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Abstract 
 
Reproducibility is science has plagued efforts to understand biology at both basic and biomedical 
and preclinical research levels. Poor experimental design and execution can result in datasets that 
are improperly powered to produce rigorous and reproducible results. In order to help biologists 
better model their data, here we present a statistical package called RMeDPower in R, which is a 
complete package of statistical tools that allow a scientist to understand the effect size and variance 
contribution of a set of variables one has within a dataset to a given response. RMeDPower can 
estimate the effect size of variables within an experiment based on an initial pilot dataset. In this 
way, RMeDPower can inform the user how to predict the scope, dimension and size of biological 
data needed for a particular experimental design. RMeDPower employs a generalized linear mixed 
model (LMM) -based power analysis, specifically targeting cell culture-based biological 
experimental designs. This package simulates experiments based on user-provided experimental 
design related variables, such as experiments, plates, and cell lines as random effects variables. 
This package not only allows us to use pilot data to estimate variance components for power 
simulation, it also accepts a set of variance components, which is an estimation of variance of the 
random effects linked to experimental variables and transformed into Intra-class Correlation 
Coefficients (ICC), as input which is precalculated from different data sets. The latter case is 
suitable when pilot data has an insufficient number of replications of experimental variables to 
directly estimate associated variance components. RMeDPower is a powerful package that any 
scientist or cell biologist can use to determine if a dataset is adequately powered for each 
experiment and then model accordingly. 
 
Introduction 
 
Improperly powered experiments lead to inconclusive results and can produce misleading findings 
that are either falsely positive or negative. The resulting lack of rigor and reproducibility has 
caused a crisis in science, highlighted in the popular literature, which has become a focus for the 
National Institutes of Health. It has been estimated that the majority of published empirical 
observations cannot be reproduced1-6 rendering forward movement in scientific endeavors to not 
only understand basic biological mechanisms but also to design effective therapeutic approaches 
to combat disease futile. Further, the resources and time spent to attempt to reproduce findings 
from low quality or incorrectly acquired data is estimated to cost the global scientific communities 
and institutions about 200 billion dollars per year7. Therefore, tools are desperately needed to help 
researchers guide their experimental design as well as apply adequate statistical power estimation. 
Not only can this improve our confidence in scientific outcomes, but can help make biological 
experiments more time-efficient and cost-effective. For example, if a researcher can estimate how 
many experiments should be performed, how many cell lines should be chosen, and how many 
cells per cell line should be collected to achieve sufficient statistical power to test their hypothesis, 
they can invest the correct amount of time and resources to conclusively test the motivating 
hypothesis. Further, the dangers of pseudo-replication inherent in cell-culture based experimental 
designs8-10 have been pointed out. 
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Statistical tools to perform power analyses in the context of cell culture experiments have been 
lacking. The packages in R that provide power estimates either do not  cover the repeated measures 
nature of the biological experiments11 or do so in the general situation12, 13 where it becomes 
difficult for a non-statistician to immediately use. These packages —namely Pwr, Pamm and 
Simr11, 14, 15—are useful for many applications including ecological psychology and language 
acquisition, but they are not specialized tools for molecular biology experiments and can be 
challenging to apply to cell culture. The Pwr package allows power estimation and sample size 
calculation for given input effect sizes based on user-selected statistical tests such as proportion 
test, t-test, and ANOVA but does not provide estimations involving random effects. The pamm 
package is specifically built for power estimation of random effects in regression models [2] given 
input variance components for these effects. A more advanced tool is the simr package, which is 
built for generalized linear mixed models15. Users can calculate power or sample size for a given 
regression model that includes single, multiple fixed or random effects in a general setting. Simr 
simulates response variables using user-provided input values or pilot data to estimate the 
statistical power to capture given effects.  

 Investigators planning clinical trials or scientists performing animal experiments have readily 
available tools for assessing the quality of their experimental design and ensuring that the cohorts 
they assemble will be properly powered to reach strong conclusions. However, these tools are 
largely lacking for cell biologists.  Of course, many simple statistical packages exist that use simple 
graphical user interface, such as such as GraphPad Prism, but they do not provide functionality for 
statistical power estimation16 while others statistical software like SPSS17, STATA18 and SAS19 do 
provide this functionality though they require licenses.   
 
Therefore, we set out to develop a set of open-source rigorous tools that will allow scientists to 
understand the statistical power in the context of a cell-culture based repeated measures design 
they are studying and consequently the degree of confidence they can have in any given set of 
observations. RMeDPower would thus represent an invaluable addition to the field. 
 
We designed RMeDPower to allow researchers to calculate power using detailed cell culture 
experiment-based parameter input options. RMeDPower consists of two separate tools: 1) 
CalcPower and 2) FinalCalc.  

CalPower employs a generalized linear mixed model (LMM)-based power analysis, and simulates 
data based on user-provided experimental design-related variables, such as experimental batches, 
plates, cell lines, and cell counts, modeled as random effects. Condition variables define and 
specify cell status such as treatment or control are considered fixed effect variables, and response 
variables correspond to traits measured from the experiment. This package not only allows users 
to use pilot data to estimate variance components for simulation, it also accepts a set of variance 
components, which is an estimation of variance of the random effects linked to experimental 
variables and transformed into Intra-class Correlation Coefficients (ICC)20, as input. The latter 
case is suitable when pilot data has an insufficient number of replications of experimental variables 
to directly estimate associated variance components, for example when pilot data are derived only 
from one experimental batch of cells that were assayed on one plate.  

The second part of RMeDPower, FinalCalc, is a sophisticated set of tools that allows a user to 
examine the normality assumptions for the LMM21, log-transforms the response values if 
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necessary, and uses the Rosner’s test22-27 to remove outliers. It includes visualization of distribution 
of raw and log-transformed response values, allowing users to check whether the response values 
conform to the normality assumption. In addition, the tool box includes a set of scripts to use the 
LMM to account for all of the variability observed within a dataset and estimate the desired 
parameter of interest. The scripts also allow users to specify which experimental variables conform 
to a nested design. Users can also specify a desired effect size that the model can rely on instead 
of the estimated effect size from the observed data. These additional steps allow a user to model 
their data in the most rigorous fashion.  

For example, induced pluripotent stem cells (iPSCs) have transformed the ability of researchers to 
model human disease in a dish28-30, but the system poses numerous challenges. Genetic variability 
results in variation across cell lines31-33, and a typical neuronal differentiation can take up to 1.5 
months and use dozens of morphogens and reagents, and hence is subject to fluctuations due to 
time, batch and cell culturist. These variables make it challenging to determine how much data are 
required in order to reliably interpret a set of results34, 35. 

We validated RMeDPower on a set of experiments using images from iPSCs that had been 
differentiated towards a neuronal lineage. The pilot dataset consisted of measurements of cells that 
were captured using Robotic Microscopy and36-44 over36-44 and 5 simulated measurements based on 
the original data with different effect sizes (Supp Data Table 1). The raw images are run through 
our custom-built imaging pipeline we assembled in Galaxy software45 in order to obtain object 
crops that contain a single cell from raw image tiles. These crops containing single cells are then 
contrast enhanced with 1.5% saturation, normalized, denoised, and pixels that deviate from their 
neighborhood median by threshold are removed using FIJI46. A smoothing algorithm is applied to 
remove extraneous debris/cells around the central cell. The crops were then subjected to our 
morphological feature-based pipeline that processes single images from disease or control neurons. 
Here we are examining the perimeter of the cell based on contour ellipse47. 
 
This simplified dataset consists of a minimal category of experimental variables used to run power 
simulation analyses with known ICC values. The results demonstrate the capacity of this package 
to be used on any biological or cell culture-based set of data generated under a repeated measures 
design.  

Methods 
Implementation 
 
The CalPower portion of RMeDPower broadly builds upon the power simulation structure of the 
simr package15 to enable power calculations based on a generalized LMM with biological variables 
relevant to cell culture experiments. LMMs21 are used to estimate associations of interest in 
situations where the responses are clustered or correlated by design. In cell culture experiments, 
responses are typically clustered by batch, experiment, plate or wells. In these LMMs the clustering 
variable is typically modeled as a random effect whose influence on the mean response is assumed 
to be drawn from a normal probability distribution with zero mean and given variance. The 
variables that specify conditions that distinguish groups (condition variable), for example disease 
vs control or drug vs non-treated, are assigned as fixed effects in a LMM, fit using the lmerTest 
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function from R library lme448. As in simr, CalPower simulates response variables, which 
correspond to direct measurements, based on given variance components of the random effects 
estimated from a user-provided pilot dataset. The package also requires distinguishing between 
repeatable and non-repeatable variables to account for experimental settings that include 
measurements that occur more than once but that should be considered as part of the nested 
experimental design (e.g., plates within a given experimental batch or wells within a plate). 
Experimental variables such as plates are considered non-repeatable variables that are unlikely to 
exist in multiple experiments with the same ID. The power estimation is based on the assumption 
that the relationship between the condition variable and the response variable, as captured by the 
effect size, is a true association. The simulated response variables are refitted into a LMM and the 
total number of significant association results are counted to estimate power to detect the 
association at a chosen Type I error level. In cases where the pilot dataset does not have enough 
data for each experimental variable, users can provide ICC values (Formula 1), which can be used 
to estimate variance components. These will come from prior knowledge based on empirical data. 
Here, a high ICC value indicates that the variable has a relatively high variance relative to the 
overall variance estimate of the response variable. Power simulation can be performed under user-
specified rules such as expected power, sample size or number of independent experimental 
variables (level) of the hypothetical experiment. Users can also choose a Type I error level, the 
desired number of simulations, the number of maximum levels or samples to be tested, and which 
output format or file name to use. 
 

Operation 
Users can find RMeDPower on github page 
https://github.com/gladstone-institutes/RMeDPower/ 
 
The library can be installed directly from github using commands: 
 
library(devtools) 
install_github('gladstone-institutes/RMeDPower', build_vignettes=TRUE) 
 
To reproduce the results of examples in this paper, based on RMeDPower release 1.0: 
• R >= 4.0.4 
• simr >= 1.0.5 
• lme4 >= 1.1-27.1 
 
Use cases 
 
In a typical scenario, a user would first run the CalPower portion of RMeDPower to estimate the 
power of a pilot dataset. Once the final data acquisition has been completed, then the user will 
model the data using the FinalCalc portion of RMeDPower (Figure 1). In the data structure we 
refer to, each experiment is considered a separate batch of relevant observations. These 
observations can be any set of values that have been measured with the user-defined experimental 
framework. To improve comprehension about the practical use cases of the package, we included 
two subsets of real biological experimental data—the physical size of a set of cells from different 
cell lines—in the package. The first dataset, RMeDPower_data1, is composed of three pilot 
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experimental batches (identified using the column labeled “experiment”), 10 cell lines (identified 
using the column labeled “line”), condition variable (identified using the column labeled 
“classification”) and 6 response variables that are cell-based measures that capture information 
about cell morphology. The first response variable, 'cell_size1', corresponds to the measured 
perimeter value of cells and displays an effect size of 1.1, and the second to sixth response variables 
correspond to simulated response variables with effect sizes of 1.56, 2.02, 3.16, 4.08, 5.2 (Table 
1, Supp Data Table 1). The second dataset contains one pilot experiment that consists of one 
plate, two cell lines, and one response variable (Supp Data Table 2). Since data in Supp Data 
Table 2 cannot be used for estimating variance components, users are required to provide ICC 
values which can be calculated using Formula 1. Based on given ICC values, the package will 
calculate variable components and simulate the response variable to assess power. 
 
 
 
 
 
 

 
 
Figure 1. Flowchart of data analysis using RMeDPower. 1. First, the 'check_normality' function 
is run to explore if the data pass a normality distribution. 2. In the case that the data do not pass 
the normality check, the 'transform_data' function can be used to log-transform the response 
values and/or remove outliers. 3. The function 'calculate_power' can be used to estimate the 
statistical power given the data in its current form. 4. If the final dataset has been acquired and is 
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now is ready for statistical modeling, the 'calculate_lmer_estimates' function can be used to 
perform a LMM regression to estimate the parameter of interest.  
 
 

Experimental variable simulation scheme  

RMeDPower is designed to simulate the effect of variability of the responses which could come 
from differences in processing batch, plates or cell lines on the responses of interest. There are 
several ways to assess the variability of experimental variables in this package as outlined below.  

First, a user can assess how increasing the number of independent experiments affects power. For 
example, if a user has a pilot dataset that consists of 3 experimental batches that each contain 2 
plates, expanding this dataset two-fold would have the effect of simulating 6 experiments with a 
total of 12 plates (Figure 2). Alternatively, a user can assess how increasing the number of plates 
per experiment affects power. In the case where there are two experiments that each contain two 
plates, the user can double the number of plates used per experiment. In this way, the user can 
simulate how the statistical power changes as a result of increasing the number of plates used per 
experiment rather than increasing the number of experimental batches (Figure 3). In a third 
example, a user can examine the effect of expanding the number of cell lines within each 
experiment affects power (Figure 4). This would capture the effect of increasing the number of 
cells assayed as a consequence of having more cell lines. This type of variable expansion can be 
accomplished by setting ‘level=1’ in the calculate_power function. 

A user may want to examine the power of increasing the total number of cells measured from each 
experimental variable per experiment. For example, if there are 12 cells per cell line on plate 1, 
doubling the number of cells from each plate will result in assessing the effect in twice the number 
of cells per cell line, even if the number of experiments and cell lines remain the same (Figure 5). 
Alternatively, one might want to assess the effect of increasing the total number of cells by 
increasing the number of cells per cell line (Figure 6). This type of variable expansion can be 
accomplished by setting ‘level=0’ in the calculate_power function. 
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Figure 2. Example of RMeDPower’s simulation of experimental variability for 'experiment' for 
the power analysis. If level=1 is set, RMeDPower simulates the effect of adding in additional 
experiments by inheriting the experimental design structure from the existing data. This 
describes the situation where the pilot study involves data from 3 experiments, with 2 plates used 
per experiment, 3 cell lines within each plate and 12 cells per cell line are assayed.  

(A) 

  Cell line1 Cell line2 

Exp1 3 6 

Exp2 3 0 

 

 

(B) 

  Cell line1 Cell line2 

Exp1 3 6 
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Exp2 3 0 

Exp3 3 6 

Exp4 3 0 

 

Table 1. Example of changes in cell counts in a simulation of experimental batch variability. (A) 
Original data structure and (B) changed data structure after simulation. Simulation based on 
level=1 keeps the same structure and increases the number of experiments. This describes the 
situation where the pilot study involved 2 experiments, in the first experiment two cell lines are 
used with 3 and 6 cells assayed, respectively, and in the second experiment only 3 cells from the 
first experiment are assayed. 
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Figure 3 Example of RMeDPower’s simulation of plate variability for ‘plate' power analysis. If 
level=1 is set, RMeDPower simulates new plates by inheriting the experimental design structure 
from the existing data. 

  Cell line1 Cell line2 

Plate1 3 6 

Plate2 3 0 

 

(B) 

  Cell line1 Cell line2 

Plate1 3 6 

Plate2 3 0 

Plate1' 3 6 

Plate2' 3 0 

 

Table 2 Example of changes in cell counts in a simulation of plate variability. (A) Original data 
structure and (B) changed data structure after simulation. Simulation based on level=1 keeps the 
same structure and increases the number of plates. 
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Figure 4. Example of RMeDPower’s simulation of cell line variability for ‘cell line' power 
analysis. If level=1 is set, RMeDPower simulates new cell lines by inheriting the experimental 
design structure from the existing data.  

 

  Cell line1 Cell line2 

Exp1 3 6 

Exp2 3 0 

 

 

  Cell line1a Cell line2a Cell line1b Cell line2b Cell line 1c Cell line 2c 
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Exp1 3 6 3 6 3 6 

Exp2 3 0 3 0 3 0 

 

Table 3. Example of changes in cell counts in a simulation of cell line variability. (A) Original 
data structure and (B) changed data structure after simulation. If level=1 is set, RMeDPower 
simulates new cell lines by inheriting the experimental design structure from the existing data. 
An example of a simulation in tabular format shows the change in the number of cells per cell 
line and experiment after simulation. Simulation based on level=1 keeps the same structure and 
increases the number of cell lines. 
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Figure 5. Example of RMeDPower’s simulation of a sample size increase for ‘plate' power 
analysis. If level=0 is set, RMeDPower multiplies the number of cells per plate by M/N, where N 
is the maximum number of cells per plate and M is a value assigned to the parameter ‘max_size’. 

  Cell line1 Cell line2 

Plate1 3 6 

Plate2 3 0 
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(B) 

  Cell line1 Cell line2 

Plate1 6 12 

Plate2 6 0 

 

Table 4. Example of plate-based cell count expansion simulation. (A) Original data structure and 
(B) changed data structure after simulation. The simulation is based on level=0 which results in 
increased number of cells per plate 
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Figure 6. Example of RMeDPower’s simulation of a sample size increase by increasing the 
number of cell line. If level=0 is set, RMeDPower multiplies the number of cells per cell line by 
M/N, where N is the maximum number of cells per cell line and M is a value assigned to the 
parameter ‘max_size’.  

 

 

(A) 

  Cell line1 Cell line2 

Exp1 3 6 

Exp2 3 0 

(B) 

  Cell line1 Cell line2 

Exp1 9 18 

Exp2 9 0 

 

Table 5. Example of cell line-based cell count expansion simulation. (A) Original data structure 
and (B) changed data structure after simulation. An example of a simulation in tabular format 
shows the change in the number of cells per cell line and experiment after simulation. The 
simulation is based on level=0 which results in an increased number of cells per cell line. 

 

Increasing effect sizes requires fewer experiments 

A user would intuitively expect that datasets with larger number of experimental batches are 
needed to estimate a smaller effect size. To demonstrate this, we performed power analysis with 6 
different effect sizes (1.1, 1.56, 2.02, 3.16, 4.08, 5.2) to test the relationship between effect size 
and number of experimental batches needed to detect an association at a 0.05 Type I error level. 
The effect size of 1.1 is the original effect size of the response variable in the assayed data, while 
the 5 other effect sizes are simulated. The assayed data included 8 experimental batches (Supp 
Data Table 3). For each effect size, experimental batch datasets were subsetted so each subset 
with 3 batches is more representative of the size of pilot datasets. The subsetting resulted in 56 sub 
datasets or pilot studies. Then the number of experimental batches required to achieve 80% power 
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was obtained from each pilot dataset. For cases where 80% power was never achieved in the range 
of (1, 15) experimental batches, the censored value 15 was assigned as the required number of 
experiments. The plot of the average number of batches required to achieve 80% power (Figure 7) 
along with its associated standard deviation (in the gray shaded area) shows that for this particular 
response in the given dataset, the required number of experiments was close to 15 when the effect 
size was around 1, and the number decreases as the effect size increase, eventually reaching a 
plateau of value 3 with high effect sizes. As a reference for this simulation result, the pwr.t.test 
function from the R library pwr11 was used to test the number of samples per group required to 
reach 80% power at a 0.05 Type I error level for a two group comparison across the range of the 
observed effect sizes. The results of both analyses showed a similar relationship between the 
number of required experiments and the effect size. 

 

 

Figure 7. The number of experiments required to achieve 80% power at various effect sizes. 
Results are calculated from the mean number of experiments estimated by simulation (red) and 
t.test (blue), where gray intervals represent standard deviations calculated from simulations. 
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Preprocessing input dataset 

In order to determine if biological/disease groups are different from one another, RMeDPower 
employs a LMM21. Cell-based measurements such as the response values we are using here often 
typically follow a normal distribution, but in some cases they do not. One of the assumptions of 
LMMs is that the conditional residuals from the model fit follow a normal distribution21. Users 
should examine this assumption using the 'check_normality' function to test the normality of each 
response variable. This function produces a quantile-quantile (QQ) plot that can be used to evaluate 
the level of normality of the given response variable. The user must provide the names of the cell 
condition, experimental variables, and response columns along with the dataset to be tested. Cell 
conditions can be continuous or discrete values. In the case where the data follow a normal 
distribution, we expect the QQ plot to be aligned on the line x=y line49. 

 

 

Code example: 

check_normality(data=data, condition_column="classification", experimental_columns=c("experiment","line"), 
response_column="cell_size2", condition_is_categorical="TRUE")  

 

Additional preprocessing is possible with the 'transform_data' function. This function not only 
generates a QQ plot from given response values, it also performs outlier analysis and log 
transformation of the response values. Outlier analysis is based on Rosner's test, which tests the 
number of outliers by assuming normality of the distribution22-27. The initial number of outliers is 
calculated based on a cutoff, median(value) ±3 MAD(value), where MAD is the median absolute 
deviation. 'transform_data' performs outlier analysis on raw response values and log-transformed 
response values, and produces QQ plots on four types of dataset: raw values, outlier-removed raw 
values, log-transformed values, and outlier-removed log-transformed values. Users can check QQ 
plots and use one of the values that can be retrieved in matrix form from the function output to 
proceed down the pipeline. 

Code example: 

Transformed_data = transform_data(data=data, condition_column="classification", 
experimental_columns=c("experiment","line"), response_column="cell_size2", 
condition_is_categorical="TRUE")  

 
CalcPower 
 
 
 Ex1. Testing different levels of an experimental variable 
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For any given response variable, a user can investigate the power to detect association between 
response variables and condition variables by increasing the number of experimental batches as 
shown in Figure 2. As an example, we will examine the power by plotting a power curve (PC)15. 
A PC plots the power to detect associations between the condition variable and the response 
variable against the number of replicates for any given data structure (Figure 8). For example, for 
a pilot dataset that consists of 3 experiments and 10 cell lines, when we apply the PC we find that 
with the given variability and effect size for this particular response variable, it is predicted that 
after 2 independent experiments the data type will achieve 80% power to detect associations 
between the response variable/’cell_size2’ and cell condition (Figure 8). Since we will be testing 
several experimental levels, we assign ‘1’ to ‘power_curve’ to indicate that we want to create a 
power trend curve. ‘condition_is_categorical’ is TRUE, as it is binary, and 1000 simulations are 
chosen to be run. To specify experimental variables that may appear multiple times in different 
experimental settings, users must name these variables using the 'repeatable_column' parameter. 
For example, we will set 'repeatable_columns="line"' in this simulation as the same cell line may 
exist on different plates and experiments. 

Code example: 

calculate_power(data=data_renamed, condition_column="classification", 
experimental_columns=c("experiment","line"), response_column="cell_size2",  repeatable_columns=’line’, 
target_columns="experiment", power_curve=1, condition_is_categorical=TRUE, nsimn=1000, levels=1) 
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Figure 8. Example of a PC that is simulating the function of levels of experiment. Maximum 
experiment level was set to five times of the original level, and cell_size2 was used as a response 
variable. In this case, 2 experiments with this data type will achieve 80% power to detect 
significant associations across a set of lines for this given response variable.  
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Ex2. Testing different sample sizes of an experimental variable 
A user can also estimate the power to detect the effect of increasing the cell number for each line 
as in Figure 6. For example, we will use an association between ‘cell_size2’ and the condition 
variable by increasing the number of cells in each cell line.  

We will test up to 700 cells per cell line by setting max_size=700. The other parameter settings 
are the same except for 'target_columns,' where we input 'line’. For 'levels' we assign '0' because 
we are simulating multiple cells in the same cell line. The PC result reveals that the power to detect 
associations between the condition variable and the response variable at about 150 samples is about 
80% (Figure 9). In other words, we will need a minimum of 150 cells to achieve 80% power to 
detect an association between the condition variable and response variable.  

Code example: 

calculate_power(data=data_renamed, condition_column="classification", 
experimental_columns=c("experiment","line"), response_column="cell_size2",  repeatable_columns=’line’, 
target_columns="line", power_curve=1, condition_is_categorical=TRUE, nsimn=1000, levels=0, max_size=700) 
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Figure 9. Example of a PC that estimates the power as a function of the number of cells per line. The 

maximum number of cells was set to 5 times the original number of cells, and cell_size2 was used as the 
response variable. 
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Ex3. User-determined level count and output file name 

It may be the case that a user obtains a dataset that contains a specific number of experiments and 
has no opportunity to increase this number. In this case, one can avoid running unnecessary 
simulations. To do this, the user can assign a '0' to 'power_curve', and test the power of the 
experiments that contain the completed dataset. For example, if a user ran 15 experiments, then 
they would assign '15' to 'max_size'. The function will output the combined estimated power for 
these 15 experiments. We assign 'test.txt' to 'output' to output the result. The resulting power 
analysis will run 1000 simulations to detect associations between the condition variable and the 
response variable. For the example, dataset we provide that contains 3 experiments and this set of 
data achieves an estimated power of 97.60% (95% confidence interval (96.45, 98.46)) to detect 
associations between ‘cell_size2’ and cell condition at type I error rate of 0.05 (alpha). The cpu 
time for this analysis was 7 minutes and 30 seconds. 

Code example: 

calculate_power(data=data_renamed, condition_column="classification", 
experimental_columns=c("experiment","line"), response_column="cell_size2",  repeatable_columns=’line’, 
target_columns="experiment", power_curve=0, condition_is_categorical=TRUE, nsimn=1000, levels=1, 
max_size=15, output="test.txt") 
 
The text output of this example power analysis: 

 

Power for predictor 'condition_column', (95% confidence interval): 
      97.60% (96.45, 98.46) 
 
Test: Likelihood ratio 
 
Based on 1000 simulations, (0 warnings, 0 errors) 
alpha = 0.05, nrow = 12940 
 
Time elapsed: 0 h 7 m 30 s 
 
 
 

 

Ex4. User-determined effect size 

Consider the situation where a user has a specific effect size in mind based on prior information, 
but the pilot data itself does not reflect the a priori assumed effect size. For example, previously 
an experimenter found a significant difference comparing a given response between control cell 
lines “A”, “B”, “C”, and cell lines from patients with a disease, “D”, “E” and “F”, and there was a 
sufficient sample size to estimate the effect size reliably. The experimenter then performs another 
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set of experiments comparing the same disease lines (“D”, “E” and “F”) but this time uses different 
control cell lines (“G” and “H”), and the data did not have a sufficient sample size in terms of the 
number of experimental batches. It seems reasonable to expect that the magnitude of the 
associations of the response variable between the new control lines and the original disease lines 
would be similar to the first set of experiments. In this case, the user can then run power simulations 
using the known effect size instead of estimating it from the pilot data. We will assume an effect 
size of 10 and assign the value to the 'effect_size' parameter. We will use the default max_size 
setting and the output file setting. The power analysis result shows that the power to detect 
associations between the condition variable and the response variable using 5 times the original 
number of experiments is 73.7% in 95% confidence interval (70.85, 76.41) at type I error rate of 
0.05 (alpha). The cpu time for 1000 simulations was 7 minutes and 30 seconds. 

 

Code example: 

calculate_power(data=data_renamed, condition_column="classif", experimental_columns=c("experiment","line"), 
repeatable_columns=”line”, response_column="cell_size2", target_columns="experiment", power_curve=0, 
condition_is_categorical=TRUE, nsimn=1000, levels=1, effect_size = c(10)) 

 

Result: 

Power for predictor 'condition_column', (95% confidence interval): 

      73.70% (70.85, 76.41) 

Test: Likelihood ratio 

Based on 1000 simulations, (0 warnings, 0 errors) 

alpha = 0.05, nrow = 12940 

Time elapsed: 0 h 7 m 30 s 

 

Ex5. Test two experimental variables 

A user may want to test the power of more than one experimental variable in a single run. For 
example, a user might be interested in knowing how increasing the total number of cells per 
experiment versus performing more experiments increases the power to detect associations 
between the response variable and the condition variable. Consider the example of testing power 
for two target parameters: experiment and cell line. We will test up to 9 experimental batches, and 
up to 142 cells per cell line. The function will return two power curves for each target parameter. 
In this way, the experimenter can pairwise compare different experimental paradigms to change 
the power to detect associations between the condition variable and the response variable. In the 
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example shown, we need either 2 experimental batches or about 200 cells per cell line to have at 
least 80% power (Figure 10). 

Code example: 

calculate_power(data=data_renamed, condition_column="classif", experimental_columns=c("experiment","line"), 
repeatable_columns=”line”, response_column="cell_size2", target_columns=c("experiment","line"), 
power_curve=1, condition_is_categorical=TRUE, nsimn=10, levels=c(1,0), max_size=c(9,142) ) 

 

 

 

 

Figure 10. Example of power curves as a function of levels of experiment (A) and number of cell lines. 
Maximum experiment level was set to 9, and maximum cell line count was set to 142. cell_size2 2 was used 
as a response variable. 

  

Ex6. Data with a single experimental category 
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Our power simulations depend on the variance components estimated from the input dataset. 
However, in some cases there may not be enough data to estimate the variance component. For 
example, the pilot data might have only a single category for 'experimental batch', ‘plate’ or 'line'. 
When this occurs, the user needs to provide ICC values. These values can be estimated from 
another dataset for which the variance components are assumed to be similar to those inherent for 
the new response being considered in the input dataset. ICC can be estimated by taking the ratio 
between the variance estimates using the following formula: 

  

𝐼𝐶𝐶! =
"!

∑ "!$%"∈$
  

 

 

Formula 1.                                                                                                                                                              

  

  

where 𝑉! represents the variance of the random effect linked to experimental variable (e.g., 
experimental batch, plate or cell-line) i, and epsilon represents the variance of the residual error. 
𝑆 represents all the modeled sources of variability of the response under consideration. We will 
test this scenario using the example dataset with only single experiment and cell line (Figure 11). 

 

Code example: 

calculate_power(data=RMeDPower_data2, condition_column="classification", 
experimental_columns=c("experiment","plate","line"), repeatable_columns=”line”, 
response_column="response_variable", target_columns=c("experiment"), power_curve=1, 
condition_is_categorical=TRUE, nsimn=1000, levels=c(1),  ICC=c(0.2,0.15,0.3)) 
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Figure 11. Power curve as a function of levels of experiment. Maximum experiment level was set to five times 
of the original level, and cell_size2 was used as a response variable. ICC values of each experimental variable 

were 0.2,0.15, and 0.3, respectively. 

  
FinalCalc 
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 19, 2022. ; https://doi.org/10.1101/2022.07.18.500490doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.18.500490


RMeDPower also provides a function to perform LMM regression analysis if the user has data of 
sufficient size to estimate variance and the power to detect true associations48, 50. The parameters 
for 'calculate_lmer_estimates' are condition_column, Experiment_columns, response_column, 
condition_is_categorical and the input options are similar to what the 'calculate_power' function 
requires. The following example shows the result of a regression analysis performed on the original 
cell size data in 8 experiments. 
 
Code example: 
calculate_lmer_estimates(data=data, condition_column="classification", 
experimental_columns=c("experiment","line"), 
                          response_column="perim_2th_effect", target_columns=c("line"), 
                         condition_is_categorical=TRUE ) 

 
Result: 
 
Linear mixed model fit by REML. t-tests use Satterthwaite's method ['lmerModLmerTest'] 
Formula: response_column ~ condition_column + (1 | experimental_column1) +      (1 | 
experimental_column2) 
   Data: Data 
 
REML criterion at convergence: 68551.7 
 
Scaled residuals:  
    Min      1Q  Median      3Q     Max  
-2.5211 -0.5351 -0.1448  0.3264 31.5600  
 
Random effects: 
 Groups               Name        Variance Std.Dev. 
 experimental_column2 (Intercept)   14.69   3.833   
 experimental_column1 (Intercept)  230.95  15.197   
 Residual                         3070.12  55.409   
Number of obs: 6305, groups:  experimental_column2, 13; experimental_column1, 8 
 
Fixed effects: 
                  Estimate Std. Error      df t value Pr(>|t|)     
(Intercept)        321.581      5.681   8.282   56.60 5.14e-12 *** 
condition_column1   13.621      2.682  10.598    5.08 0.000399 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Correlation of Fixed Effects: 
            (Intr) 
cndtn_clmn1 -0.220 
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Summary 
 
The RMeDPower R package is a power analysis tool designed to help biological scientists perform 
time-efficient and cost-effective studies by designing biological experiments with desirable power. 
The unique benefit of the package compared to other power analysis packages is that it is built to 
reflect real biological cell culture experimental designs. The package is tailored to manage multiple 
biological experimental variables to simulate experiments, and users can customize parameter 
settings to best fit the simulation settings to the experiment to be performed. 
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