1	Community structure and sample size affect estimates of predation intensity and prey
2	selection: A model-based validation
3	
4	Madhura Bhattacherjee, Devapriya Chattopadhyay*
5	
6	
7	RRH: COMMUNITY STRUCTURE AFFECTS INFERRED PREDATION
8	LRH: BHATTACHERJEE AND CHATTOPADHYAY
9	
10	Keyword: Drilling predation, durophagous predation, evenness, sampling, predation
11	intensity
12	
13	* Corresponding author
14	Email: devapriya@iiserpune.ac.in
15	

Bhattacherjee and Chattopadhyay 2

16 Abstract. –

Predation estimates inferred from the preserved records of predation traces are
essential in evaluating the evolutionary effect of ecological interactions. It is, however,
rarely investigated how sampling intensity and community composition of an assemblage
influence the reliability of these measures.

Using a resampling technique, we evaluated the effect of evenness and sampling 21 intensity of a community on the inferred predation estimates. We theoretically simulated 22 model communities representing different levels of evenness (E_T), predation intensity (PI_T), 23 24 and predatory behavior (selective, non-selective). These communities were resampled 25 without replacement; we noted the variation in the inferred predation intensity (PI_{T.inf}) and 26 the number of prey species ($S_{prey,inf}$) during resampling. Our results demonstrate that E_T does 27 not influence PI_{T.inf} for non-selective predation. However, communities with highly selective predation are sensitive to evenness and sampling intensity; PI_{T,inf} of these assemblages can 28 29 substantially deviate from the actual value. $S_{prev,inf}$ is also influenced by E_T , predation 30 selectivity, and PI_T. For non-selective predation, sampling intensity heavily influences communities with low E_T and low PI_T; S_{prey.inf} is underrepresented at smaller sample size. 31 32 For prey-abundance guides selective predation, the sensitivity depends on the nature of selection; for communities of low E_T and PI_T where rare species are attacked preferentially, 33 the S_{prey.inf} deviates significantly at small sample size. We proposed a post-facto 34 35 standardization method for comparing predation estimates of discrete communities. We 36 validated its utility using the published predation data of the Plio-Pleistocene molluscan 37 fossil assemblage. This approach provides critical insight into the biological reliability of 38 predator estimates across time and space.

Bhattacherjee and Chattopadhyay 3

- 39 Madhura Bhattacherjee, Department of Earth and Climate Science, IISER Pune, Dr. Homi
- 40 Bhaba Road, Pashan, Pune-411008, INDIA
- 41 Devapriya Chattopadhyay, Department of Earth and Climate Science, IISER Pune, Dr.
- 42 Homi Bhaba Road, Pashan, Pune-411008, INDIA, Email: devapriya@iiserpune.ac.in

43

44	Introduction
45	The role of predation as a major driving force of evolution in marine ecosystems has been a
46	common theme of study (Paine, 1966; Vermeij, 1977; Signor and Brett, 1984; Langerhans,
47	2007; Stanley, 2008). The relationship between the prey and predator is complex in
48	theoretical and inferential terms (Abrams, 1989; Leighton, 2002). It is important to note that
49	efforts to evaluate the evolutionary effects of predation relies on the correct measurement of
50	aspects of predation such as intensity, selectivity of prey. The accurate estimation of
51	predation measures is, therefore, of primary importance.
52	For establishing predation events and inferring predation intensities, ecological
53	studies use direct observations or indirect measures such as compositional characterization
54	of digested food and fecal matter (Nilsen et al., 2012; Pringle et al., 2019). Although it is
55	possible to recover direct observational evidence of predation events in past ecosystems by
56	studying "caught-in-the-act" occurrences, paleoecological studies primarily rely on
57	preserved predation traces (Klompmaker et al., 2019). Traces, such as drill holes and repair
58	scars recording the predation attempts on the prey's hard shells, are some of the best
59	quantifiable proxies for inferring predation intensity and prey selection (Kowalewski, 2002).
60	The frequency of these traces (repair scar frequency (RF) and drilling frequency (DF)) are
61	often used to evaluate the evolutionary impact of predation in deep time (Vermeij, 1987;
62	Kelley and Hansen, 1996).
63	Inferences about interactions from predation traces have their limitations. The
64	implicit assumption for such interpretation is that other processes do not alter the
65	quantitative data provided by predation traces (e.g., the overall frequency of traces,
66	distribution of traces across prey species, and prey size classes). It is recognized that biases

67	introduced through taphonomy may influence the biological reliability of these measures,
68	including frequency (Roy et al. 1994; Zuschin and Stanton, 2001, Chattopadhyay et al.,
69	2013a, b, Sarkar et al., 2021), prey selection (Sime and Kelley 2016; Forcino et al. 2017),
70	and size selection (Kowalewski, 2002). However, the effect of sampling on inferred
71	predation measures remains largely unexplored.
72	A few studies have examined the impact of size-specific sampling on inferred
73	predation intensities (Chattopadhyay et al., 2016; Hattori et al., 2014; Hausmann et al.,
74	2018; Kowalewski and Hoffmeister, 2003; Ottens et al., 2012; Visaggi and Kelley, 2015).
75	Smith et al. (2021) demonstrated the effects of overdispersion and zero inflation (e.g., the
76	poor model fits) using count data of predation traces. Aspects of a specific community such
77	as evenness, selectivity of predation, and sampling intensity may influence the estimates of
78	predation intensity. This becomes crucial for studies that combine predation data from
79	discrete samples and reconstruct temporal/spatial changes in predation patterns.
80	Using theoretical simulation based on a resampling technique, we developed a
81	methodological framework to understand the effect of community evenness, sampling
82	intensity, and nature of predation selectivity on the inferred predation estimates. We
83	attempted to estimate these effects on the inferred predation intensity and the number of
84	prey species. We also proposed a method of post-facto standardization and validated our
85	approach using predation data from four Plio-Pleistocene fossil assemblages of Florida.
86	
87	Materials and method
88	Indices for predation intensity and community structure:
89	Predation intensity of total assemblage (PI _T) is calculated as

90	$PI_T = N_P / N$
91	Where,
92	N_P = Number of individuals with predation mark
93	N = Total number of individuals in the assemblage
94	The total number of prey species is S_{prey} . PI _{prey} denotes predation intensity in the species that
95	have been attacked.
96	The evenness of an assemblage (E_T) is calculated as
97	$E_{\rm T} = H/\ln(S_{\rm T})$
98	Where,
99	H = Shannon's diversity index
100	S_T = Total number of species in the assemblage
101	
102	Model assemblages:
103	We created 20 hypethetical model accompliance, each with 20 gradies and 2000
	We created 30 hypothetical model assemblages, each with 30 species and 3000
104	individuals with varying evenness, predation intensity, and prey preferences (Table 1). Each
104 105	
	individuals with varying evenness, predation intensity, and prey preferences (Table 1). Each
105	individuals with varying evenness, predation intensity, and prey preferences (Table 1). Each model assemblage had a unique combination of evenness, predation intensity, and prey
105 106	individuals with varying evenness, predation intensity, and prey preferences (Table 1). Each model assemblage had a unique combination of evenness, predation intensity, and prey preference. The evenness in these models ranged from a theoretical minimum of 0.1 to a
105 106 107	individuals with varying evenness, predation intensity, and prey preferences (Table 1). Each model assemblage had a unique combination of evenness, predation intensity, and prey preference. The evenness in these models ranged from a theoretical minimum of 0.1 to a theoretical maximum of 1. Model assemblages with maximum evenness of one had 100
105 106 107 108	individuals with varying evenness, predation intensity, and prey preferences (Table 1). Each model assemblage had a unique combination of evenness, predation intensity, and prey preference. The evenness in these models ranged from a theoretical minimum of 0.1 to a theoretical maximum of 1. Model assemblages with maximum evenness of one had 100 individuals for 30 species. Assemblages with intermediate evenness of 0.7 had five common

Bhattacherjee and Chattopadhyay 7

evenness of 0.2, there is only one common species with 2710 individuals, and the remaining29 rare species consists of 10 individuals each.

114	The predation intensity of the total assemblage (PI_T) was categorized into three
115	levels: low (0.2), medium (0.5), and high (0.8) (Table 1). A certain number of individuals
116	from specific species would be considered prey with predation marks as dictated by the
117	(PI_T) . The prey-preference of the predator can either be non-selective or selective. In the
118	case of non-selective predation (Case 1), all species have an equal probability of being
119	attacked irrespective of their abundance (Fig 1). Selective predation represents assemblages
120	where prey species have an unequal chance of being attacked depending on their abundance.
121	In model assemblages with selective predation, we constructed two cases; the predator can
122	either attack the common species (Case 2) (Fig 2) or the rare species (Case 3) (Fig 3).
123	Selective predation has not been considered for assemblages with maximum evenness
124	because all the species are equally abundant and share an equal probability of attack.
125	
126	Simulation design
127	We performed a simulation to evaluate the effect of sample size on inferred
128	predation intensity ($PI_{T.inf}$) and the number of prey species ($S_{prey.inf}$) for all the model

assemblages. In the simulation, 100 individuals were drawn randomly from a model

130 assemblage. The number of attacked individuals (N_P) and the number of prey species (S_{prey})

represented by the attacked individuals were counted in those 100 individuals. Inferred

132 predation intensity $(PI_{T,inf})$ for the drawn sample is calculated as a ratio of the number of

133 attacked individuals and the total number of individuals (i.e., 100 in the first draw). The

134 exact process is repeated 30 times without replacement until all the individuals from the

Bhattacherjee and Chattopadhyay 8

135	assemblage are sampled. This entire process was iterated 1000 times. The mean and
136	standard deviation are calculated for inferred predation intensity $(PI_{T.inf})$ and prey species
137	richness ($S_{prey.inf}$) for these 1000 iterations for a model assemblage. Deviation of predation
138	intensity (Dev_{PI}) is calculated as the difference between PI_{T} and $\text{PI}_{\text{T.inf}}$ for an assemblage.
139	Similarly, the difference between S_{prey} and $S_{prey,inf}$ is taken as the deviation of prey species
140	richness (Dev_{S}). The same technique is applied for all the model assemblages.
141	

142 Predation dataset:

143 We used published data on predation records of molluscs from four Pleistocene localities in Florida (Chattopadhyay and Baumiller, 2010) for validating the proposed 144 technique. The dataset consists of abundance, drilling frequency, and repair scar frequency 145 146 of 14 molluscan species. We drew samples without replacement from each locality with increasing sample size. The sample size for each draw was a hundred until the last draw; in 147 148 the last draw, where the remaining sample size is less than 200, all are drawn. For Punta 149 Gorda (total=2418 individuals), 100 individuals were drawn 23 times, and 118 individuals were drawn for the last (24th) draw. A similar procedure is followed for Miami Canal (total 150 = 4794 individuals), Mc Queens pit (total=659 individuals), and Chiquita (total=894 151 individuals). 152 All simulations and statistical analyses were performed in R (R Core Development 153 154 Team, 2012). 155

156

Results

157 Inferred predation intensity

158	The inferred predation intensity $(PI_{T.inf})$ may vary substantially from the actual value
159	of overall predation intensity (PI_T) and predation intensity of prey groups (PI_{prey}), especially
160	at smaller sample sizes (Fig 4). For non-selective predation (Case 1), Dev_{PI} is not affected
161	by the evenness; however, the deviation is high at a smaller sample size and converges to the
162	actual value with increasing sample size (Fig 5). Evenness influences inferred predation
163	intensity ($PI_{T,inf}$) when the predation is non-selective (Case 2 and 3) (Fig 4). When the
164	common species are preferentially attacked (Case 2), Dev_{PI} is low for communities with
165	lower evenness and low original predation intensity (PI _T) (Fig 6). Communities with higher
166	evenness showed high Dev_{PI} . This deviation does not change even at a higher sample size
167	except for the community with the lowest evenness ($E_T=0.2$) and predation intensity
168	(PI _T =0.2) (Fig 6). When rare species are attacked (Case 3), Dev_{PI} is high for communities
169	with higher evenness and high PI_T (Fig 7). Communities with higher evenness showed lower
170	$PI_{T.inf}$ values compared to PI_{T} . The deviation, however, is lower in comparison to
171	comparable communities in Case 2.
172	
173	Inferred number of prey species
174	The inferred number of prey species $(S_{prey.inf})$ follows a rarefaction curve where
175	$S_{\text{prey.inf}}$ increases with increasing sample size before plateauing and converging to the actual
176	value of S_{prey} (Fig 8). In the case of non-selective predation (Case 1), the Dev _S decreases
177	with increasing sample size. Dev_{S} decreases with increasing evenness at a given sample size
178	and has lesser sensitivity to sample size when evenness is high. Dev_{S} approaches zero at a
179	smaller sample size in communities with higher evenness (Fig 9). When common species
180	are preyed upon (Case 2), Dev_{S} does not reflect any sensitivity to the sample size (Fig 10).

Bhattacherjee and Chattopadhyay 10

181 This is due to the low value of S_{prey} that converges to its actual value within the first few 182 draws.

183 However, when the rare species are attacked (Case 3), S_{prey.inf} is highly sensitive to the

sample size. Communities with higher evenness tend to show lesser variation in Dev_s with

185 sample size than others (Fig 11-12). The overall Dev_{S} in all the communities is more in

186 lower PI_T.

187

188 Inferred predation estimates from Florida

189 The assemblages from the four localities of Florida are different in terms of their evenness

and sample size (Table 2). Except for Miami canal, all the localities show a case of non-

191 selective predation represented by the lack of correlation between the relative abundance of

the prey and prey-specific predation intensity (PI_{prey}) for drilling and durophagous predation

193 (Table 3). In Miami canal, the significant positive correlation implies that the abundant prey

species are preferentially attacked – a scenario described as Case 2 in our model.

195 For inferred predation intensity (PI_{T.inf}), there is substantial overlap between three localities

196 (Punta Gorda, Miami Canal, and Mc Queens pit) for both drilling and durophagy (Fig 13).

197 For inferred prey species richness (S_{prey.inf}), the assemblages show slightly different patterns

between drilling and durophagous predation. For drilling predation, all the assemblages

show a substantial overlap (Fig 13A, C, E). The durophagous predation record, however,

shows a separation between communities with low evenness (Punta Gorda) and high-

201 evenness (Mc Queens pit, Chiquita) (Fig 13 B, D, F).

202

203

204	Discussion
205	Paleontological research on predation has expanded rapidly in scope, methods, and
206	goals over the years. Various studies have focused primarily on identifying the evidence of
207	fossil records of predation and their interpretation; such records have also been used for
208	testing ecological and evolutionary hypotheses. In contrast, studies exploring the reliability
209	of the methods to quantify predation intensity have been limited. While evaluating predation
210	intensity, the intensity matrices depend more on the number of individuals of a community
211	and less on the community structure. Our model provides a theoretical framework to
212	estimate inferred predation intensities for various community structures and sampling
213	intensities. It highlighted the importance of these factors in influencing the predation
214	estimates of fossil and recent assemblages; it also demonstrates why it is necessary to
215	develop a methodological framework of sample standardization before comparing predation
216	estimates of assemblages separated by time and space.
217	
218	Effect on the inferred intensity
219	Our simulation results show that communities' evenness does not significantly change the
220	inferred predation intensity when random encounters between predator and prey guide
221	predation. It is, however, uncommon to find predation events to be completely random in the
222	natural world. The inferred predation intensity may deviate significantly from the original
223	predation intensity if the predation is selective.
224	Following the considerations of optimal foraging theory, two aspects make the predation
225	selective. The first is the relative ease with which a predator encounters a prey – a factor
226	primarily guided by the relative abundance of the prey. With the increasing dominance of a

Bhattacherjee and Chattopadhyay 12

227	prey species, the probability of encounter increases, and foraging time decreases; this
228	increases the net energy gain of the predator. The second aspect is the traits (morphological,
229	ecological, behavioral) of the prey that dictates the net energy gain of the predator. The final
230	selection by the predator is often a combination of these factors. A higher attack rate may be
231	found in an abundant prey species due to its higher encounter rate despite its high anti-
232	predatory defense than a rarer species (Johnson, 1980). This would lead to scenarios similar
233	to Case 2, where the inferred predation intensity of low-evenness communities would be
234	higher than the actual predation intensity. This inflation is because of the over-representation
235	of common species in smaller samples that are primarily attacked.
236	Most often than not, the encounter frequency does not finally dictate the attack frequency,
237	and the selection of prey is guided by the prey traits such as size (Chattopadhyay et al.,
238	2014, 2015, 2020). These would be similar to Case 3, where the most dominant groups are
239	not preyed upon. The inferred predation intensity of low-evenness communities would be
240	lower than the actual predation intensity. This apparent drop in predation intensity is
241	because of the lack of representation of rare species in smaller samples that are never
242	attacked. It is especially problematic because the deviation between PI_T and $PI_{T.inf}$ is
243	substantial for all evenness.
244	
245	Effect on inferred selectivity
246	The structure of the community heavily controls the inferred number of prey species.
247	Communities with low evenness deviate significantly from the original prey species and
248	yield fewer inferred prey species even when the predation is non-selective (Case 1). This

249 may lead to the development of an artificial selectivity primarily driven by the preferential

Bhattacherjee and Chattopadhyay 13

250	counting of the dominant species and not by the biological preference demonstrated by the
251	predators. Therefore, any community with low evenness suffers from the high probability of
252	underrepresenting the number of prey species. The deviation from the true prey-species
253	richness is higher for smaller sample size and lower intensity of predation. Communities
254	with higher predation intensity will provide the true prey-species richness at a smaller
255	sample size than communities with lower predation intensity. Selective predation (as
256	indicated by Case 2 and 3) also creates similar deviations.
257	The sensitivity of inferred prey species richness on sample size, evenness, and original
258	predation selectivity makes the comparison of prey species richness in spatially or
259	temporally distinct assemblages somewhat unreliable unless they are normalized. This is
260	especially important when comparing predation estimates from assemblages representing
261	different time-bins or environments likely to show varying diversity/evenness.
262	
263	Proposed protocol of post-facto standardization of predation data
264	The following protocol may be followed to compare predation intensity and selectivity of
265	spatially/temporally distinct assemblages to avoid misinterpretation. Using the protocol
266	described for generating Figure 4, all the assemblages need to be plotted and compared to
267	understand the sensitivity of the inferred predation intensity $(PI_{T.inf})$ on sample size. If this
268	plot shows a significant overlap between different assemblages, they should be considered to
269	represent the same predation intensity (PI_T) , and the difference in sampling size explains the
270	difference in the absolute value. To understand the sensitivity of the inferred prey-species
271	richness ($S_{\text{prev inf}}$) on sample size, the protocol described for generating Figure 5 needs to be

richness ($S_{prey.inf}$) on sample size, the protocol described for generating Figure 5 needs to be

followed for all the assemblages and compared. If this plot shows a significant overlap

Bhattacherjee and Chattopadhyay 14

273	between different assemblages, they should be considered to represent the same prey-species
274	richness (S _{prey}), and the difference in sampling size explains the difference in the absolute
275	value. The assemblage with the smallest sample size can be considered as a reference. The
276	distribution of inferred predation intensity ($PI_{T.inf}$) and prey-species richness ($S_{prey.inf}$) at that
277	sample size should be compared for all the assemblages using Kolmogorov-Smirnov (K-S)
278	test. Unless the difference is significant, we cannot reject the possibility of inadequate
279	sampling generating the difference. We should select the assemblages from a pairwise
280	comparison of all the assemblages that yield statistical significance. We should choose
281	assemblages with a larger sample size among the pairs producing without statistical
282	significance. Using those selected assemblages, we should repeat the entire process at the
283	smallest sample size of the new subset of the original assemblage. We should continue this
284	iteration till all the pairs show significant differences. This difference cannot be explained
285	by sampling and reflects the biological difference. Estimating PI _{prey} is difficult, especially
286	for cases where rare species are attacked; excluding species without any predation trace
287	while calculating PI _T may give us some insight.
288	
289	Paleontological case study
290	The assemblages from the four localities of Florida have been used for interpreting the
291	relationship between durophagy and drilling predation (Chattopadhyay and Baumiller,

The assemblages from the four localities of Florida have been used for interpreting the relationship between durophagy and drilling predation (Chattopadhyay and Baumiller, 2010). However, the study's conclusions did not consider sample size or community structure. The assemblages are of these localities are pretty different in terms of their evenness and sample size (Table 2). A selective nature of predation where common prey species are preferentially attacked is observed for both predations (durophagy and drilling)

Bhattacherjee and Chattopadhyay 15

296	only in Miami Canal. For inferred predation intensity ($PI_{T.inf}$), the sample size-standardized
297	resampling protocol (described before) shows a significant difference (Table 4). This
298	implies that the difference across assemblages cannot be explained by the sampling intensity
299	or the evenness of the assemblage. Similarly, the sample size-standardized resampling
300	protocol (described before) yields a significant difference for all the assemblages for
301	inferred prey species richness ($S_{prey.inf}$) (Table 4). This implies that the difference in the
302	observed prey-species richness across assemblages cannot be explained by sample
303	intensity/evenness.

304 It is important to recognize that a number of factors played a role in this particular case that made these assemblages less susceptible to community evenness and sampling 305 intensity. Because three localities (Punta Gorda, Mc Queens pit, Chiquita) are showing non-306 307 selective predation, they are less likely to be affected by sample size. Moreover, they have medium to high evenness that makes them less sensitive to sample size. Miami canal shows 308 309 evidence of selective predation where abundant species are preferentially attacked. The 310 expected deviation in predation intensity of the assemblage of Miami canal, characterized by low evenness (0.31), low predation intensity ($PI_T < 0.2$) should follow Fig 6A that shows a 311 low value of Dev_{PI} at large sample size. Because Miami canal has the largest sample size 312 among the localities, makes it less likely to be affected by these factors. The expected 313 deviation in inferred prey species richness (Dev_s) of the assemblage of Miami canal should 314 follow Fig 10A that shows least sensitivity to sample size. Hence, the observed S_{prev,drill} and 315 S_{prev.repair} are least likely to be affected by these factors. 316

317

318

319	Implications
320	The fossil record of predation has shaped our understanding of how the nature of biotic
321	interaction changed over time and its role as an evolutionary mechanism. Preserved traces,
322	such as drill holes and repair scars, are some of the best quantifiable proxies of predation
323	and they are often used to assess the evolutionary impact of predation in deep time (Vermeij,
324	1987; Kelley and Hansen, 1996, Huntley and Kowalewski, 2007). Studies aiming to
325	evaluate the predation trend through time, however, are often forced to use predation data
326	from discrete assemblages that differ in sample size, inherent community evenness, and the
327	type of predation selectivity. Our study demonstrates the effect of such factors on the
328	inferred predation intensity and the recognized prey richness. Comparison between
329	temporally separated collections, such as Paleozoic and Cenozoic predation records that are
330	known to be different in the sample size (and probably predatory behavior), are susceptible
331	to such factors. Our proposed method of post-facto standardization will be essential for such
332	comparisons and to establish the true nature of biotic interaction through time.
333	
334	Conclusions
335	The effect of community structure and sampling intensity on the inferred predation
336	estimates is rarely explored. Using a resampling technique, our study demonstrates the
337	impact of these aspects on the estimates of predation intensity and the number of prey
338	species. Our results show that the communities with highly selective predation are the most
339	sensitive to sampling intensity, and the inferred predation intensity of these assemblages can
340	substantially deviate from the actual value. In contrast, predation intensity for non-selective
341	predation tends to be unaffected by sampling intensity. Inferred prey-species richness is also

342	influenced by the nature of community evenness, predation selectivity, and actual predation
343	intensity. For non-selective predation, communities with low evenness and low predation
344	intensity are highly sensitive to sample size. The inferred prey-species richness can be
345	underrepresented significantly at smaller sample size. For selective predation, the sensitivity
346	depends on the nature of selection. The inferred prey-species richness deviates significantly
347	when rare species are attacked preferentially. Our study also provides a framework of post-
348	facto standardization of the predation data to remove the effect of sample size/evenness
349	during comparison. The proposed method will be essential for temporal comparison of pre-
350	and post-Cretaceous assemblages as they are often characterized by a difference in sample
351	size/selectivity.
352	
353	Acknowledgments
354	This project was supported by the SERB core research grant (CRG/2018/002604). The
355	IISER Pune Doctoral fellowship supported MB.
356	
357	

358	References
359	Abrams, P. A. 1989. The evolution of rates of successful and unsuccessful predation.
360	Evolutionary Ecology 3:157-171.
361	Chattopadhyay, D., A. Rathie, and A. Das. 2013a. The effect of morphology on postmortem
362	transportation of bivalves and its taphonomic implications. Palaios 28:203-209.
363	Chattopadhyay, D., A. Rathie, D. J. Miller, and T. K. Baumiller. 2013b. Hydrodynamic
364	effects of drill holes on postmortem transportation of bivalve shells and its
365	taphonomic implications. Palaios 28:875-884.
366	Chattopadhyay, D., and T. K. Baumiller. 2010. Effect of durophagy on drilling predation: a
367	case study of Cenozoic molluscs from North America. Historical Biology 22:367-
368	379.
369	Chattopadhyay, D., D. Sarkar, S. Dutta, and S. R. Prasanjit. 2014. What controls
370	cannibalism in drilling gastropods? A case study on Natica tigrina. Palaeogeography,
371	Palaeoclimatology, Palaeoecology 410:126-133.
372	Chattopadhyay, D., M. Zuschin, and A. Tomašových. 2015. How effective are ecological
373	traits against drilling predation? Insights from recent bivalve assemblages of the
374	northern Red Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 440:659-670.
375	Chattopadhyay, D., M. Zuschin, S. Dominici, and J. A. Sawyer. 2016. Patterns of drilling
376	predation in relation to stratigraphy, locality and sieve size: Insights from the Eocene
377	molluscan fauna of the Paris Basin. Palaeogeography, Palaeoclimatology,
378	Palaeoecology 459:86-98.

379	Chattopadhyay, D., V. G. S. Kella, and D. Chattopadhyay. 2020. Effectiveness of small size
380	against drilling predation: Insights from lower Miocene faunal assemblage of Quilon
381	Limestone, India. Palaeogeography, Palaeoclimatology, Palaeoecology 551:109742.
382	Hattori, K. E., P. H. Kelley, G. P. Dietl, N. O. Moore, S. L. Simpson, A. M. Zappulla, K. J.
383	Ottens, and C. C. Visaggi. 2014. Validation of taxon-specific sampling by novice
384	collectors for studying drilling predation in fossil bivalves. Palaeogeography,
385	Palaeoclimatology, Palaeoecology 412: 199-207.
386	Hausmann, I. M., H. Domanski, and M. Zuschin. 2018. Influence of setting, sieve size, and
387	sediment depth on multivariate and univariate assemblage attributes of coral reef-
388	associated mollusc death assemblages from the Gulf of Aqaba. Facies 64: 1-10.
389	Huntley, J. W. and M. Kowalewski. 2007. Strong coupling of predation intensity and
390	diversity in the Phanerozoic fossil record: Proceedings of the National Academy of
391	Sciences 104: 15006–15010.
392	Kelley, P. H., and T. A. Hansen. 1996. Naticid gastropod prey selectivity through time and
393	the hypothesis of escalation. Palaios 11: 437-445.
394	Klompmaker, A. A., P. H. Kelley, D. Chattopadhyay, J. C. Clements, J. W. Huntley, and M.
395	Kowalewski. 2019. Predation in the marine fossil record: studies, data, recognition,
396	environmental factors, and behavior. Earth-science reviews 194: 472-520.
397	Kowalewski, M. 2002. The Fossil Record of Predation: An Overview of Analytical
398	Methods. Pp. 3-42 in M. Kowalewski, P.H. Kelley, eds. The Fossil Record of
399	Predation. Paleontological Society Papers, vol. 8. Yale University, New Haven.

400	Kowalewski, M., and A. P. Hoffmeister. 2003. Sieves and fossils: Effects of mesh size on
401	paleontological patterns. Palaios 18: 460-469.
402	Langerhans, R. B. 2007. Evolutionary consequences of predation: avoidance, escape,
403	reproduction, and diversification. Pp. 177-220 in Predation in organisms. Springer,
404	Berlin, Heidelberg.
405	Nilsen, E. B., D. Christianson, J. M. Gaillard, D. Halley, J. DC. Linnell, M. Odden, M.
406	Panzacchi, C. Toïgo, and B. Zimmermann. 2012. Describing food habits and
407	predation: field methods and statistical considerations. Carnivore ecology and
408	conservation: A handbook of techniques: 256-272.
409	Ottens, K. J., G. P. Dietl, P. H. Kelley, and S. D. Stanford. 2012. A comparison of analyses
410	of drilling predation on fossil bivalves: bulk-vs. taxon-specific sampling and the role
411	of collector experience. Palaeogeography, Palaeoclimatology, Palaeoecology 319:84-
412	92.
413	Paine, R. T. 1966. Food web complexity and species diversity. The American
414	Naturalist 100: 65-75.
415	Pringle, R. M., T. R. Kartzinel, T. M. Palmer, T. J. Thurman, K. Fox-Dobbs, C. CY Xu, M.
416	C. Hutchinson, T.C. Coverdale, J.H. Daskin, D.A. Evangelista, and K.M. Gotanda.
417	2019. Predator-induced collapse of niche structure and species coexistence.
418	Nature 570: 58-64.
419	Roy, K., D. J. Miller, and M. LaBarbera. 1994. Taphonomic bias in analyses of drilling
420	predation: Effects of gastropod drill holes on bivalve shell strength. Palaios 9: 413-
421	421.

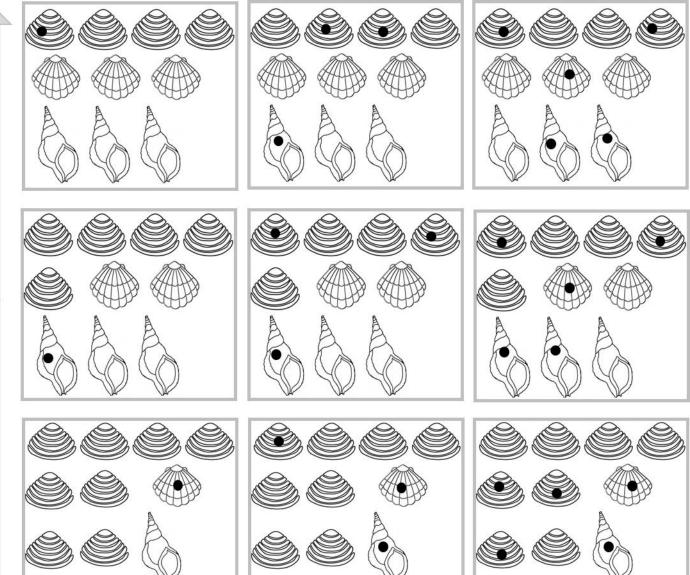
- 422 Sarkar, D., G. Deole, S. Paul, S. Mondal, and R. Saha. 2021. Pre-burial taphonomic imprints
- 423 on drilling intensity: a case study from the recent molluscs of Chandipur,
- 424 India. Historical Biology 33: 1457-1463.
- Signor, P. W., and Carlton E. B. 1984. The mid-Paleozoic precursor to the Mesozoic marine
 revolution. Paleobiology 10: 229-245.
- 427 Sime, J. A., and P. H. Kelley. 2016. Common mollusk genera indicate interactions with their
- 428 predators were ecologically stable across the Plio-Pleistocene extinction.
- 429 Palaeogeography, Palaeoclimatology, Palaeoecology 463: 216-229.
- 430 Smith, J. A., J. C. Handley, and G. P. Dietl. 2021. Accounting for uncertainty from zero
- 431 inflation and overdispersion in paleoecological studies of predation using a
- 432 hierarchical Bayesian framework. Paleobiology :1-18.
- 433 Stanley, S. M. 2008. Predation defeats competition on the seafloor. Paleobiology 34:1-21.
- 434 Vermeij, G. H. 1977. The Mesozoic marine revolution: evidence from snails,
- 435 predators and grazers. Paleobiology 3: 245–258.
- Vermeij, G. H. 1987. Evolution and Escalation: An Ecological History of Life. Princeton
 University Press, Princeton, New Jersey.
- 438 Visaggi, C. C., and P. H. Kelley. 2015. Equatorward increase in naticid gastropod drilling
- 439 predation on infaunal bivalves from Brazil with paleontological implications.
- 440 Palaeogeography, Palaeoclimatology, Palaeoecology 438: 285-299.
- Zuschin, M., and R. J. Stanton Jr. 2001. Experimental measurement of shell strength and its
 taphonomic interpretation. Palaios 16: 161-170.

Bhattacherjee and Chattopadhyay 22

443 **Table caption**

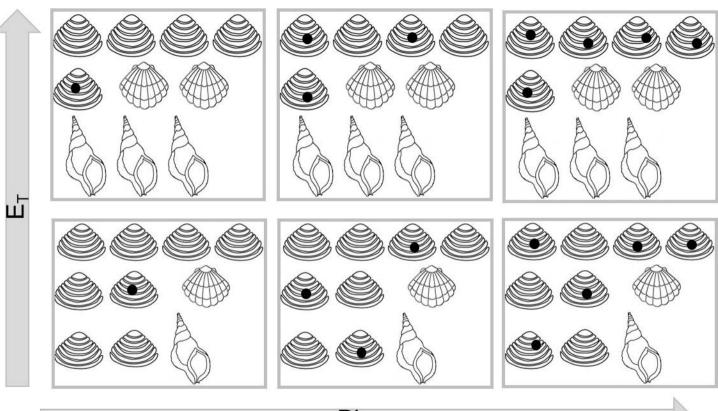
444	Table 1. A summary of the model assemblages used for this study with varying evenness,
445	predation intensity and predator preference.
446	
447	Table 2. A summary of the published predation data from four Plio-Pleistocene fossil
448	assemblages of Florida (Chattopadhyay and Baumiller, 2010).
449	
450	Table 3. The result of Spearmann rank order correlation test for proportional abundance and
451	PIprey for the predation estimates across four Plio-Pleistocene fossil assemblages of
452	Florida (Chattopadhyay and Baumiller, 2010). The statistically significant (p<0.05)
453	results are marked in bold.
454	
455	Table 4. The test-statistic (D) of Kolmogorov–Smirnov test comparing the predation
456	estimates across four Plio-Pleistocene fossil assemblages of Florida using sample-
457	standardization protocol. All the results are statistically significant (p<0.05).
458	
459	Figure caption
460	Figure 1. An illustrative diagram of nine different molluscan communities with varying
461	degrees of evenness (E_T) and predation intensity (PI_T). The predators attacking the
462	prey are non-selective in their choice (Case 1). Mollusc drawings are from
463	publicdomainpictures.net with subsequent modification. [Figure 1. Two-column;
464	Grayscale]

465	Figure 2. An illustrative diagram of nine different molluscan communities with varying
466	degrees of evenness (E_T) and predation intensity (PI_T). The predators attacking the
467	prey are selective and preferentially attack the most abundant prey species (Case 2).
468	Mollusc drawings are from publicdomainpictures.net with subsequent modification.
469	[Figure 2. Two-column; Grayscale]
470	Figure 3. An illustrative diagram of nine different molluscan communities with varying
471	degrees of evenndegrees _T) and predation intensity (PI_T). The predators attacking the
472	prey are selective in their choice and preferentially attack prey species rare in this
473	assemblage (Case 3). Mollusc drawings are from publicdomainpictures.net with
474	subsequent modification. [Figure 3. Two-column; Grayscale]
475	Figure 4. Plot showing variation in inferred predation intensity (PI_{inf}) with varying sample
476	sizes for sizeserent model assemblages. The warmer colors represent higher
477	evenness. The columns indicate increasing predation intensity in the original
478	assemblage (PI_T) from left to right. The rows indicate the different degrees of the
479	selectiveness of predation, denoted by Case 1, 2, and 3 from top to bottom. [Figure 4.
480	Two columns; Color]
481	Figure 5. Plot showing deviation of the inferred predation intensity (PI_{inf}) from the overall
482	predation intensity (PI_T) with varying sample size for the model assemblages
483	representing Case 1 (non-selective predation). The rows indicate increasing evenness
484	from top to bottom. The columns indicate increasing predation intensity in the
485	original assemblage (PI_T) from left to right. The red line represents the overall
486	predation intensity (PI_T), and the grey represents the simulated values for specific
487	model assemblage. [Figure 4. Two columns; Color]

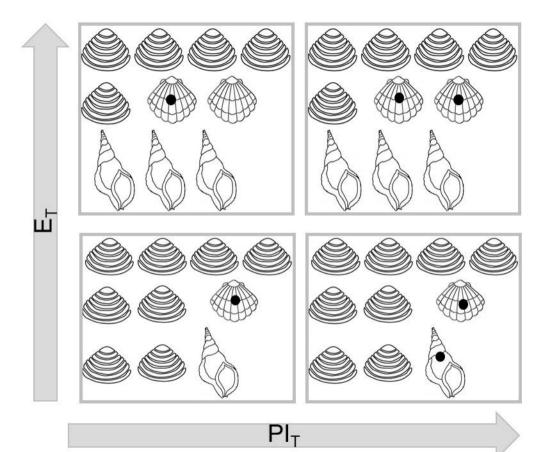

Bhattacherjee and Chattopadhyay 24

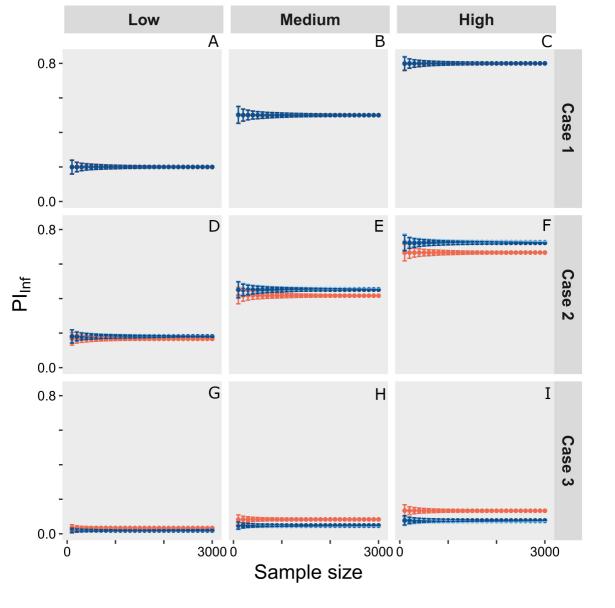
488	Figure 6. Plot showing deviation of the inferred predation intensity (PI_{inf}) from the overall
489	predation intensity (PI_T) with varying sample size for the model assemblages
490	representing Case 2 (selective predation of the common species). The rows indicate
491	increasing evenness from top to bottom. The columns indicate increasing predation
492	intensity in the original assemblage (PI_T) from left to right. The red line represents
493	the overall predation intensity (PI_T), and the grey represents the simulated values for
494	specific model assemblage. [Figure 6. Two columns; Color]
495	Figure 7. Plot showing deviation of the inferred predation intensity (PI_{inf}) from the overall
496	predation intensity (PI_T) with varying sample size for the model assemblages
497	representing Case 3 (selective predation of the rare species). The rows indicate
498	increasing evenness from top to bottom. The columns indicate increasing predation
499	intensity in the original assemblage (PI_T) from left to right. The red line represents
500	the overall predation intensity ($PI_{T,}$) and the grey represents the simulated values for
501	specific model assemblage. [Figure 7. Two columns; Color]
502	Figure 8. Plot showing variation in the inferred number of prey species $(S_{prey.inf})$ with
503	varying sample sizes for different model assemblages. The warmer colors represent
504	higher evenness. The columns indicate increasing predation intensity in the original
505	assemblage (PI_T) from left to right. The rows indicate the different degrees of the
506	selectiveness of predation, denoted by Case 1, 2, and 3 from top to bottom. [Figure 8.
507	Two columns; Color]
508	Figure 9. Plot showing deviation (Dev_s) of the inferred prey species richness ($S_{prey.inf}$) from

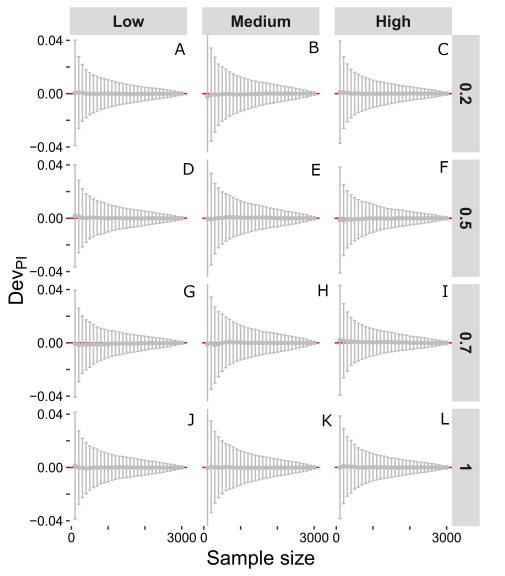
509 the original prey species richness (S_{prey}) with varying sample size for the model

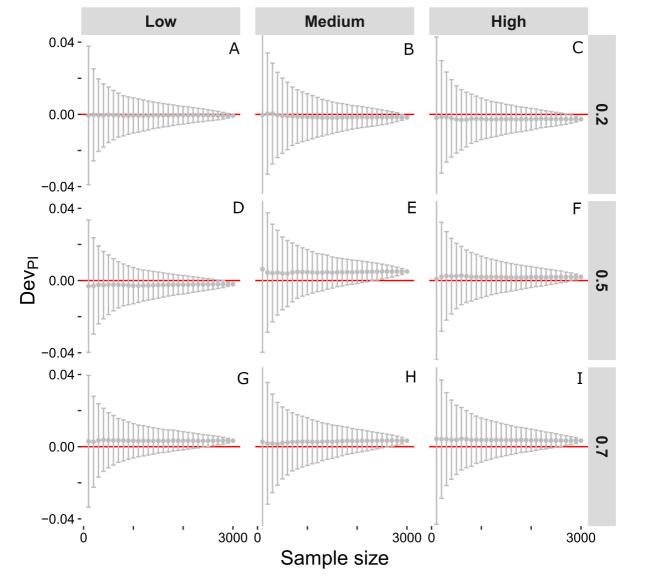

510	assemblages representing Case 1 (non-selective predation). The rows indicate
511	increasing evenness from top to bottom. The columns indicate increasing predation
512	intensity in the original assemblage (PI _T) from left to right. The red line represents
513	the original prey species richness (S_{prey}) , and the grey represents the simulated values
514	for specific model assemblage. [Figure 9. Two columns; Color]
515	Figure 10. Plot showing deviation (Dev_s) of the inferred prey species richness ($S_{prey.inf}$) from
516	the original prey species richness (S_{prey}) with varying sample size for the model
517	assemblages representing Case 2 (selective predation of the common species). The
518	rows indicate increasing evenness from top to bottom. The columns indicate
519	increasing predation intensity in the original assemblage (PI_T) from left to right. The
520	red line represents the original prey species richness (S_{prey}), and the grey represents
521	the simulated values for specific model assemblage. [Figure 10. Two columns;
522	Color]
523	Figure 11. Plot showing deviation (Dev_s) of the inferred prey species richness ($S_{prey.inf}$) from
524	the original prey species richness (S_{prey}) with varying sample size for the model
525	assemblages representing Case 3 (selective predation of the rare species). The rows
526	indicate increasing evenness from top to bottom. The columns indicate increasing
527	predation intensity in the original assemblage (PI_T) from left to right. The red line
528	represents the original prey species richness (S_{prey}) , and the grey represents the
529	simulated values for specific model assemblage. [Figure 11. Two columns; Color]
530	Figure 12. The plot shows variation in inferred predation intensity (PI_{inf}) and inferred the
531	number of prey species $(S_{prey.inf})$ with specific sample sizes for different model

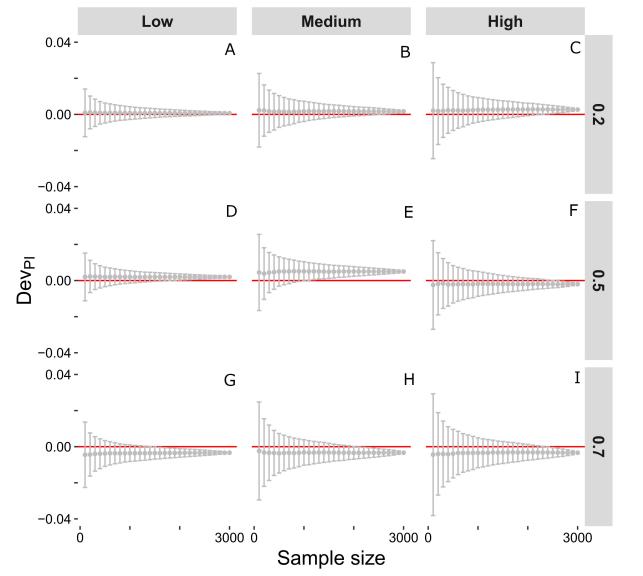
532	assemblages. The warmer colors represent higher evenness. The columns indicate
533	increasing predation intensity in the original assemblage (PI_T) from left to right. The
534	rows indicate the different degrees of the selectiveness of predation, denoted by Case
535	1, 2, and 3 from top to bottom. [Figure 12. Two columns; Color]
536	Figure 13. Plot showing variation in inferred estimates of drilling and durophagous
537	predation with varying degrees of sampling for four Pleistocene molluscan
538	assemblages of Florida with different evenness (E_T). The top row represents the
539	sample size variation in inferred predation intensity (PI_{inf}). The middle row shows
540	the inferred number of prey species $(S_{prey.inf})$ with varying sample sizes. The bottom
541	row represented the relationship between the inferred predation intensity (PI_{inf}) and
542	inferred number of prey species $(S_{prey.inf})$ at specific sizes for the four assemblages.
543	[Figure 13. Two columns; Color]

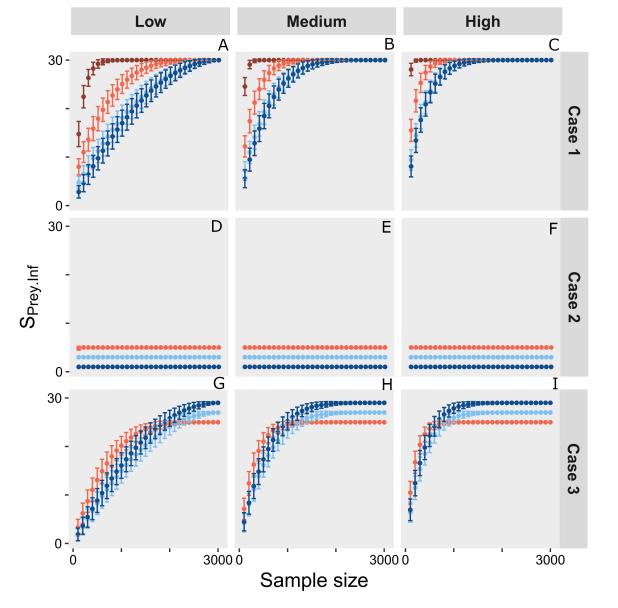


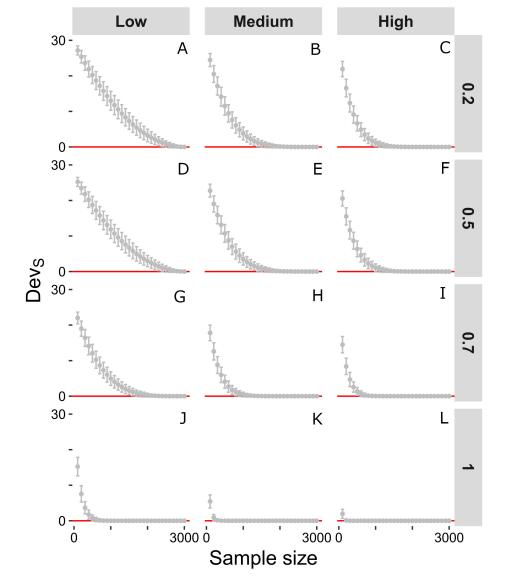

ΡI_T

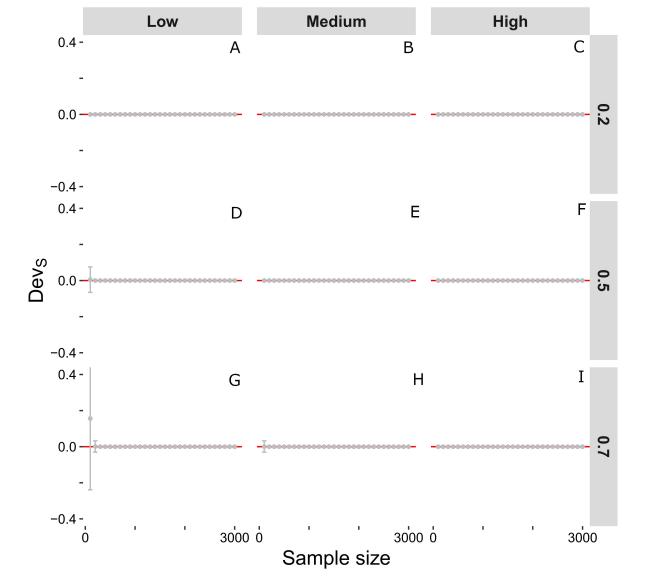

щ

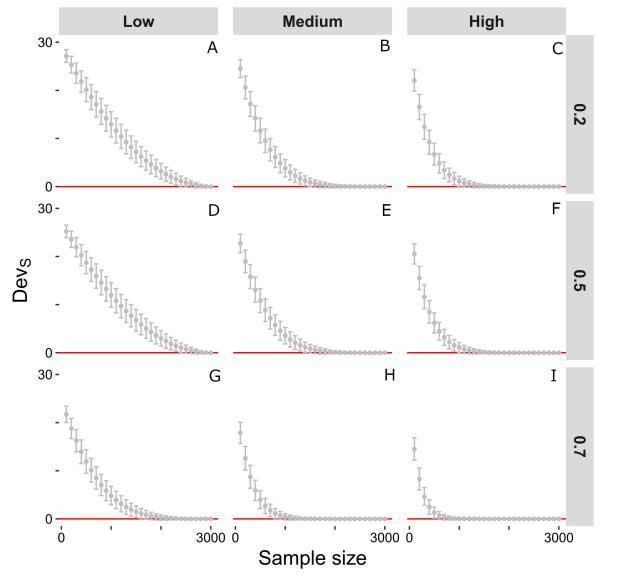


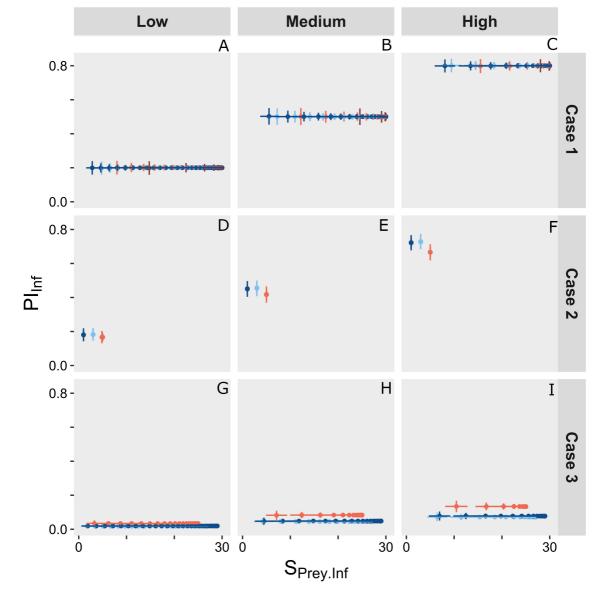

PI_T











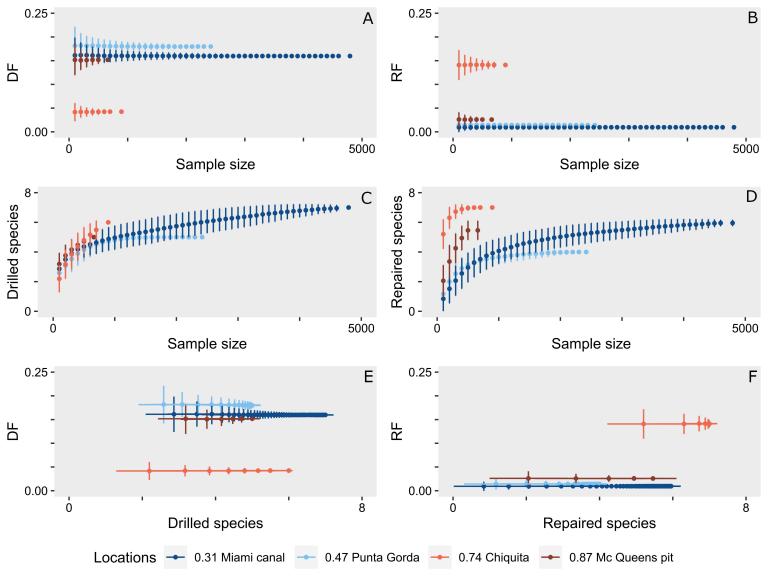


Table 1. A summary of the model assemblages used for this study with varying evenness, predation intensity and predator preference.

Evenness	Structure of the model	Case 1				Case 2				Case 3			
	community	(Preys of all species are attacked equal probablity)			ıal	(Preys of only common species are attacked)				(Preys of only rare species are attacked)			
		Low (PI _{prey} =0.2)	Medium (PI _{prey} =0.5)	High (PI _{prey} =0.8)	S _{prey}	Low (PI _{prey} =0.2)	Medium (PI _{prey} =0.5)	High (PI _{prey} =0.8)	S _{prey}	Low (PI _{prey} =0.2)	Medium (PI _{prey} =0.5)	High (PI _{prey} =0.8)	S _{prey}
$E_{T} = 0.2$	$\begin{array}{l} N_{(S=1:29)}\!=\!10,N_{(S=30)}\!=\!2710\\ [1\!*\!2710+29\!*\!10]=3000 \end{array}$	PI _T =0.2	PI _T =0.5	PI _T =0.8	30	PI _T =0.18	PI _T =0.45	PI _T =0.72	1	PI _T =0.02	PI _T =0.05	PI _T =0.08	29
$E_{T} = 0.5$	$\begin{array}{l} N_{(S=1:3)} = \!$	PI _T =0.2	PI _T =0.5	PI _T =0.8	30	PI _T =0.18	PI _T =0.46	PI _T =0.73	3	PI _T =0.02	PI _T =0.05	PI _T =0.07	27
$E_{T} = 0.7$	$\frac{N_{(S=1:5)}=500, N_{(S=6:30)}=20}{[5*500+25*20]=3000}$	PI _T =0.2	PI _T =0.5	PI _T =0.8	30	PI _T =0.17	PI _T =0.42	PI _T =0.67	5	PI _T =0.03	PI _T =0.08	PI _T =0.13	25
$E_T = 1$	$\frac{N_{(S=1:30)}=100}{[30*100]=3000}$	PI _T =0.2	PI _T =0.5	PI _T =0.8	30	NA	NA	NA	NA	NA	NA	NA	NA

Table 2. A summary of the published predation data from four Plio-Pleistocene fossil assemblages of Florida (Chattopadhyay and Baumiller,2010).

Locality	Evenness (E _T)	Sample size	ST	Drilling frequency	S _{prey.drill}	Repair scar frequency	S _{prey.repair}
Miami Canal	0.31	4794	7	0.16	7	0.01	6
Punta Gorda	0.47	2417	5	0.18	5	0.01	4
Chiquita	0.74	894	7	0.04	6	0.14	7
McQueen's pit	0.87	657	6	0.15	5	0.03	6

Predation	Location	rho	р	Inferred scenario	
Drilling	Punta Gorda	0.87	0.05	Case 2	
	McQueen's pit	0.83	0.06	Case 1	
	Chiquita	0.68	0.08	Case 1	
	Miami canal	0.99	<0.001	Case 2	
Durophagy	Punta Gorda	0.21	0.74	Case 1	
	McQueen's pit	0.46	0.35	Case 1	
	Chiquita	0.24	0.61	Case 1	
	Miami canal	0.79	0.03	Case 2	

Table 3. The result of Spearmann rank order correlation test for proportional abundance and PI_{prey} for the predation estimates across four Plio-Pleistocene fossil assemblages of Florida (Chattopadhyay and Baumiller, 2010). The significant results are marked in bold.

Table 4. The test-statistic (D) of Kolmogorov–Smirnov test comparing the predation estimates across four Plio-Pleistocene fossil assemblages of Florida using sample-standardization protocol. All the results are statistically significant (p<0.05).

Estimate	Predation	Location	McQueen's pit	Chiquita	Miami Canal
Predation intensity	Drilling	Punta Gorda	0.8	1	0.53
		McQueen's pit		0.24	0.31
		Chiquita			1
	Durophagy	Punta Gorda	0.9	1	0.19
		McQueen's pit		0.96	0.85
		Chiquita			1
Prey species	Drilling	Punta Gorda	0.38	0.31	0.13
		McQueen's pit		0.24	0.36
		Chiquita			0.29
richness	Durophagy	Punta Gorda	0.84	1	0.41
		McQueen's pit		1	0.95
		Chiquita			1