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Abstract 24 

Deciphering 3D genome conformation is important for understanding gene regulation and 25 

cellular function at a spatial level. The recent advances of single cell Hi-C technologies have 26 

enabled the profiling of the 3D architecture of DNA within individual cell, which allows us to 27 

study the cell-to-cell variability of 3D chromatin organization. Computational approaches are 28 

in urgent need to comprehensively analyze the sparse and heterogeneous single cell Hi-C data. 29 

Here, we proposed scDEC-Hi-C, a new framework for single cell Hi-C analysis with deep 30 

generative neural networks. scDEC-Hi-C outperforms existing methods in terms of single cell 31 

Hi-C data clustering and imputation. Moreover, the generative power of scDEC-Hi-C could 32 

help unveil the heterogeneity of chromatin architecture across different cell types. We expect 33 

that scDEC-Hi-C could shed light on deepening our understanding of the complex 34 

mechanism underlying the formation of chromatin contacts. scDEC-Hi-C is freely available 35 

at https://github.com/kimmo1019/scDEC-Hi-C.  36 
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 38 

Key points 39 

• scDEC-Hi-C provides an end-to-end framework based on autoencoder and deep generative 40 

model to comprehensively analyze single cell Hi-C data, including low-dimensional 41 

embedding and clustering. 42 

• Through a series of experiments including single cell Hi-C data clustering and structural 43 

difference identification, scDEC-Hi-C demonstrates suprioir performance over existing 44 

methods. 45 

• In the downstream analysis of chromatin loops from single cell Hi-C data, scDEC-Hi-C is 46 

capable of significantly enhancing the ability for identifying single cell chromatin loops by 47 

data imputation.  48 
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Introduction 49 

The rapid development in single-cell technologies enables us to reliably measure the genomic, 50 

transcriptomic and epigenomic features of a particular cellular context at single-cell resolution [1-4]. 51 

These powerful technologies provide scientists with the opportunity to study the unique patterns of 52 

cell type specificity and gene regulation. One fundamental question regarding the abundant single 53 

cell data is how to distinguish different cell types in a heterogeneous cell population based on the 54 

measured molecular signatures. A variety of computational approaches have been developed to 55 

decipher the heterogeneity across cell types based on transcriptome, methylome, and chromatin 56 

accessibility [5-11].  57 

    The majority of the current single-cell assays, such as RNA sequencing (scRNA-seq) and 58 

transposase-accessible chromatin using sequencing (scATAC-seq), ignore the spatial information 59 

of the genome, such as 3D chromatin structure, which plays an important role in genome functions, 60 

including gene transcription and DNA replication [12-14]. The emerging single cell Hi-C 61 

technologies bridge this gap by measuring the 3D chromatin structures in individual cells, which 62 

have the potential to comprehensively reveal the diverse genome functions underlying the unique 63 

genome structure [15-19]. 64 

Several computational methods have been proposed for the single cell Hi-C data analysis. For 65 

example, scHiCluster [20] introduced a random walk-based strategy for data imputation and used 66 

PCA for embedding. HiCRep/MDS [21] used multi-dimensional scaling (MDS) for learning a low-67 

dimensional embedding. Higashi [22] is a recent method that utilized hypergraph representation 68 

learning for single cell imputation and embedding. However, all these methods require an 69 

additional clustering approach (e.g., K-means) for identifying cell types. In addition, choosing the 70 

most appropriate clustering approach is sometimes difficult as it is hard for a single clustering 71 
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approach to perform the best across different datasets.  Moreover, modeling the generation process 72 

of ultra-sparse single cell Hi-C data could help us better understand the formulation of 3D 73 

chromatin conformation, which was ignored by most previous methods. 74 

To overcome the above mentioned limitations, we developed scDEC-Hi-C, a comprehensive 75 

end-to-end unsupervised learning framework for single cell Hi-C data embedding, clustering, and 76 

generation by deep generative neural networks. Unlike existing methods that treat embedding and 77 

clustering as two separated tasks, our approach enables simultaneously learning the low-78 

dimensional embeddings of single cell Hi-C data and clustering the single cell Hi-C data by neural 79 

network in an unsupervised manner. From systematical experiments, scDEC-Hi-C demonstrates 80 

superiority in various tasks, including clustering the cell types, data imputation for quality 81 

enhancement, as well as data generation given a desired cell type. To the best of our knowledge, 82 

scDEC-Hi-C is the first computational framework that integrates the data embedding and clustering 83 

intrinsically for the single cell Hi-C data analysis. 84 

Results 85 

Overview of scDEC-Hi-C 86 

scDEC-Hi-C consists of two major computational modules, including a convolutional autoencoder 87 

module for chromosome-wise representation learning and a deep generative module for cell-wise 88 

representation learning and clustering (Fig 1). The autoencoder module aims at extracting the low-89 

dimensional features for each chromosome within a cell. Then the chromosome-wise features are 90 

transformed to cell-wise features through a chromosome readout function. We chose global 91 

concatenation for the readout function as default. The cell-wise generative model is adopted from 92 

our previous work scDEC [23] where G and H networks aim at bidirectional transformation 93 

between the m-dimensional latent space and n-dimensional representer space. Note that the latent 94 
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variables � follows a standard Gaussian distribution N��, �� and � follows a category distribution 95 

Cat��, �, which is parameterized by the number of clusters � and the weight . G network takes 96 

� and � as inputs and Dx network was used for matching the distribution of cell-wise representation 97 

� and G network output �� through adversarial training. Similarly, H network and Dz network also 98 

work in an adversarial manner where H network could learn the latent representation (��) and infer 99 

the cluster (��) simultaneously. The detailed model architecture and training strategy can be found in 100 

Supplementary Table 1. 101 

scDEC-Hi-C is capable of identifying cell heterogeneity 102 

A fundamental problem in single cell Hi-C data analysis is to identify different cell types in 103 

heterogeneous cell populations. To evaluate the performance of scDEC-Hi-C on this task, we 104 

adopted two commonly used benchmark datasets here and systematically compared scDEC-Hi-C to 105 

three baseline methods (see Methods for data preprocessing and Supplementary Table 2). Three 106 

metrics, including NMI, ARI, and Homogeneity, were introduced for measuring the performance in 107 

this unsupervised learning task in order to quantify the ability for distinguishing different cell types 108 

in the single cell Hi-C datasets (see Methods). Note that all baseline methods are only able to learn 109 

the embedding for each single cell and require additional clustering methods (e.g, K-means) while 110 

scDEC-Hi-C simultaneously learns cell embeddings and assigns clustering labels to each cell. 111 

scDEC-Hi-C is capable of learning embeddings which could separate cells from different cell types 112 

with a relatively larger margin than other baseline methods (Fig.2A-B). It is worth mentioning that 113 

scDEC-Hi-C exhibits superior performance on Ramani dataset [17] by outperforming other 114 

methods with an ARI of 0.845, compared to 0.826 of Higashi, 0.795 of scHiCluster, and 0.785 of 115 

HiCRep/MDS (Fig. 2C). In the second Dip-C dataset [24] where only annotated labels were 116 

available, we treat the annotated labels as surrogate ground truth labels. All methods demonstrate 117 
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significantly lower clustering performance than the Ramani dataset with ground truth label. 118 

Specifically, scDEC-Hi-C demonstrates slightly lower performance than Higashi (Fig. 2C). In the 119 

readout module in scDEC-Hi-C, the information coming from each chromosome was aggregated. 120 

Thus it is worthy to evaluate the contribution of each chromosome. The experimental results show 121 

that chromosome 11 contributed the most in Ramani dataset and scDEC-Hi-C consistently 122 

outperformed Higashi in 18 chromosomes out of 24 (Fig. 2D). To further investigate the effect of 123 

sequencing depth on the clustering performance, we randomly dropout the sequencing reads with 124 

different rate. scDEC-Hi-C consistently outperforms all other baseline methods at different dropout 125 

rates (Fig. 2E). 126 

scDEC-Hi-C enables the identification of structural differences  127 

In single cell Hi-C data analysis, one fundamental question to ask is whether cell type specificity is 128 

revealed by the structural difference regions in Hi-C contacts. The cell type specificity in single cell 129 

data, such as single cell RNA-seq and single cell ATAC-seq, can be clearly revealed by marker 130 

genes or differential peaks [25]. In bulk Hi-C data, it has been validated that cell type specificity is 131 

highly associated with the dynamic chromatin loops within topologically associating domains 132 

(TADs) [26, 27].  Therefore, it is worthwhile to investigate whether the structural differences also 133 

exist in single cell Hi-C data. To explore this, we used the autoencoder from the first stage of 134 

scDEC-Hi-C model as an approach for scDEC-Hi-C imputation. In brief, we segmented Hi-C 135 

contact matrix of each chromosome per cell into non-overlapping square patches within the range 136 

of 1Mbp. We then treated the output of decoder as the imputed single cell Hi-C data (see Methods). 137 

We designed extensive experiments to evaluate whether the imputed single cell Hi-C data could 138 

reveal more biological insights than the raw data. We aggregated single cells of K562 and 139 

GM12878 cell lines from Ramani dataset and then merged them as the aggregated Hi-C data. In the 140 
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meanwhile, we also downloaded the bulk Hi-C data from GM12878 and K562 cell lines as ground 141 

truth for validation. From the Hi-C profile of a genomic region (chr9: 132.9M-134.9M), K562 and 142 

GM12878 have significantly different Hi-C contacts map the difference is also emphasized by the 143 

imputed single cell Hi-C data (Fig. 3A). Specifically, the chromatin structural boundaries marked 144 

by the rectangle is much clearer by imputed data than the raw data, which demonstrates the power 145 

and effectiveness of scDEC-Hi-C in enhancing the resolution of chromatin structural boundaries. It 146 

is also noticeable that the chromatin structural boundaries revealed by bulk Hi-C data have a larger 147 

consistency with imputed single cell data than the raw single cell data. To further investigate the 148 

regulatory landscape of this genomic region, we downloaded both RNA-seq and histone 149 

modification data from ENCODE database [28] and visualized them with the help of WashU 150 

Epigenome Browser [29]. It can be seen that both RNA-seq signal and H3K4me1 marker are more 151 

enriched in K562 cell line than GM12878 cell line in the bounded region (Fig. 3B), which indicates 152 

a strong activity of regulatory elements such as enhancer in K562. Next, we designed quantitative 153 

experiments to verify whether the resolution of single Hi-C data could be improved by scDEC-Hi-154 

C model. Taking the bulk K562 Hi-C data as ground truth, we calculated the Pearson’s correlation 155 

of Hi-C interactions of different distances between ground truth and imputed data. It is seen that the 156 

interactions at a larger distance are more difficult to impute (Fig. 3C). The correlation between bulk 157 

Hi-C data and raw single cell Hi-C data is less than 0.25 while the single cell Hi-C data imputed by 158 

scDEC-Hi-C and scHiCluster are much higher than the baseline. scDEC-Hi-C consistently 159 

outperforms scHiCluster at different distances ranging from 0 to 1Mb. To sum up, scDEC-Hi-C 160 

enables improving the identification of structural boundaries which further helps us study the 161 

chromatin structure difference across diverse cell types. 162 

scDEC-Hi-C enhances the discovery of chromatin loops 163 
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Chromatin loops are defined as a pair of genomic regions that are brought into spatial proximity, 164 

which can be inferred from bulk Hi-C data. Chromatin loops have been proved to be highly 165 

relevant to gene regulation, cell fates and functions. We then intended to explore whether the 166 

chromatin loops can also be identified within single cell Hi-C data. Similarly, we merged single 167 

cell Hi-C data of K562 and GM12878 cell lines, respectively. In the meanwhile, we also 168 

downloaded the corresponding bulk Hi-C data for comparison. We applied Fit-Hi-C [30], a 169 

computational tool for calling chromatin loops from Hi-C data, to bulk Hi-C data and imputed 170 

single cell Hi-C data by scDEC-Hi-C, respectively. There are 6478 chromatin loops in GM12878 171 

cell line while 732 (11.3%) chromatin loops are also discovered in imputed single cell Hi-C data 172 

(Fig. 4A). scDEC-Hi-C additionally identified 294 chromatin loops which are not contained in the 173 

bulk Hi-C chromatin loops. Note that only 196 chromatin loops can be identified from raw single 174 

cell Hi-C data and scDEC-Hi-C significantly improves the precision from 1.4% to 11.3% by 175 

imputation (Supplementary Figure 1). We visualized the chromatin loops in a genomic region 176 

(chr3:118.2M-120.2M) of bulk Hi-C chromatin loops versus either raw single cell Hi-C data (Fig. 177 

4B) or imputed single cell Hi-C data (Fig. 4C). In K562 cell line, 12.0% of the chromatin loops 178 

from bulk Hi-C data can be also recovered by imputed single cell Hi-C data and 72.5% of the 179 

chromatin loops from imputed single cell Hi-C data are also contained in bulk chromatin loops (Fig. 180 

4D). In the same genomic region, imputed single cell Hi-C data contains three chromatin loops 181 

while two of them were consistent with bulk Hi-C chromatin loops (Fig. 4F) while the raw single 182 

cell Hi-C data only has one false chromatin loop (Fig. 4E). To conclude, scDEC-Hi-C is able to 183 

promote the identification of chromatin loops from Hi-C data. 184 

Ablation analysis 185 
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To systematically evaluate the robustness of scDEC-Hi-C, we designed the following ablation 186 

studies. We used Ramani dataset for the ablation studies. First, we removed the cell-wise scDEC 187 

module and only kept the chromosome-wise convolutional autoencoder module. We directly used 188 

K-means for clustering the features from concatenated autoencoder features. The ARI, NMI and 189 

Homogeneity decreases by 6.2%, 7.2%, and 7.1%, respectively. Second, we trained the 190 

chromosome-wise autoencoder model first and then fixed the weights in the autoencoder and 191 

trained the cell-wise scDEC module. Without joint training of the multi-stage modules, the 192 

performance also decreases by 2.4% of ARI, 2.8% of NMI and 2.5% of Homogeneity. The model 193 

ablation studies demonstrate the significant contribution of both multi-stage model and joint 194 

training strategy. 195 

 196 

Table 1. Model ablation studies. The standard deviation of the metric was calculated based on five 197 

runs.  198 

 ARI NMI Homogeneity 

scDEC-Hi-C 0.845�0.010 0.867�0.012 0.819�0.009 

scDEC-Hi-C w/o scDEC 0.783�0.009 0.795�0.015 0.748�0.014 

scDEC-Hi-C w/o joint training 0.821�0.013 0.839�0.017 0.794�0.013 

 199 

Conclusion and discussion 200 

In this study, we proposed scDEC-Hi-C, a computational tool for comprehensive single cell Hi-C 201 

data analysis using deep generative neural network. Unlike previous works that treat dimension 202 

reduction and clustering of the single cell Hi-C data as two separated and independent tasks, 203 

scDEC-Hi-C intrinsically integrates the task of learning a low-dimensional representation and 204 
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clustering the single cell by designing a two-stage multi-scale framework, which is composed of a 205 

chromosome-wise autoencoder and a cell-wise symmetric GAN model. During the training, the 206 

multi-scale models are simultaneously optimized and the results of embedding and clustering are 207 

benefitting each other. Based on a series of experiments, scDEC-Hi-C achieves superior or 208 

competitive performance compared to state-of-the-art baseline methods. For the downstream 209 

analysis, scDEC-Hi-C model demonstrated the excellent ability of imputing the sparse and noisy 210 

single cell Hi-C data, which facilitates the identification of chromatin structural differences and 211 

chromatin loops. Besides, scDEC-Hi-C also shows the superior power in generating the Hi-C 212 

profile of different cell types, which has been confirmed to be consistently with the cell type label 213 

(Supplementary Figure 2).  214 

We also provide several directions for further improving our work. First, the inter-chromosomal 215 

interactions, which were ignored by existing methods and scDEC-Hi-C, have been proved to 216 

regulate gene expression [31]. Second, incorporating multi-omics data, including functional 217 

genomic regulatory annotation data [32, 33] and pharmaceutical interaction data [34, 35], could 218 

potentially improve the performance. Third, it is worthwhile for applying scDEC-Hi-C to other 219 

different types of 3D genome interaction data such as HiChIP [36]. 220 

With scDEC-Hi-C, researchers can perform single cell Hi-C experiments of the cell types or tissues 221 

with interest. Then one can simultaneously perform unsupervised learning analysis on single cell 222 

Hi-C data and uncover biological findings through the imputation and generation power. We expect 223 

that scDEC-Hi-C can help unveil the single cell regulation mechanism in 3D genome.  224 

Methods 225 

Data preprocessing 226 
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For Ramani dataset, we filtered cells with less than 5000 contacts. Then we collected 624 cells for 227 

Ramani dataset. For Dip-C dataset, we used the same QC strategy from the original paper[24] and 228 

collected 1954 annotated cells across 14 cell types. The details of datasets were summarized in 229 

Supplementary Table 2. The raw Hi-C contact matrices were log-transformed and then resized by 230 

spine interpolation so that the Hi-C contact matrix of each chromosome was represented as a 50 by 231 

50 matrix. Then we applied a mean filtering and random walk as suggested by scHiCluster [20]. 232 

The chromosome-wise module encodes each chromosome into a 50-dimensional vector and then 233 

concatenated across all chromosomes. The cell-wise module further learns a low-dimensional 234 

representation of a cell with dimension of latent variable � set to 10. The embedding of each cell 235 

was based on the concatenation of reconstructed �� and �� (before softmax).  236 

Adversarial training in scDEC-Hi-C model 237 

The scDEC-Hi-C is multi-scale unsupervised learning model derived from our previous works 238 

Roundtrip and scDEC [23, 37] with extensive modifications. scDEC-Hi-C mainly contains a 239 

chromosome-wise module convolutional autoencoder (CAE) [38] and a cell-wise model scDEC. 240 

The CAE module aims at mapping scHi-C data from the original data space to a representer space, 241 

which significantly reduced the data dimension. Specifically, the CAE module takes the single cell 242 

Hi-C interaction of each chromosome as a training instance and each intra-chromosomal interaction 243 

matrix will be encoded to a fixed dimension vector through encoder. The embedding vectors for 244 

intra-chromosomal interaction matrices within each cell are concatenated in the representer space to 245 

obtain a fused embedding. The training of the CAE can be formulated as  246 

��� � ��||���� � ����������||�� � 
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where ����  denotes an intra-chromosomal Hi-C interaction matrix and E �·� , ��·�  denote the 247 

encoder and decoder in the CAE module, respectively. The chromosome-wise features ������� of 248 

each chromosome were concatenated to obtain the cell-wise representation by 249 

� � Concat���������, … , ������	�� 

    The scDEC module takes cell-wise fused embedding in the representer space as input and learns 250 

the low-dimension embedding of a cell in the latent space and clusters the cells simultaneously. 251 

scDEC module is composed of a pair of two GAN models. For the forward GAN model, a pair of 252 

latent variables � and �  are sampled from a Gaussian distribution and a Categorical distribution, 253 

respectively. The categorical distribution is updated through an adaptive mechanism 254 

(Supplementary Table 3). G network is used for conditionally generating fake data !��
"
���  that have 255 

a similar distribution to the real data !�
"
���  in the representer space while the discriminator 256 

network D  tries to discern true data from generated samples in the representer space. In the 257 

backward GAN model, the function H and the discriminator D� aim at transforming the data from 258 

representer space to the latent space. Discriminators can be considered as binary classifiers where 259 

any input data point will be asserted to be positive or negative. Besides, we used WGAN-GP [39] 260 

as the architecture for the pair of GAN models where the gradient penalties of discriminators were 261 

considered as additional loss terms. We then define the objective loss functions of the above four 262 

networks (G, H, D and D�) in the training process as 263 

%&
'
&(

�����G� � � �
�~����,�~�����,��

�D�G��, ����
�����D� � � �

�~����
�D���� ) �

�~����,�~�����,��
*D+G��, ��,- ) . �

��~������
��||/��D��0�||� � 1���

�����H� � � �
�~����

�D��H�����
�����D�� � � �

�~����
�D����� ) �

�~����
*D�+H���,- ) . �

��~� ����
��||/��D���2�||� � 1���

3 
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where 4��� and Cat��, � denote the distribution of the continuous variable and discrete variable 264 

in the latent space. In practice, sampling � from 4��� can be regarded as a process of randomly 265 

sampling from i.i.d data in the representer space with replacement. 4̂��0�  and 47��2�  denote a 266 

uniformly sampling from the straight line between a pair of points sampled from true data and 267 

generated data in the representer and latent space, respectively. . is a penalty coefficient which is 268 

set to 10 in all experiments. 269 

Roundtrip loss 270 

During the training process, we also intend to minimize the roundtrip loss [37] which is defined as 271 

ρ���, ��, H+G��, ��,��and ρ��, G+H���,�  where �  and �  are sampled from 4���  and Cat��, � , 272 

respectively. The basic principle for this loss is to minimize the distance when a data point goes 273 

through a roundtrip transformation between two different data domains. Specifically, we applied l2 274 

loss to the continuous part in roundtrip loss and cross entropy loss to the discrete part in roundtrip 275 

loss. We further denoted the roundtrip loss as 276 

�!"�G, H� � 9||� � G+H���,||�� ) 9||� � H�+G��, ��,||�� ) :;���, H�+G��, ��,� 

where 9 and : are two coefficients and are both set to 10 in the experiments. H��·� and H��·� 277 

denote the continuous and discrete part of H�·�, respectively. CE�·�  represents the cross-entropy 278 

function. The idea of roundtrip loss which exploits transitivity for regularizing structured data has 279 

also been used in previous works [40, 41]. 280 

Joint training  281 

Combining the adversarial training loss and roundtrip loss together, we can get the full training loss 282 

for the scDEC module as ��G, H� � �����G� ) �����H� ) �!"�G, H�  and  ��D, D�� �283 

�����D� ) �����D�� , respectively. We iteratively updated the weight parameters in two 284 
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generative models (G and H) and the two discriminative models (D� and D�), respectively. Thus, 285 

the training of scDEC module can be represented as 286 

G�, D�
� , H�, D�

� � ���	 min
�,�

�G, H�
��	 min

��,��
�D�, D���

 

To further achieve joint training of CAE and scDEC modules, we first pretrained the CAE module 287 

for 100 epochs. Then we updated the parameters of CAE and scDEC iteratively. The Adam 288 

optimizer [42] with a learning rate of 2 � 10�	 was used for optimizing the parameters in neural 289 

networks. The whole training process is illustrated in Supplementary Table 4 in detail.  290 

Data imputation by scDEC-Hi-C model 291 

We use the chromosome-wise model autoencoder for data imputation. Specifically, the 292 

reconstructed Hi-C map from the decoder was regarded as the imputed single cell Hi-C data. We 293 

used the same strategy in [13] for Hi-C matrices extraction. 294 

Data generation by scDEC-Hi-C model 295 

We generate the intermediate cell state (embeddings) of single cell Hi-C data by interpolating the 296 

latent indicator � of two “neighboring” cell types. Assume that two cell types correspond to the 297 

latent indicator �
 and ��, respectively. The generated single cell Hi-C profile can be represented as 298 

G��, ��� where �� � α�
 � �1 � α���. Note that the α is the coefficient from 0 to 1 and � is sampled 299 

from a standard Gaussian distribution. 300 

Network architecture in scDEC-Hi-C 301 

For the CAE module, the encoder contains four convolutional layers and two fully connected layers 302 

while the decoder consists of two fully connected layers and four transposed convolutional layers 303 

for reconstructing the Hi-C interaction matrices. For the scDEC module. The G network contains 304 

ten fully connected layers and each hidden layer has 512 nodes while the H network contains ten 305 
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fully-connected layers and each hidden layer has 256 nodes. D�  and D�  both contain two fully 306 

connected layers and 256 nodes in the hidden layer. Note that batch normalization [43] was used in 307 

discriminator networks.  308 

Updating the Category distribution 309 

The probability parameter � in the Category distribution Cat��, �� is adaptively updated every 310 

200 batches of data based on the inferred cluster label (Supplementary Table 3).  311 

Evaluation metrics for clustering 312 

We compared different methods for clustering according to three commonly used metrics, 313 

normalized mutual information (NMI) [44], adjusted Rand index (ARI) [45] and Homogeneity [46]. 314 

Assuming that   and !  are true label assignment and predicted label assignment given " 315 

observation data points, which have #�  and #  clusters in total, respectively. NMI is then 316 

calculated as 317 

NMI � ∑ ∑ ( � ) !�(log "| � ) !�|| �| � |!�|��
���

��
���

max �� ∑ ( �(log ( �("��
���

, � ∑ |!�|log |!�|"��
���

� 

The Rand index [47] is a measure of agreement between two cluster assignments while ARI 318 

corrects lacking a constant value when the cluster assignments are selected randomly. We define 319 

the following four quantities: 1) "�: number of pairs of two objects in the same groups in both   320 

and !, 2) "�: number of pairs of two objects in different groups in both   and !, 3) "�: number of 321 

pairs of two objects in the same group of   but different group in !, 4) "	: number of pairs of two 322 

objects in the same group of ! but different group in U. Then ARI is calculated by 323 

ARI � 3"24 �"� � "	� � 5�"� � "���"� � "�� � �"� � "	��"� � "	�6
3"24 � 5�"� � "���"� � "�� � �"� � "	��"� � "	�6  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.07.19.500573doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.19.500573
http://creativecommons.org/licenses/by-nc-nd/4.0/


16  

Homogeneity is calculated by Homo � 1 � ���|�

����
, where 324 

789
8:;� |!� � � < < | � ) !�|" log | � ) !�|∑ | � ) !�|��

���

��

���

��

���

;� � � � < ∑ | � ) !�|��
��� #� log ∑ | � ) !�|��

��� #�
��

���

� 

Baseline methods 325 

We compared scDEC-Hi-C to three comparison methods in our study. scHiCluster is a PCA-based 326 

method that could be used for imputing and clustering scHi-C data. scHiCluster was implemented 327 

from https://github.com/zhoujt1994/scHiCluster and the default parameters were used. 328 

HiCRep/MDS used multidimensional scaling to embed scHi-C data into two dimension and was 329 

implemented from https://github.com/liu-bioinfo-lab/scHiCTools. Higashi is a hypergraph 330 

representation learning framework for embedding scHi-C data. We downloaded Higashi from 331 

https://github.com/ma-compbio/Higashi and implemented using the default parameters. 332 

 333 

Data availability 334 

Three datasets were used in this study. scHi-C dataset of four human cell lines (GM12878, HAP1, 335 

HeLa and K562) was collected from Ramani et al (GEO: GSE84920). scHi-C dataset of mouse 336 

brain development was collected from Tan et al (GEO: GSE162511). Note that the first dataset has 337 

ground truth cluster label for each cell. The latter dataset only contains annotated labels, which 338 

were used as surrogate labels in the clustering experiments. 339 

Code availability 340 

scDEC-Hi-C is an open-source software based on the TensorFlow library [48], which can be 341 

downloaded from https://github.com/kimmo1019/scDEC-Hi-C. 342 
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Figure1. The overview of the proposed scDEC-Hi-C model. scDEC-Hi-C is a multi-scale mod
contains a chromosome-wise convolutional autoencoder (CAE) and a cell-wise single ce
embedding and clustering model. The intra-chromosome single-cell Hi-C contacts matrices are 
to a CAE for dimension reduction and latent feature extraction. Then the chromosome reado
concatenation) is applied to get the cell-wise representation. The cell-wise deep generative
networks can further learn a low dimensional representation of a cell and cluster ea
simultaneously. In the latent space, latent variables  and  sampled from a Gaussian distributio
Category distribution respectively, are fed to the  network. The  network has two outputs of w
corresponds to the latent embedding ( ) and one corresponds to the estimated cluster label ( )
and   discriminator networks are used for adversarial training.  
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Figure2. The performance of scDEC-Hi-C method and baseline methods on single cell Hi-C datasets. 
(A) The embeddings visualization of Ramani dataset across four methods. (B) The embeddings 
visualization of Dip-C dataset across four methods. (C) The clustering performance in terms of NMI, 
ARI and Homogeneity of four methods across two datasets. (D) The performance of scDEC-Hi-C and 
baseline methods under different dropout rate on Ramani dataset. 
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Figure3. The imputation results of scDEC-Hi-C method. (A) The first row denotes merged single cell 
Hi-C profile of 40 cells of a genomic region (chr9: 132.9M-134.9M) across two diverse cell lines. The 
middle row denotes the corresponding imputed single cell Hi-C profile with scDEC-Hi-C. The third 
row denotes the corresponding bulk Hi-C profile of the two cell lines. The differences of the Hi-C 
profile from two cell lines are illustrated. (B) Genome annotation including RNA-seq and H3K4me1 
histone marker across two cell lines of the same genomic region. (C) The Spearman correlation 
between bulk K562 Hi-C data and aggregated single cell Hi-C data after imputation by scDEC-Hi-C 
(red) and scHiCluster (green). The baseline (black) denotes the Spearman correlation between bulk 
K562 Hi-C data and aggregated single cell Hi-C data without imputation. 
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Figure 4. scDEC-Hi-C facilitates the identification of chromatin loops. (A) The Venn plot of chromatin 
loops from bulk Hi-C data and single-cell Hi-C data imputed by scDEC-Hi-C in GM12878 cell line. (B) 
The chromatin loops from raw single cell Hi-C data versus chromatin loops from bulk Hi-C data of a 
GM12878 cell line genomic region (chr3:118.2M-120.2M). (C) The chromatin loops from imputed 
single cell Hi-C data versus chromatin loops from bulk Hi-C data in GM12878 cell line of the same 
genomic region. (D) The Venn plot of chromatin loops from bulk Hi-C data and single-cell Hi-C data 
imputed by scDEC-Hi-C in K562 cell line. (E) The chromatin loops from raw single cell Hi-C data 
versus chromatin loops from bulk Hi-C data of a K562 cell line genomic region (chr3:118.2M-120.2M). 
(F) The chromatin loops from imputed single cell Hi-C data versus chromatin loops from bulk Hi-C data 
in in GM12878 cell line of the same genomic region.  
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