child interaction, we sort 292

all frames into distinct sequences of parent-child frames based 293

on similarity. Each of the resulting branches begins from a 294

previously selected median reference frame. The subsequent 295

child frames are selected to minimize the distance from a par- 296

ent frame until every frame is assigned to a branch. Doing so 297

produces unique sets of frames that stem from each reference 298

frame, naturally forming clusters that separate similar frames 299

from dissimilar ones. This is particularly useful for datasets 300

that repeatedly sample from a limited set of postures or global 301

spatial structures (e.g. locomotion). 302

However, not all datasets have temporal patterns that can re- 303

liably make use of the similarity-based initialization method. 304

For such datasets, a chronologically sorted queue may be more 305

reasonable and provide better accuracy overall, where a branch 306

simply stems from each reference frame both forwards and back- 307

wards in time until it encounters the first frame, the last frame, 308

or another branch (Fig 2). Note that the parent-child interac- 309

tions during tracking are still the same regardless of the sorting 310

method. For a chronologically sorted queue, the controlled vari- 311

ation of learning rates effectively allows us to adapt to differ- 312

ent capture frame rates. A high frame rate video often captures 313

smooth motion that benefits from low learning rates but a low 314

frame rate video does not. 315

Algorithm 1 ZephIR optimization loop
for c œ sorted_frame_list do

if {k|k œ i,◊
(c)
k œ annotations} ”= ÿ then

Û Partial annotations
„ Ω Interp(◊(c)

k ≠◊
(p)
k ) Û Interpolate flow field

◊
(c)
i Ω ◊

(p)
i +„[◊(c)

i ] Û Initialize at prediction
else

◊
(c)
i Ω ◊

(p)
i Û Initialize at parent results

end if

for n Ω 1,n_epoch do

L(◊(c)
i ) Ω ⁄RLR +⁄N LN +⁄DLD +⁄T LT

Backwards L Û Backpropagate gradients
Update ◊

(c)
i Û Gradient descent

end for

fl
(c)
i Ω fl(◊(c)

i ) Û Get keypoint coordinates
Write fl

(c)
i Û Save coordinates

end for

User intervention. Our pipeline allows a user to dramatically 316

improve tracking quality in various ways by providing further 317

supervision. Providing additional fully annotated frames will 318

improve registration targets to better match descriptors from 319

similar frames. Strategically selecting a new reference frame 320

can have dramatic impacts on frame sorting as well, creating 321

opportunities to form tighter clusters of parent-child branches. 322

Furthermore, when multiple reference frames are present, co- 323

variance of keypoints in those frames helps better define an im- 324

plicit global spatial structure by modulating stiffnesses of the 325

spring connections between neighboring keypoints, kij . Any 326
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additional reference frames can provide more accurate covari-327

ances, and thus a spatial model that is more accurately tailored328

for that particular dataset.329

Partially annotated frames are not used to seed sorted frame330

branches nor used to sample reference descriptors. Still, all331

user annotations present in the frame are utilized to improve the332

tracking quality of the remaining keypoints in that frame (Fig.333

1D).334

Firstly, prior to gradient descent, displacements between all avail-335

able annotations and their corresponding coordinates from the336

parent frame are used to interpolate a flow field. This flow field337

serves as a rough model of the global motion between the two338

frames (17, 27, 35). We sample from the flow field at the re-339

maining keypoints coordinates in the parent frame and apply340

the resulting estimated displacements to initialize the keypoints341

closer to their new positions in the child frame. This is particu-342

larly helpful for pairs of parent-child frames with large motion343

between them, and the flow field can always be improved in344

both precision and accuracy by adding more annotations for the345

child frame.346

Secondly, the spatial regularization during the optimization pro-347

cess, LN , also makes good use of any partial annotations. The348

annotations are fixed in place, but the spring connections to their349

neighbors remain a crucial component of the backwards gradi-350

ent calculations and helps to “pull” the connected keypoints into351

place.352

To streamline the process of providing user supervision, we of-353

fer a browser-based graphical user interface that provides an354

intuitive, simple environment to produce and save further an-355

notations. Since our approach lacks a slow “training” phase,356

any new annotations can be applied to tracking a frame directly357

from the GUI. A macro available in the GUI executes a tem-358

porary state of the algorithm quickly and efficiently, allowing359

users to see the precipitated improvements immediately.360

Additionally, the GUI provides an opportunity for users to pro-361

vide supervision without creating new annotations. The user362

may upgrade individual results into annotations or entire frames363

into new reference frames by marking them as correctly tracked.364

These user-confirmed frames will be treated as a regular refer-365

ence frame next time the algorithm is executed, benefiting from366

all the improvements to tracking quality discussed previously.367

These improvements to the rest of the results can be observed368

immediately by executing the algorithm from the GUI.369

Results370

Neurons in crawling worms (C. elegans). Optical methods based371

on fluorescence activity of calcium binding indicators has be-372

come a standard tool for observing neuronal activity in C. ele-373

gans. To do so, it is necessary to track fluorescent signals from374

individual neurons across every frame in a recording. This poses375

a significant challenge, particularly when the animal is allowed376

to freely crawl. The worm’s brain undergoes fast, dramatic,377

nonaffine deformations, exhibiting a large variety (forward and378

backward motion, omega turns, coils, pharyngeal pumping, etc.) 379

and magnitude (up to ten microns relative to an internal refer- 380

ence frame) of movements as the animal behaves (22, 23, 44, 381

45). 382

Many solutions have been proposed to track fluorescent neu- 383

rons in C. elegans. Two step (detect and link) approaches often 384

suffer from the lack of reliable detection algorithms and require 385

relatively low frame-to-frame motion in order to accurately link 386

the detected neurons (6, 12, 16). Similarly, deep learning ap- 387

proaches are limited by insufficient training data, often failing to 388

generalize across different animals, even those within the same 389

strain (11, 26, 46). While these approaches have provided im- 390

portant insight and progress, there remains substantial need for 391

improvement in accuracy and efficiency when tracking many 392

neurons in freely behaving worms. 393

Fig. 3 describes the workflow and performance of ZephIR on 394

tracking a set of 178 neurons in the head of a freely behaving 395

worm across a recording of approximately 4.4 minutes (1060 396

frames @ 4Hz). The video has been centered and rotated to 397

always face the same direction, but no further straightening has 398

been done. With only a few manually annotated reference frames, 399

ZephIR already achieves state-of-the-art MOT accuracy (20, 47, 400

48) as reported on similar datasets in recently published works (11, 401

12, 16) (Fig. 3A,B). 402

We further improve on the accuracy of the initial results by pro- 403

viding additional supervision. We randomly selected ten neu- 404

rons uniformly distributed throughout the brain to verify and 405

use as partial annotations across all frames. Because the initial 406

results already achieved high accuracy, they only required cor- 407

rection for a subset of frames (¥ 15%). After this correction and 408

validation, annotations for these ten neurons were re-classified 409

as manual annotations in all frames. The partial annotations 410

produce a dramatic improvement in accuracy (red data point in 411

Fig. 3B) without the need to verify entire frames. 412

Through this workflow, we are able to achieve a sufficiently 413

high accuracy to extract good, meaningful neuronal activity traces 414

across the entire recording (Fig. 3D) (39, 40). Many neu- 415

rons show clear correlation with observed behaviors, and the 416

activity patterns are comparable to previously published works 417

(16, 22, 49, 50). 418

Detect-and-link tracking for multimodal images. In multimodal 419

images, directly comparing descriptors from different modali- 420

ties typically will not generate useful gradients for image regis- 421

tration. Nonetheless, other terms in our loss can be used as the 422

“link” step of a detect-and-link algorithm to associate detected 423

keypoints between modalities (ignoring all image information). 424

As an example, we linked C. elegans neurons between a bright- 425

field image of a worm and a slightly deformed fluorescent im- 426

age of nuclei in the same animal (as in the previous section) 427

(Fig. 4A). We provided ZephIR with nuclear positions in each 428

image, and show that it is able to utilize the other loss terms to 429

link keypoints between the two (Fig. 4). 430

Note that ZephIR requires a separate algorithm (or manual in- 431
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Figure 3. Results for freely behaving C. elegans. A. Plot of mean distance to the nearest reference frame vs the number of reference frames (left), and the first three median
frames recommended by ZephIR’s k-medoids clustering algorithm (right). The first three median frames clearly represent the three main postures that the worm cycles through
as it crawls. B. MOT accuracy (higher is better) and precision (lower is better) vs the number of reference frames. Note that once the majority of the postures present in the data
is well-represented by the first three reference frames, subsequent additions returns diminished improvements. Last data point shows ZephIR’s accuracy using 10 reference
frames with 10 partial annotations across all frames (panel C). We also compare ZephIR’s accuracy with Neuron Registration Vector Encoding (NeRVE) (16), fast Deep Neural
Correspondence (fDNC) (11), and 3DeeCellTracker (12) in both single (3DCT(s)) and ensemble (3DCT(e)) modes as reported in their respective publications. Note that the
accuracies from 3DeeCellTracker reflects both errors in detection and tracking. C. 10 neurons were randomly selected to be verified or corrected to serve as partial annotations.
Traces of 5 of these neurons extracted using the initial ZephIR results with 10 reference frames (left), and those using verified true positions (right) are shown, along with 5 other
randomly selected neurons. Traces are calculated as fold change over the baseline, where the baseline is defined as the intensity in the first frame. Tracking quality for these 10
neurons can also be seen in individual crops around the neurons averaged across all frames (sharper image of the cell at the center reflects better accuracy and precision in
tracking). Note how the five unannotated neurons show improvements in tracking quality after the addition of partial annotations, exemplifying the effects of partial annotations on
the unannotated neurons in the same frame. D. Neuronal activity traces from 178 neurons, extracted using results from ZephIR with 10 reference frames and 10 partial
annotations in all frames. Traces are calculated as fold change over the baseline, where the baseline is defined as the intensity in the first frame. Behavior is shown in the
ethogram below the heatmap. Trajectory of the worm (t=0 at bottom right) is also colored with the behavior state at the time. Trajectory of the worm matches changes in behavior
over time as expected, and many of the neuronal activity traces show strong correlation with behavior.
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Figure 4. Results for multimodal images of C. elegans. A. Two frames in different imaging modes. The reference frame is a widefield image of the worm body (left). The child
frame is an image of GCamP fluorescent nuclei of neurons in the worm’s brain (right). B. Image descriptor used to register (LR) an example neuron as sampled from the
reference volume in widefield mode (left) and from the child volume in GCamP mode (right). C. Visualization of the registration loss (LR) between the two descriptors in panel B
(left), and of the feature detection loss (LD ) for the child frame (right). The optimization trajectory (orange) is displayed on top, starting from the initial coordinates (red) and
ending at the optimized coordinates (green). Purple cross indicates the ground-truth coordinates. When using registration loss only (left), optimization fails to find the correct
coordinates due to a lack of any local minima nearby. In contrast, when using feature detection loss only (right), optimization is able to find the basin around the correct
coordinates. D. ZephIR MOT accuracy and precision for the child frame. A total of 50 optimization iterations are separated into two phases: a registration phase with ⁄R at 1.0
and ⁄D at 0.0, and a feature matching phase with ⁄R at 0.0 and ⁄D at 1.0. To tune the relative contributions of the two losses for tracking, we vary how many iterations are
given to each phase. Contributions from other loss terms, ⁄N and ⁄T , are kept constant for both phases. Despite the low accuracy when using registration phase only (left), the
feature matching phase is able to recover tracking accuracy (right).

put) to detect keypoints in each modality to do so. This detec-432

tion can be performed with the built-in model selector approach433

(LD in Fig. 1C) or any user-provided algorithm.434

Posture of a behaving mouse. Here, we demonstrate how ZephIR435

can be used for behavioral tracking in natural movies by ana-436

lyzing the pose of a head-fixed mouse performing a motor task.437

The richness of local image features present in natural images438

lend themselves to registration. In addition, by connecting key439

points along the mouse’s body, our spring network loss (LN )440

can implicitly capture the scaffold underlying the mouse’s pos-441

ture.442

There exist many solutions for similar problems in posture track-443

ing. In particular, convolutional neural networks have been suc-444

cessfully implemented for posture analysis in both laboratory445

and natural settings (3–5). Notably, DeepLabCut adapts a ResNet446

CNN architecture to track postures of various animals without447

any physical markers. DeepLabCut utilizes transfer learning,448

where a “base” model is trained on a publicly available dataset449

of various “natural” images prior to specializing the weights to450

a particular dataset. Their method reduces the amount of train-451

ing data required to achieve state-of-the-art results by orders of452

magnitude (from hundreds of thousands to just a couple hun-453

dred labeled images), and thus reduces the amount of manual454

labor required by the experimentalist.455

Fig. 5 compares the performance of our algorithm and that of456

DeepLabCut on the same dataset. We track ten points that sum-457

marize the mouse’s posture as it performs a task. We show that458

for low numbers of reference frames, i.e. low numbers of train-459

ing data, ZephIR can produce much better quality tracking than460

DeepLabCut, achieving good results with less than 20 reference 461

frames. ZephIR is also able to produce this result with much 462

less total computation time as it does not require a slow training 463

phase. 464

It is important to note that DeepLabCut can ultimately produce 465

more accurate results when provided with more training data. 466

However, in the case that an experimentalist requires higher ac- 467

curacy than ZephIR is able to provide on its own, ZephIR can 468

easily fit into a DeepLabCut workflow to augment the amount 469

of training data available. Instead of manually labeling the full 470

list of 200 frames to produce the last data point in Fig. 5A, we 471

only annotated the first 10 of the recommended frames. We then 472

run ZephIR using those frames as references, verify the tracking 473

results for the remaining 190 frames, and correct any errors to 474

produce the full set of 200 training images to use for DeepLab- 475

Cut. Including this step dramatically cuts the total human time 476

required for a DeepLabCut workflow, from an extrapolated 160 477

minutes to label all 200 frames by hand to 53 minutes. 478

More recently developed variants of DeepLabCut, such as Deep- 479

GraphPose, can also reduce training data size by incorporat- 480

ing spatio-temporal priors and enabling semi-supervised train- 481

ing that uses both annotated and unannotated data (5). However, 482

these variants still require a significant amount of training data 483

(¥ 1
3 of DeepLabCut’s requirements, compared to ZephIR’s ¥ 484

5 ≠ 10%) and often fail when analyzing sparse or volumetric 485

datasets, making it difficult to employ for biological datasets. 486

Performance. We are able to compute the loss terms and op- 487

timize the tracking parameters efficiently by utilizing modern 488

deep learning tools with, in particular, differentiable grid sam- 489
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Figure 5. Results for a behaving mouse. We compare performances of ZephIR and
DeepLabCut on tracking 10 body parts that characterize the mouse’s posture over
time. A. MOT accuracy and precision vs the number of manually labeled or ground
truth frames. These labeled frames are used as reference frames for ZephIR and as
training data for DeepLabCut. The frames are selected based on automated
recommendations from each algorithm, meaning the two sets of frames used may not
be identical. The last data point (200 labeled frames) for DeepLabCut are produced
with training data generated by verifying and correcting ZephIR results with 10
reference frames. Note that ZephIR achieves better accuracy when only a few labeled
frames are provided, but DeepLabCut ultimately reaches a higher accuracy when its
training data was augmented with ZephIR. B, C. DeepLabCut and ZephIR results with
20 labeled frames (vertical line in panel A) for tracking mouse body parts as it raises
its paws. Note that ZephIR is more stable during motion while DeepLabCut tends to
jump between the different body parts. Table. Annotation and computation speed
comparison. Annotation time is calculated for the same person, using the respective
GUI’s provided with each software package. Training and inference times are tested
on the same CPU and single GPU environment and with 20 reference frames (vertical
line in panel A). While DeepLabCut is faster for inference, it requires a slow training
phase, dramatically increasing the total computation time.

pling and GPU acceleration offered by PyTorch (51). Since our490

approach does not require a training phase, which is often the491

most significant bottleneck in both time and resources, it is fast492

without being computationally costly. We also sacrifice a small493

amount of performance to reduce the amount of memory re-494

quired for both CPU and GPU to levels that are reasonable for495

commercial laptops. This balance can be manually adjusted by496

the user depending on their computing environment.497

We run the following tests on a PC with a 16-core AMD Ryzen498

Threadripper 1950X processor @ 3.40GHz, 64GB RAM, and499

an Nvidia GTX 1080Ti GPU, 11GB VRAM. The tests were500

carried out on the freely behaving worm dataset (Fig. 3).501

In the default configuration, ZephIR registers 100 1x5x25x25502

(CxDxHxW) descriptors (LR) with spatial regularization (LN )503

over 40 optimization epochs for an average of 1.24s total com-504

putation time spent per volume. In comparison, similar algo-505

rithms such as NeRVE takes an approximate 50sec/vol on over506

200 computing cores (16) and 3DeeCellTracker approximately507

2min/vol on a desktop PC with an NVIDIA GeForce GTX 1080 508

GPU (inference only) (12). 509

During the test, the process utilizes a maximum of 1.84GB RAM 510

and 0.89GB VRAM. The number of descriptors does not signif- 511

icantly affect performance as descriptors are registered in par- 512

allel, but the number of epochs will impact speed linearly. The 513

size of descriptors may slightly affect performance as well as 514

memory consumption. 515

Discussion 516

ZephIR is a semi-supervised multiple object tracking algorithm. 517

It tracks a fixed number of user-defined keypoints by minimiz- 518

ing a novel cost function that dynamically combines image reg- 519

istration, feature detection, and spatio-temporal constraints. Lo- 520

cal registration of image features enables tracking of keypoints 521

even in sparse imaging conditions, such as fluorescent cellu- 522

lar data, while a spring network incorporates a flexible mo- 523

tion model of the neighboring keypoints without the need for 524

a highly specialized skeletal model. Feature detection can help 525

fine-tune tracking results to match a nearby detected feature 526

in the image or even recover good tracking accuracy in cases 527

where registration clearly fails to produce good gradients. The 528

model utilizes modern deep learning libraries, recent innova- 529

tions in spatial transformers, and optimization tools to calculate 530

loss and backpropagate gradients efficiently in a GPU environ- 531

ment. 532

We demonstrate that our approach is able to reach state-of-the- 533

art accuracy on a diverse set of applications, including extract- 534

ing neuronal activity traces in a freely moving C. elegans and 535

tracking body parts of a behaving mouse. Notably, ZephIR is 536

able to do so with a small amount of ground-truth data and low 537

computational resource requirements. Recent deep learning- 538

based methods often require large amounts of labeled frames 539

for each new dataset. In contrast, ZephIR is able to generalize 540

to radically different datasets with just a few labeled frames and 541

adjustments to some hyperparameters. 542

Any amount of new manual labor, whether simply verifying cor- 543

rect results or fixing incorrect ones, can dramatically improve 544

ZephIR’s accuracy. Verifying or correcting entire frames pro- 545

duces new reference frames to provide better reference descrip- 546

tors for registration and improve flexibility of the spring net- 547

work. Verifying only a subset of keypoints can initialize bet- 548

ter tracking guesses for all other points in the same frame by 549

interpolating a global motion model between parent and child 550

frames. Additionally, any improvements in tracking a frame 551

can cascade down to all its child frames, further reducing the 552

amount of supervision required. 553

Through this workflow, ZephIR achieves unprecedented accu- 554

racy with minimal manual labor, even on a freely behaving C. 555

elegans, where large deformations present a challenging track- 556

ing problem. We also expect to achieve similarly strong per- 557

formance on sparse fluorescent videos of deforming neurons in 558

other models organisms including Hydra, zebrafish, and Drosophila559
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(1, 46, 52, 53).560

With its versatile design and low computational requirements,561

ZephIR is designed to be highly accessible and useful for a di-562

verse set of applications. On the other hand, we hope to also563

support full utilization of more powerful computational envi-564

ronments, especially when multiple GPUs are available. In par-565

ticular, since distinct frame branches do not interact with one566

another when tracking, we may split them across multiple ma-567

chines or GPUs to analyze in parallel, resulting in roughly linear568

gains in speed. These performance gains could be available to569

all users by hosting an updated version of our annotator GUI on570

a dedicated GPU server.571

A notable limitation of our approach is that at least one anno-572

tated frame is required. We hope to mitigate this issue through573

future key upgrades. For example, we hope to use an object574

detection algorithm to automatically annotate the first reference575

frame, where linking or identity-classification is not necessary576

(7, 10, 15, 31, 54). Many experiments with immobilized ani-577

mals or low-motion data often only need one reference frame,578

meaning such datasets could be tracked entirely unsupervised.579

Advancements in spatial transformers and novel motion models580

may also eliminate or reduce the need for partial annotations to581

initialize keypoint coordinates closer to their true positions than582

the parent coordinates alone (2, 17, 25).583

For some datasets, other approaches may be more accurate than584

ZephIR. As the field of deep learning continues to develop,585

we can expect more powerful, generalizable models to emerge.586

Still, ZephIR can be a powerful data augmentation tool up-587

stream of any of these algorithms, as was demonstrated with588

behavioral mouse data in this work. Since it can reach reason-589

able accuracy with a low number of annotations, ZephIR can590

reduce the amount of labor required to produce the necessary591

training data. It may be a key component in generating a criti-592

cal amount of ground-truth data to build new models to perform593

multi-object tracking in particularly challenging datasets.594

ZephIR is available at:595

https://github.com/venkatachalamlab/ZephIR.596
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Supplement 803

Loss visualized 804

A

B

C

D

Image Descriptor

Figure 6. Visualization of the loss map around certain neurons in freely moving C.
elegans with all other neurons fixed at the ground truth position. Columns, from left to
right: visualization of the volume around the neuron, the image descriptor of the
neuron used for registration, map of the registration loss, map of the spring network
loss, map of the feature detection loss, and map of the sum of the three previous
losses. First column is centered at the initial coordinates, all others at the final
optimized coordinates. Each row analyzes a different neuron and its optimization
trajectory: initialized at red, optimized along orange, final results at green. Purple
marks the ground truth position for the neuron. Comparing different loss maps along
with the overall optimization trajectory can help diagnose certain tracking issues and
give valuable insight on how to optimize the loss weights, ⁄⁄⁄, for a particular problem.
A. For this neuron, all three loss components provide good minima at the ground truth
position. ZephIR easily finds the correct result through gradient descent. B. For this
neuron, ZephIR fails to escape a local minima present in both registration loss (LR)
and feature detection loss (LD ) at a neighboring neuron. However, we can see that
spring network loss (LN ) creates good gradients that could push the neuron out of
initial basin, thus increasing ⁄N may improve this result. C. For this neuron, ZephIR
fails to escape a local minima at a neighboring neuron. In contrast to row B, the spring
network loss (LN ) contributes to this local minimum, but the registration loss (LR)
provides gradients towards a basin at the correct position. Thus, decreasing ⁄N may
improve this result. D.. For this neuron, all three loss components fails to present
global minima at the ground truth position, and only the registration loss (LR)
presents a local minimum there. Since the neuron position is initialized such that it
must cross a deeper minimum to reach the correct position in all loss maps, adjusting
⁄⁄⁄ alone may not be able to improve this result.

Verifying frame tree construction 805

ZephIR builds a tree with each branch forming an ordered queue 806

of frames to be tracked. Each tree begins at a reference frame 807

and follows a sequence of parent and child frames. Methods for 808

selecting “optimal” reference frames for a dataset and new child 809

frames for a branch were determined heuristically and then ver- 810

ified. Fig. 7 tests our reference frame selection method and the 811
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tracking accuracy for all other frames produced with those ref-812

erence frames. Fig. 8 tests our child frame selection method and813

the tracking accuracy for candidate child frames given a single814

parent frame. In both cases, we can verify a strong correlation815

between the score used in our selection method and the tracking816

accuracy.817

In addition to the current implementation, we explored several818

other avenues in which parent and reference frames may im-819

prove tracking quality for the child frame.820

Notably, target descriptors for image registration are currently821

sampled from a single reference frame at the root of the frame822

branch. We tested methods that made direct modifications to823

image descriptors based on parent results, including:824

1. sampling target descriptors from the parent frame825

2. deforming target descriptors sampled from reference frames826

based on flow fields between parent and reference frames827

3. deforming child descriptors based on flow fields between828

parent and child frames829

4. averaging samples from all preceding frames in the branch830

to create target descriptors.831

We also tested other implementations of motion prediction (for832

better initialization of keypoint coordinates for the child frame),833

including models based on:834

1. momentum of keypoints across preceding frames in the835

branch836

2. piecewise global deformation fields between parent and837

child frames fit prior to tracking keypoints838

3. two-step tracking, where results from the first iteration839

of tracking would be used to generate a low-frequency840

global deformation field between parent and child frames841

Unfortunately, all of the above created a tighter relationship be-842

tween parent-child pairs that was ultimately too sensitive to er-843

rors and error propagation down the branch.844

We also explored potential ways to use all available reference845

frames for tracking a single child frame. In particular, we tested846

simultaneous registration to target descriptors sampled from each847

of the available reference frames. We implemented this system848

in two different flavors:849

1. target descriptors from different reference frames are stacked850

along an axis as separate data channels, and registered851

with copies of the child descriptors, producing a single852

result853

2. target descriptors from different reference frames are av-854

eraged together to form a single set of descriptors, pro-855

ducing a single result856

3. registration to each set of target descriptors is performed857

separately (in parallel), producing distinct results for each858

reference frame859

Multiple results for the same keypoint could be reduced to a860

single final result by averaging them, selecting one based on861

lowest final loss, or selecting one based on highest consensus.862

While one or more of these methods could produce better re- 863

sults in specific cases, the improvements were not generalizable 864

across different datasets and different combinations of reference 865

frames. Given their significant computational cost, we elected 866

not to include these implementations in ZephIR. 867
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Figure 7. Verifying reference frame recommendation. ZephIR recommends frames to
annotate as reference frames via k-medoids clustering of low-resolution thumbnails.
We test ten candidate frames and all pairwise combinations. During clustering, each
child frame is assigned to a cluster around a reference frame based on minimum
distance (i.e., assigned to nearest reference frame). With each update, the clustering
minimizes a score based on the mean distance between child frames and their
assigned reference frame (left, lower/bluer is better). The results from tracking with the
two candidate reference frames are evaluated for all other frames (right, lower/bluer is
better). We can compare the resulting profiles of score and accuracy for each pair of
candidate frames in order to evaluate the efficacy of the recommendation method
(more similar is better).

Figure 8. Verifying parent-child selection. When sorting based on frame similarity,
each subsequent child frame is selected to minimize the distance from a parent frame.
We test pairs of frames to study the effect of distance between parent and child
frames. In these tests, the parent frames provide both the initial positions of the
keypoints in the child frame and the reference descriptors as registration targets, and
tracking results for keypoints in the child frame are evaluated. It is evident in the
resulting curve that accuracy quickly falls with distance.

Motion prediction 868

In order to predict the global motion of keypoints between the 869

parent and child frames, ZephIR uses trilinear interpolation with 870

Gaussian blurring to generate a flow field between the two frames. 871

The displacement vectors at the parent keypoint coordinates are 872

sampled from this flow field and used to calculate better initial 873

child keypoint coordinates. In Fig. 9, we evaluate the improve- 874

ments in the final tracking results as we add more partial anno- 875

tations to generate more accurate flow fields. 876
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In comparison, we test the flow field generation method used in877

taCNN (26). In this algorithm, neurons are tracked by analyz-878

ing images through two different convolutional neural networks.879

The first CNN produces coarse initial predictions for keypoints880

in the target image. Displacements between these predictions881

and a manually annotated frame are used to fit a deformation882

field while restricting its Fourier modes to low frequencies and883

regularizing its divergence. The deformation field is used to884

warp the annotated frame to match the global posture of the885

target image and generate new training frames to intelligently886

augment the amount of data available for training the second,887

more accurate CNN.888

We use the same deformation field in place of our flow field to889

calculate initial keypoint coordinates for the child frame. How-890

ever, instead of using a CNN to produce the coarse predictions,891

we use the displacements between the parent frame and the par-892

tial annotations in the child frame to fit the deformation field.893

In Fig. 9, we compare the improvements in accuracy from894

taCNN’s low-frequency deformation field (dotted line) to that895

of ZephIR’s method of motion prediction (solid line).896

ZephIR

taCNN

target

Figure 9. Testing motion prediction. We evaluate tracking accuracy (top left, higher is
better) and precision (bottom left, lower is better) for keypoints in a child frame (bottom
right) as we add partial annotations. In these tests, we use another frame (top, middle
right) as both the parent (providing initial positions for keypoints) and reference frame
(providing reference descriptors for registration). We compare the improvements in
performance from using displace vectors sampled from ZephIR’s interpolated flow
field (top right) and those sampled from taCNN’s low-frequency deformation field (top
middle).

Additional examples897

Neurons in deforming Hydra. Unlike the freely moving C. ele-898

gans, Hydra does not exhibit clear spatial or postural patterns899

over time. Few algorithms have been proposed to target such900

systems. In particular, the EMC2 algorithm (46) has been de-901

veloped to detect neuron tracklets and use elastic deformation902

models to link tracklets in freely behaving Hydra. However,903

EMC2 often requires a large number of neurons to build a good904

elastic deformation model of the posture dynamics, and its ac-905

curacy drops for longer videos. In comparison, Fig. 10 illus-906

Figure 10. Freely deforming Hydra. We track 50 neurons across 1000 frames with
four reference frames. Each panel shows a trail of the neurons’ motions for the 100
frames preceding the frame shown.

trates the quality of ZephIR’s tracking of a subset of neurons in 907

behaving Hydra, achieving a higher accuracy (88.0%) for this 908

particular dataset over 1000 frames than EMC2 (83.8%). 909

List of user-tunable parameters 910

• dataset: Path to data directory to analyze. 911

• load_checkpoint: Load existing checkpoint.pt file and 912

resume from last run. [default: False] 913

• load_args: Load parameters from existing args.json file. 914

[default: False] * 915

• allow_rotation: Enable optimizable parameter for ro- 916

tating image descriptors. This may be helpful for datasets 917

that have clear rotational changes in shape, but is generally 918

superfluous for nucleus tracking. [default: False] 919

• channel: Choose which data channel to analyze. Leave out 920

to use all available channels. 921

• clip_grad: Maximum value for gradients for gradient de- 922

scent. Use ≠1 to uncap. [default: 1.0] 923

TIP: If the motion is small, set lower to ¥ 0.1. This is a 924

more aggressive tactic than lr_ceiling. 925

• cuda: Toggle to allow GPU usage if a CUDA-compatible 926

GPU is available for use. [default: True] 927

• dimmer_ratio: Coefficient for dimming non-foveated re- 928

gions at the edges of descriptors. [default: 0.1] 929

• exclude_self: Exclude annotations with provenance “ZEIR”,930

which is the current provenance for ZephIR itself. Effec- 931

tively, this allows you to do the following: if True, you can 932
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track iteratively with separate calls of ZephIR without previ-933

ous results affecting the next; if False, you can use the previ-934

ous results as partial annotations for the next. [default: True]935

• exclusive_prov: Only include annotations with this prove-936

nance.937

• fovea_sigma: Width of Gaussian mask over foveated re-938

gions of the descriptors. Decreasing this can help prioritize939

keeping a neuron at the center. Increase to a large number or940

set at ≠1 to disable. [default: 2.5]941

• gamma: Coefficient for gamma correction. Integrated into942

get_data. [default: 2]943

• grid_shape: Size of the image descriptors in the xy-plane944

in pixels. Increasing this may provide a better view of the945

neighboring features and avoid instabilities due to empty (only946

0’s) descriptors, but it will also slow down performance. [de-947

fault: 25]948

• include_all: Include all existing annotations to save file,949

even those ignored for tracking. In the case that annotations950

and ZephIR results have matching worldlines in the same951

frame, annotations will override the results. [default: True]952

TIP: If using save_mode=‘o’, set this argument to “True”953

to avoid losing any previous annotations. On the other954

hand, using “False” with save_mode=‘w’ may allow955

you to compare the annotations in “annotations.h5” to956

the newly saved results in “coordinates.h5”.957

• lambda_d: Coefficient for feature detection loss, ⁄D. This958

regularization is turned on at the last n_epoch_d of each op-959

timization loop with everything else turned off. Set to ≠1 to960

disable. [default: ≠1.0]961

• lambda_n: Coefficient for spring constant for intra-keypoint962

spatial regularization, ⁄N . Spring constants are calculated by963

multiplying the covariance of connected pairs by this number964

and passing the result through a ReLU layer. The resulting965

loss is also rescaled to this value, i.e. it cannot exceed this966

value. If a covariance value is unavailable, the spring con-967

stant is set equal to this number. [default: 1.0]968

TIP: Increase up to 10.0 for non-deforming datasets. De-969

crease down to 0.01 or turn off for large deformation.970

Optimal value tends to be between 1.0 ≠ 4.0. Set to 0971

or ≠1 if regularization is unnecessary (this can speed972

up performance).973

• lambda_n_mode: Method to use for calculating ⁄N .974

– disp: use inter-keypoint displacements975

– norm: use inter-keypoint distances (rotation is not pe-976

nalized)977

– ljp: use a Lenard-Jones potential on inter-keypoint978

distances (collapsing onto the same position is highly979

penalized.980

– default: disp981

• lambda_t: Coefficient for temporal smoothing loss, ⁄T ,982

enforcing a 0th-order linear fit for intensity over n_frame983

frames. [default: ≠1.0]984

TIP: 0.1 generally matches order of magnitude of registra- 985

tion loss. Increase up to 1.0 for non-deforming datasets. 986

Set to 0 or ≠1 if regularization is unnecessary (this 987

can dramatically speed up performance). Alternatively, 988

setting n_frame to 1 will also disable this. 989

• load_nn: Load in spring connections as defined in nn_idx.txt 990

if available, save a new one if not. This file can be edited to 991

manually define the connections by worldline ID. The first 992

column is connected to all proceeding columns. [default: 993

True] 994

WARNING: Note that all connections are necessarily sym- 995

metric (i.e. if object0 connected to object2, then 996

object2 must also be connected to object0) even 997

if not defined as such in the file due to how 998

gradients are calculated and accumulated dur- 999

ing optimization. 1000

• lr_ceiling: Maximum value for initial learning rate. Note 1001

that, by default, learning rate decays by a factor of 0.5 every 1002

10 epochs. [default: 0.2] 1003

TIP: If motion is small, set lower to ¥ 0.1. Can use with 1004

clip_grad, but may be redundant. 1005

• lr_coef: Coefficient for initial learning rate, multiplied by 1006

the distance between current frame and its parent. [default:2.0] 1007

• lr_floor: Minimum value for initial learning rate. [de- 1008

fault: 0.02] 1009

• motion_predict: Enable parent-child flow field to pre- 1010

dict low-frequency motion and initialize new keypoints posi- 1011

tions for current frame. Requires partial annotations for that 1012

frame. [default: False] 1013

TIP: Identify and annotate a critical subset of keypoints with 1014

large errors. These along with motion_predict 1015

can dramatically improve tracking quality. Note that 1016

this flow field does not affect descriptors to avoid dis- 1017

tortion or image artifacts. 1018

• n_chunks: Number of steps to divide the forward pass into. 1019

This trades some computation time to reduce maximum mem- 1020

ory required. [default: 10] 1021

• n_epoch: Number of iterations for image registration, ⁄R. 1022

[default: 40] 1023

• n_epoch_d: Number of iterations for feature detection reg- 1024

ularization, ⁄D. [default: 10] 1025

• n_frame: Number of frames to analyze together for tempo- 1026

ral loss (see lambda_t). Set to 1 if regularization is unnec- 1027

essary. [default: 1] 1028

• n_ref: Manually set the number of keypoints. Leave out to 1029

set the number as the maximum number of keypoints avail- 1030

able in an annotated frame. 1031

WARNING: This requires at least one annotated frame with 1032

exactly n_ref keypoints. The ID’s from the 1033

first frame with exactly n_ref keypoints are 1034

used to pull and sort annotations from other an- 1035

notated frames. 1036
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• nn_max: Maximum number of neighboring keypoints to be1037

connected by springs for calculating ⁄N . [default: 5]1038

• save_mode: Mode for saving results.1039

– o: overwrite existing ’annotations.h5’ file1040

WARNING: While provenance can ensure manual an-1041

notations remain intact and separable from1042

ZephIR results, this can still be volatile!1043

Backup of the existing annotations.h5 is1044

created before saving. Consider enabling1045

include_all.1046

– w: write to a new ’coordinates.h5’ file and replace any1047

existing file1048

– a: append to existing ’coordinates.h5’ file1049

– default: o1050

• sort_mode: Method for sorting frames and determining1051

parent-child branches.1052

– similarity: minimizes distance between parent and1053

child1054

– linear: branches out from reference frames linearly1055

forwards and backwards, with every parent-child one1056

frame apart, until it reaches the first frame, last frame,1057

or another branch (simplest and fastest)1058

– depth: uses shortest-path grid search, then sorts frames1059

based on depth in the resulting parent-child tree (this1060

can scale up to O(n4) in computation with number of1061

frames)1062

– default: similarity1063

• t_ignore: Ignore these frames during registration. Leave1064

out to analyze all frames.1065

• t_ref: Only search these frames for available annotations.1066

Leave out if you want to process all annotations.1067

• wlid_ref: Identify specific keypoints to track by world-1068

line ID (note “worldline ID” and “track ID” are used synony-1069

mously). Pulls all available annotations for these keypoints.1070

Leave out to track all available keypoints.1071

WARNING: This will supercede n_ref.1072

• z_compensator: Multiply gradients in the z-axis by (1 +1073

z_compensator). Since the internal coordinate system is1074

rescaled from -1 to 1 in all directions, gradients in the z-1075

axis may be too small when there is a large disparity be-1076

tween the xy- and z-shapes of the dataset, and thus fail to1077

track motion in the z-axis. Increasing this will compensate1078

for the disparity. Note that gradients will still be clipped1079

to (clip_gradúz_compensator) if clip_grad is enabled.1080

Set to 0 or -1 to disable. [default: ≠1]1081

List of examples with parameter choices and explana-1082

tions1083

We tested a number of datasets across various systems. For each1084

dataset, we show the original movie, a movie annotated with1085

the tracking result, a list of parameters used, and a brief expla-1086

nation for each parameter. Note that only parameters that were1087

changed from the default are listed here.1088

Figure 11. Freely moving C. elegans. Movie available at:
https://github.com/venkatachalamlab/NeuronIR/blob/main/docs/examples.md

Neurons in freely behaving C. elegans. 1089

• channel= 1: This dataset has 2 channels, but only the sec- 1090

ond channel has the neurons that we want to track. 1091

• clip_grad = ≠1: This dataset has significant motion in 1092

all directions. To accomodate neurons with large displace- 1093

ments between parent and child frames, we disable gradient 1094

clipping, relying on learning rates to adjust how much dis- 1095

placement we allow. 1096

• fovea_sigma= 10: Along with grid_shape, this opens 1097

up the view range for descriptors and de-emphasizes the im- 1098

portance of the center of the descriptor relative to its neigh- 1099

bors. While this can be detrimental for rapidly deforming 1100

densely-packed clusters, it is particularly helpful for neurons 1101

towards the edges of the volume. 1102

• grid_shape = 49: This increases the size of the descrip- 1103

tors. Generally, it should be about ¥ 150% of the cell’s size 1104

in pixels, but we use much larger descriptors here to avoid 1105

having any descriptors with all zeros, which can cause insta- 1106

bilities during gradient descent. This is usually not an issue, 1107

but the head swings generate large motions in particularly 1108

sparse areas of the volume. 1109

• lambda_n_mode= norm: This dataset sees significant ro- 1110

tations in relative positions of neighboring neurons. norm 1111

mode avoids penalizing those neighbors. 1112

• lr_ceiling = 0.1: This limits frame-to-frame displace- 1113

ment of each neuron. Since we uncapped the gradient values, 1114

we can be a little more aggressive with this parameter. 1115

• lr_floor = 0.01: We lower this to ensure that parent- 1116

child frames that are very close together also produce similar 1117

neuron positions. We have good, distinct clusters of simi- 1118
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lar frames around each reference frame, so we can lower this1119

further.1120

• motion_predict = True: We verify and fix 10 neurons1121

to use as partial annotations across all frames (see Figure 3).1122

To make full use of these partial annotations, we turn on1123

motion_predict to improve tracking for the rest of the1124

neurons.1125

• z_compensator = 4.0: This dataset has noticeable mo-1126

tion in the z-axis even when the center of the volume is fixed,1127

but its size in z is ¥ 1
10 of the xy-shape. We increase this1128

parameter to compensate for the disparity.1129

Figure 12. Immobilized unc-13 C. elegans. Movie available at:
https://github.com/venkatachalamlab/NeuronIR/blob/main/docs/examples.md

Neurons in immobilized unc-13 C. elegans.1130

• clip_grad = 0.2: Despite the large jumps for some neu-1131

rons during pumping events, the dataset as a whole does not1132

exhibit much motion. Clipping the gradients prevents track-1133

ing results from becoming wildly inaccurate for the low-motion1134

neurons.1135

• lambda_n = 0.2: Most of the neurons here do not show1136

significant motion, but those that do are often isolated and1137

move independently. Lowering this parameter prevents more1138

stationary neurons from being pulled out of position due to1139

nearby high-motion neurons.1140

• lr_ceiling = 0.1: Along with clip_grad, this pre-1141

vents tracking results from moving too much frame-to-frame.1142

• lr_floor = 0.01: Some parent-child pairs do not see any1143

motion at all. We lower this parameter to ensure the neuron1144

positions also do not move for those frames.1145

Chinese hamster ovarian nuclei.1146

• clip_grad= 0.33: This dataset exhibits large fluctuations1147

in parent-child frame similarities. We increase the learning1148

rates parameters to accomodate the larger range, but we re-1149

duce the gradient values here to prevent tracking results from1150

moving too much.1151

Figure 13. Chinese hamster ovarian nuclei overexpressing GFP-PCNA. Movie
available at:
https://github.com/venkatachalamlab/NeuronIR/blob/main/docs/examples.md
Data available at: http://celltrackingchallenge.net/3d-datasets/

• fovea_sigma= 10: We track very large cells for this dataset. 1152

Along with grid_shape, this parameter is increased to cap- 1153

ture the entire cell in the descriptor. 1154

• grid_shape= 125: We track very large cells for this dataset. 1155

Along with fovea_sigma, this parameter is increased to 1156

capture the entire cell in the descriptor. 1157

• lambda_n= ≠1: Cells in this dataset undergo mitosis. ZephIR1158

is built to track a fixed number of keypoints, but we can ac- 1159

comodate the mitosis events by starting from the last frame 1160

with the maximum number of cells and allowing keypoints to 1161

collapse together as we move backwards. We disable spring 1162

connections to avoid penalizing collapsing keypoints. 1163

• lr_ceiling= 0.4: This dataset exhibits large fluctuations 1164

in parent-child frame similarities. Along with lr_floor, 1165

we increase this to accomodate the larger range. 1166

• lr_floor = 0.06: This dataset exhibits large fluctuations 1167

in parent-child frame similarities. Along with lr_ceiling, 1168

we increase this to accomodate the larger range. 1169

• sort_mode = linear: Cells in this dataset undergo mito- 1170

sis. ZephIR is built to track a fixed number of keypoints, but 1171

we can accomodate the mitosis events by starting from the 1172

last frame with the maximum number of cells and allowing 1173

keypoints to collapse together as we move backwards. This 1174

means temporal ordering becomes important, so we set this 1175

parameter to linear. 1176

Neurons in Hydra. 1177

• allow_rotation = True: Features in this dataset show 1178

clear rotation, especially in the tentacles. To accomodate this, 1179

we enable optimization for an additional parameter that con- 1180

trols rotation of descriptors in the xy-plane. 1181
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Figure 14. Freely moving Hydra. Movie available at:
https://github.com/venkatachalamlab/NeuronIR/blob/main/docs/examples.md
Data available at: https://www.ebi.ac.uk/biostudies/studies/S-BSST428

• grid_shape = 11: Each neuron in this dataset is small, so1182

a lower value here is sufficient.1183

• lambda_n = 0.1: While the tentacles create a good biolog-1184

ical scaffolding for the neurons, they deform and stretch over1185

time. We lower the spring constants to accomodate these de-1186

formations.1187

• lambda_n_mode = norm: This dataset shows clear rota-1188

tions in relative positions of neighboring neurons, especially1189

in the tentacles. norm mode avoids penalizing those neigh-1190

bors.1191

• lr_floor= 0.08: The large, bright body obscures the changes1192

in the tentacles when calculating parent-child frame similari-1193

ties. We increase this parameter to compensate.1194

• sort_mode= linear: This dataset does not repeatedly sam-1195

ple the same postures, but rather continuously deforms over1196

time. To reflect this, we track linearly.1197

Body parts of a behaving mouse.1198

• allow_rotation = True: Features in this dataset show1199

clear rotation, especially in the paws. To accomodate this, we1200

enable optimization for an additional parameter that controls1201

rotation of descriptors in the xy-plane.1202

• dimmer_ratio= 0.8: Unlike fluorescent microscopy data,1203

this is a particularly feature-rich dataset. Increasing this pa-1204

rameter emphasizes the neighboring features relative to the1205

centers of descriptors.1206

• fovea_sigma = 49: We track very large features for this1207

dataset. Along with grid_shape, this parameter is in-1208

creased to capture the entire body part in the descriptor.1209

Figure 15. Behaving mouse. Movie available at:
https://github.com/venkatachalamlab/NeuronIR/blob/main/docs/examples.md
Data available at:
https://ibl.flatironinstitute.org/public/churchlandlab/Subjects/CSHL047/2020-01-
20/001/raw_video_data/

• grid_shape = 65: We track very large features for this 1210

dataset. Along with fovea_sigma, this parameter is in- 1211

creased to capture the entire body part in the descriptor. 1212

• lambda_n = 0.1: While the skeleton creates a good bio- 1213

logical scaffolding for the mouse, this dataset lacks a third 1214

dimension and thus the distances between body parts are not 1215

well-preserved in the image. We lower the spring constants 1216

to accomodate this. 1217

• lambda_n_mode = norm: This dataset shows clear rota- 1218

tions in relative positions of neighboring features, especially 1219

in the paws. norm mode avoids penalizing those neighbors. 1220

• nn_max = 3: We only track 10 keypoints for this dataset. 1221

We reduce the number of maximum neighbors to reflect the 1222

small number of total points. 1223
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