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Abstract 24 

Due to postmortem DNA degradation, most ancient genomes sequenced to date have low depth of 25 

coverage, preventing the true underlying genotypes from being recovered. Genotype imputation has 26 

been put forward to improve genotyping accuracy for low-coverage genomes. However, it is 27 

unknown to what extent imputation of ancient genomes produces accurate genotypes and whether 28 

imputation introduces bias to downstream analyses. To address these questions, we downsampled 29 

43 ancient genomes, 42 of which are high-coverage (above 10x) and three constitute a trio (mother, 30 

father and son), from different times and continents to simulate data with coverage in the range of 31 

0.1x-2.0x and imputed these using state-of-the-art methods and reference panels. We assessed 32 

imputation accuracy across ancestries and depths of coverage. We found that ancient and modern 33 

DNA imputation accuracies were comparable. We imputed most of the 42 high-coverage genomes 34 

downsampled to 1x with low error rates (below 5%) and estimated higher error rates for African 35 

genomes, which are underrepresented in the reference panel. We used the ancient trio data to 36 

validate imputation and phasing results using an orthogonal approach based on Mendel’s rules of 37 

inheritance. This resulted in imputation and switch error rates of 1.9% and 2.0%, respectively, for 1x 38 

genomes. We further compared the results of downstream analyses between imputed and high-39 

coverage genomes, notably principal component analysis (PCA), genetic clustering, and runs of 40 

homozygosity (ROH). For these three approaches, we observed similar results between imputed 41 

and high-coverage genomes using depths of coverage of at least 0.5x, except for African genomes, 42 

for which the decreased imputation accuracy impacted ROH estimates. Altogether, these results 43 

suggest that, for most populations and depths of coverage as low as 0.5x, imputation is a reliable 44 

method with potential to expand and improve ancient DNA studies.  45 

Introduction  46 

Ancient DNA (aDNA) is characterized by pervasive postmortem damage, including fragmentation 47 

and deamination1. As a result, most ancient genomes have low breadth and depth of coverage, 48 

hindering confident genotype calling. Instead, pseudo-haploid data are commonly generated by 49 
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sampling one allele per variant site2,3. Evermore methods and tools are developed to study different 50 

aspects of population structure, including diploid genetic properties such as runs of homozygosity 51 

(ROH)4, using pseudo-haploid data. However, on the one hand, methods designed for diploid and 52 

haplotypic data cannot be easily applied to pseudo-haploid data, and, on the other hand, these data 53 

come with increased bias towards the reference genome5.  54 

 55 

One alternative to downsampling the data to pseudo haploid prior to downstream analyses is to 56 

impute low-coverage ancient genomes. The goal of imputation is to infer missing sites, usually by 57 

using reference panels of haplotypes. Most imputation tools employ a hidden Markov model (HMM) 58 

that determines which assembly of reference haplotype chunks represents the target best. Mostly, 59 

the Li and Stephen model of linkage disequilibrium (LD)6 is at the core of this HMM. This model 60 

describes LD in terms of the subjacent recombination rates. In particular, it estimates the probability 61 

of observing a chromosome (or haplotype) given the already sampled haplotypes from a population 62 

by considering the new haplotype as a copy of different parts of the sampled haplotypes while 63 

allowing mutations to arise. The transition rate between copying haplotypes is proportional to the 64 

recombination rate and it decreases with the number of available haplotypes to copy from.  65 

 66 

SNP-array imputation is applied when genomes are genotyped at a subset of variant sites7. SNP-67 

array imputation of modern DNA is often implemented to increase required sample sizes for 68 

genome wide association studies (GWAS), so as to avoid the still high whole-genome sequencing 69 

(WGS) costs8. It is also possible to impute low-coverage genomes whose genotypes cannot be 70 

directly determined with certainty, in which case genotype uncertainty is captured by likelihoods, 71 

instead of hard calls9–14. One can make use of this second type of methods to impute low-coverage 72 

ancient genomes. Present-day genotypes have been imputed with increasing accuracy due to 73 

improved imputation methods on the one hand, and increased reference panel size and diversity on 74 

the other hand, such as the Haplotype Reference Consortium (HRC)15, the 1000 Genomes Project16 75 

and TOPMed17. These advances have also been exploited by some (e.g., Martiniano et al., 201718; 76 
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Haber et al., 202019; Saupe et al., 202120; Clemente et al., 202121, Cox et al., 202222; Allentoft et al., 77 

202223) to impute low-coverage ancient genomes, using present-day haplotypes, assuming 78 

matching ancestry. 79 

 80 

However, aDNA introduces extra challenges, including damage and potential contamination24, and it 81 

is not clear whether ancient individuals’ ancestries are well captured by reference panels of present-82 

day individuals. Moreover, a precise quantification of possible imputation biases and errors is 83 

lacking. Hui et al.25  proposed a two-step imputation pipeline to be applied to ancient genomes. This 84 

pipeline first imputes based on genotype likelihoods using Beagle4.110, and then removes sites 85 

based on their maximum genotype probability (GP), a measure of how likely each possible 86 

genotype at a site is to be true after imputation. The resulting genotype calls are again imputed with 87 

Beagle526, followed by a final GP filtering step. When compared to the first imputation step alone, 88 

this pipeline yielded larger proportions of heterozygous sites that pass the specified GP threshold. 89 

Nonetheless, a single downsampled ancient European genome was used to validate these results. 90 

Another recent study27 assessed the imputation of ancient genomes performance by downsampling 91 

(0.1-2.0x) and imputing genomes from five high-coverage ancient Europeans using Beagle4.028 and 92 

various reference panel and sample size configurations. The authors measured genotype 93 

concordance, bias towards the reference panel and compared projections of the high-coverage, 94 

low-coverage and imputed 1x data onto principal component analysis (PCA) of present-day data. 95 

Imputation accuracy improved when i) using all populations in the 1000 Genomes reference panel 96 

instead of restricting to European genotypes alone and ii) the ancient genomes were imputed 97 

simultaneously. They found no bias increase towards the most common reference panel allele for 98 

ancient genome coverages as low as 0.75x.  99 

 100 

These two studies25,27 suggest that aDNA imputation performs well under specific conditions. 101 

However, in their assessment of imputation accuracy they used a rather limited sample of ancient 102 

genomes (one25 and five27) and of only European descent.  Furthermore, more accurate and 103 
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efficient low-coverage imputation methods are available, e.g., GLIMPSE12, than the methods they 104 

tested, i.e., Beagle4.0 and 4.1. Here, we make use of 43 ancient genomes, including an ancient trio 105 

and 42 high-coverage (>10x) genomes, from four different continents and different time spans to 106 

assess i) imputation accuracy of low-coverage ancient genomes and ii) how imputation affects 107 

downstream analyses. To this end, we downsampled to low coverage this diverse dataset of ancient 108 

genomes, which allowed us to quantify imputation performance across different ancestries, unlike, 109 

to our knowledge, any other previous study. We imputed the downsampled ancient genomes with 110 

GLIMPSE12, a state-of-the-art imputation and phasing tool that was shown to accurately impute low-111 

coverage present-day genomes, having 1000 Genomes16 as a reference panel. In the next sections, 112 

we show how imputation accuracy varies with depth of coverage, substitution type, i.e., transitions 113 

vs. transversions, imputation methods, ancestry, and post-imputation filtering. To address our 114 

second goal, we assess the effects of imputation not only on PCA, but also on genetic clustering 115 

and ROH analyses. 116 

Results 117 

The approach we followed in this study is schematically described in Figure 1A. We generated two 118 

datasets: imputed genotypes from downsampled genomes and corresponding validation genotypes 119 

called from the high-coverage ancient genomes, that we used as the ground truth. We started by 120 

sampling fractions of the sequencing reads from the 43 ancient genomes to obtain genomes with 121 

average depths of coverage between 0.1x and 2.0x. Then, using bcftools29 (on the choice of 122 

genotype caller prior to imputation in Supplementary Section 1), we generated genotype 123 

likelihoods at biallelic sites of the 1000 Genomes phase 3 v5 data16 phased with TOPMed17, the 124 

imputation reference panel, including all transition sites, in contrast to other studies27. We then 125 

imputed the data with GLIMPSE with the different steps described in the methods section. Lastly, 126 

we called genotypes for the high-coverage genomes and filtered out low-quality calls (methods and 127 

Supplementary Section 2), thus reducing the deamination impact. Finally, we assessed imputation 128 

performance and compared the downstream analyses results obtained with high-coverage and 129 

imputed genotypes.  130 
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Three out of the 43 ancient genomes in this study constitute a trio (mother, father and son) that was 131 

recently re-sequenced and is not yet fully public23,30, in contrast to the remaining 40 genomes. This 132 

dataset of 43 ancient genomes is a diverse dataset in regard to their sequencing/study, as well as 133 

epoch and continent the ancient individuals lived in, with about half of the individuals being from 134 

Europe and the other half from Africa, America and Asia (Figure 1B). Information concerning 135 

location and age of remains, and genome coverage is included in Table S1.  136 

1. Accuracy of low-coverage ancient DNA imputation 137 

We started by examining how imputation quality changes with average depth of coverage, and 138 

whether transversions are imputed more accurately than transitions, since the latter are affected by 139 

postmortem DNA deamination, i.e., C-to-T substitutions, which might wrongly increase the number 140 

of called heterozygous sites. We further compared imputation performance using two different state-141 

of-the-art imputation methods, GLIMPSE and Beagle4.110, where the latter is a widely used 142 

imputation method and was applied in Hui et al25. For that, we calculated imputation accuracy, r2, 143 

that is, the squared Pearson correlation between genotype dosage in the aggregate of the 42 high-144 

coverage and imputed datasets, as a function of minor allele frequency (MAF) as determined from 145 

the 1000 Genomes reference panel.  146 

Ancient and present-day DNA imputation accuracies are comparable 147 

We found that imputation accuracy of ancient genomes was similar to the accuracy reported for 148 

present-day genomes when using the same imputation method12. Accuracy was higher for common 149 

variants (MAF≥5%) (Figure 2A), as rare variants are more challenging to impute8,31. Imputation 150 

accuracy was also higher for genomes with higher coverage, as these have more data. In particular, 151 

for depths equal and greater than 0.75x, we obtained r2>0.90 at sites with MAF>2%, and r2>0.70 152 

and r2>0.95 for rare (0.1%<MAF≤1%) and common variants (MAF≥10%), respectively. We then 153 

found that GLIMPSE outperformed Beagle4.1 for 1x ancient genomes, particularly at rare variants 154 

(Figure S3), similarly to the case of present-day genomes12. Finally, we did not observe substantial 155 

differences in accuracy between imputed transversion and transition sites (Figure S3).  156 
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157 

Figure 1: Overview of the procedure we followed (A), and geographical origin and age in years 158 

before present (ybp) of the 43 individual samples used in this study as well as the different 159 

populations represented in the 1000 Genomes reference panel (B). 160 

 161 

Fixing depth of coverage at 1x, we evaluated how imputation performs across the 42 high-coverage 162 

genomes of different ancestries and times. In addition to imputation accuracy as a function of MAF, 163 

we quantified genotyping error rates for homozygous reference and alternative allele and 164 

heterozygous sites. We also report the non-reference discordance (NRD), that is, the ratio of the 165 
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number of incorrectly imputed sites and the total number of imputed sites, excluding correctly 166 

imputed homozygous reference allele sites.  167 

Imputation error rates below 5% for most non-African 1x genomes 168 

The imputation of European, Western, and most Native American genomes yielded similar accuracy 169 

curves starting with lower values for rare variants (0.5<r2≤0.9) and converging to r2≳0.90 from 170 

MAF≥2% (Figure 2A). The African ancient genomes were the least accurately imputed with only 171 

two out of five imputed genomes reaching r2>0.90, and error rates as high as 18% at heterozygous 172 

sites, the most challenging to impute, and NRD between 4% and 29% (Figure 2B). In contrast, 173 

most non-African imputed genomes yielded NRD rates below 5%. This difference in imputation 174 

performance is likely due to lack of representation of the different African populations in the 175 

reference panel. Although the 1000 Genomes reference panel contains individuals of African origin, 176 

mostly from West Africa (Mende Sierra Leone (MSL), Gambian Mandinka (GWD), Esan Nigeria 177 

(ESN), Yoruba (YRI) and Luhya Kenya (LWK)), the genetic diversity in Africa32 is not well 178 

represented in this panel. Therefore, reference populations from West Africa might not represent 179 

populations in Southern Africa33 for imputation purposes, as in the case of baa0134, the most poorly 180 

imputed ancient genome. Conversely, European ancient individuals are better represented in the 181 

reference panel. And yet, Native American genomes were also accurately imputed, even though the 182 

populations in the reference panel show different admixture moieties, ranging from low (e.g., Puerto 183 

Rican (PUR)) to high Native American (e.g., Peruvian (PEL))16 admixture proportions. This suggests 184 

that having haplotypes in the reference panel that match the ancestry of the target haplotypes is 185 

fundamental to achieve high imputation accuracy, even if these reference haplotypes originate from 186 

admixed individuals.  187 

Validating imputation and phasing accuracy on an ancient trio 188 

The availability of an ancient trio (mother, father, son) allowed us to use an orthogonal approach 189 

based on Mendel’s rules of inheritance to measure imputation and phasing quality. This trio was 190 

sampled in a Late Neolithic mass burial at Koszyce23,30 and was re-sequenced in the context of the 191 
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study of Allentoft et al.23 resulting in genome coverages of 27.5x (mother, RISE1159), 18.9x (father, 192 

RISE1168), 5.4x (son, RISE1160). In this analysis, imputation errors corresponded to sites where 193 

parental and offspring genotypes disagreed with Mendel transmission rules. Here, we excluded 194 

sites that are homozygous for the reference allele in the three genomes as these positions are 195 

easier to impute. We estimated phasing accuracy in terms of switch error rate, that is assessed for 196 

every two consecutive heterozygous sites by verifying if the alleles for the two sites are located on 197 

the correct haplotypes following the expected configuration from the trio. Mendel error rates ranged 198 

from 1.3% at 4x to 12.2% at 0.1x (Figure 3A). For 1x data, in particular, Mendel error rates were 199 

between 1.5% and 2.9% across the 22 autosomes. These error rates agree with previously 200 

estimated imputation errors (Figure 2B). Switch error rates varied between 1.6% at 4.0x and 8.2% 201 

at 0.1x, with errors for 1x data in the range 1.6%-3.0% (Figure 3B). For present-day genomes and 202 

small sample sizes, switch error rates are typically between 1% and 5%35–37, and we achieved 203 

similar accuracy when imputing and phasing the genomes downsampled to a minimum coverage of 204 

0.25x.  205 

Genotype probability filtering: a trade-off between more accurate calls and alternative allele 206 

sites loss 207 

After imputation, we can filter based on the maximum of genotype probabilities (GP) for a site. GP is 208 

a measure of how likely each genotype is to be true and takes values between 0 and 1 that sum to 1 209 

across the possible genotypes. To determine which GP value we would use to filter the imputed 210 

data prior to downstream analyses, we applied GP filters starting at 0.70 and up to 0.99 to four 211 

different imputed ancient genomes downsampled to 0.1x and 1.0x (RISE116823,30, SIII38, Ust’-212 

Ishim39 and Mota40). We then quantified imputation accuracy and genotype discordance. We 213 

observed a greater boost in accuracy as the GP filter becomes stricter for 0.1x imputed data than for 214 

1x data (Figure 4A). In the case of 1x data, we obtained small improvements in accuracy for sites 215 

with MAF>5%. The exception was the individual sample Mota, where the gain in accuracy for a 216 

specific GP filter had similar magnitude across sites with different MAF values. This African genome 217 

yielded the second lowest imputation accuracy amongst the 42 ancient high-coverage genomes 218 
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downsampled and imputed in this study. We observed the same trends with genotype discordance 219 

between imputed and high-coverage genotypes (Figure 4B). Genotyping error rates were higher for 220 

0.1x than for 1x imputed genomes, for whom error rates remained below 5%, except for Mota. 221 

Increasing GP filtering values decreased these error rates in all instances. Then, we looked at how 222 

GP filtering affects the number of correctly imputed heterozygous sites (Figure 4C). The proportion 223 

of lost heterozygous sites was much higher in the case of 0.1x data, explained by the lower 224 

imputation accuracy for this coverage. For 0.1x data, filtering out sites with GP<0.70 removed 225 

around 15% of correct heterozygous sites in the least. When GP≥0.99, only between 20% and 43% 226 

of correct heterozygous sites remained. In contrast, the imputed 1.0x genomes lost a small fraction 227 

of their heterozygous sites as stricter GP filters were applied. This fraction was smallest amongst 228 

the genomes of European ancestry (<8%, RISE1168 and SIII) and largest for Mota (22%), a 229 

reflection of how accurately these genomes were imputed. In the end, a trade-off must be made 230 

between loss of heterozygous sites and imputation accuracy. Based on these results, we chose to 231 

remove sites with MAF<5% and set to missing imputed sites with GP<0.80, for most of the 232 

downstream analyses, thus keeping most heterozygous sites for 0.1x data while controlling for 233 

imputation accuracy. 234 

 235 
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236 

Figure 2: Imputation quality assessment: A) imputation accuracy (r2) as a function of minor allele 237 

frequency (MAF) for the 42 high-coverage genomes together downsampled to different depths of 238 

coverage (top left) and for individual 1x genomes (remaining plots); B) genotype discordance 239 

between individual imputed (1x) and high-coverage genomes for homozygous reference allele (RR), 240 

heterozygous (RA) and homozygous alternative allele (AA) sites, as well as the resulting non-241 

reference discordance. Depending on ancestry, MAF was specified from the reference populations 242 

expected to be closer to the individual in question, whenever possible, as listed in Table S1. 243 

Individuals were put in categories that roughly reflect their place of origin and/or time.  244 
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 245 

Figure 3: Imputation and phasing accuracy for the Koszyce trio: A) Mendel error rate across the 22 246 

autosomes is counted when the parental and offspring genotypes violate Mendel transmission rules, 247 

excluding sites at which all three non-imputed genomes are REF/REF; B) switch error rates 248 

averaged over the three genomes. A switch error is counted between two consecutive heterozygous 249 

genotypes when the reported haplotypes are not consistent with those derived from the trio. 250 
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 251 

Figure 4: Effects of applying different thresholds when filtering for GP in the case of four imputed 1x 252 

ancient genomes (RISE116823,30, SIII38, Ust’-Ishim39 and Mota40) on A) imputation accuracy, B) 253 

genotype discordance between imputed and non-imputed genomes for homozygous reference 254 

allele (RR), heterozygous (RA) and homozygous alternative allele (AA) sites, and also the non-255 

reference discordance (NRD), C) proportion of correctly imputed heterozygous sites retained for 256 

0.1x and 1.0x data for each of the four genomes. The percentage of correctly imputed heterozygous 257 

sites for 0.1x and 1.0x before GP filtering are represented in red and blue, respectively, in panel C. 258 
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2. Imputation effect on downstream analyses 259 

In order to detect and quantify potential bias introduced by imputation, we compared the results of 260 

downstream analyses, namely, principal component analysis (PCA) and genetic clustering 261 

analyses, performed with the high-coverage and imputed genomes, after filtering for MAF and GP 262 

(imputed data). These three methods are broadly used in population genetics to investigate 263 

population structure and demography. PCA is a dimension reduction technique that helps 264 

visualizing patterns of population structure. In the genetic clustering analyses, the ancestry of an 265 

individual is estimated as the sum of K different clusters determined from the data in an 266 

unsupervised fashion. We further explore the potential of imputing low-coverage ancient genomes 267 

by estimating runs of homozygosity (ROH), whose classical applications require diploid data. ROH 268 

segments are unbroken homozygous regions of the genome that contain information about past and 269 

recent breeding patterns41. ROH have been found in all populations, but their number and size vary, 270 

depending on demographic histories.  271 

 272 

For the PCA, we calculated the first ten principal components of the 1000G reference panel and 273 

projected both the high-coverage and corresponding imputed ancient genomes onto those. We 274 

have included both transition and transversion sites in this analysis.  275 

Imputation did not introduce significant bias in PCA for coverages of at least 0.5x 276 

Both the imputed 1x and high-coverage ancient genomes were in the expected continental groups 277 

as defined by present-day individuals in the two first principal components (Figure 5A). They also 278 

tended to colocalize, which was particularly the case for ancient individuals clustering with present-279 

day Europeans, suggesting limited bias is introduced by imputation in the PCA results. To further 280 

verify whether imputation introduced bias in this analysis, we took the difference in coordinates 281 

between validation and corresponding imputed 1x genomes for each principal component. As 282 

shown in Figure 5B, the normalized differences between the two datasets were small and did not 283 

deviate significantly from 0 (t-test p-values > 0.01). Additionally, we found that only genomes with 284 
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coverage as low as 0.1x and 0.25x show some significant deviation from 0 (Figure 5C) for some 285 

principal components, however, the imputed data were still placed in the expected continental 286 

clusters in the PCA space (Figure S4). This is particularly clear for European ancient genomes. 287 

These results show that the differences between imputed and high-coverage coordinates tended to 288 

be centered on 0 for the first principal components, in particular for genomes with coverage above 289 

0.25x, suggesting that imputation did not introduce a significant bias to the PCA.  290 

 291 

No ancestry bias in genetic clustering analyses of imputed European (≥0.5x) genomes  292 

For the genetic clustering analyses, we focused on the European genomes. It is well established 293 

that the genetic diversity of present-day Europeans can be modeled with three ancestral 294 

populations: western hunter-gatherers, early European farmers and Steppe pastoralists42. Ancient 295 

European individual samples tend to exhibit different distributions of these three ancestries across 296 

time and space. We asked whether imputation of European ancient genomes artificially increases 297 

the amount of inferred Steppe-like ancestry for these individuals, since most present-day European 298 

individuals have Steppe ancestry, including the European populations in the 1000 Genomes 299 

reference panel. For instance, we assessed whether the Steppe-like component increases in 300 

imputed western hunter-gatherer genomes like Loshbour42. To this aim, we performed unsupervised 301 

admixture analyses with the software ADMIXTURE43, including transitions and transversions. We 302 

used as a reference panel the genetic data of 61 ancient individuals present in the 1240K dataset44, 303 

including nine western hunter-gatherers, 26 Anatolian farmers and 26 individuals of Steppe ancestry 304 

(see Table S2). We estimated ancestry proportions for the imputed and validation data separately 305 

varying the number of clusters (K) between two and five. For K=2, 4 and 5, we observe qualitatively 306 

similar results for imputed and high-coverage data (see Supplementary Section 6). Here we show 307 

the results obtained with K=3 (Figure 6A), as these clusters seemingly capture the three 308 

aforementioned ancestries. The admixture proportions are qualitatively similar between the high-309 

coverage ancient genomes and the corresponding imputed ones, and, in the particular case of 310 

Loschbour, the only western hunter-gatherer imputed in this study, we estimated 100% western 311 
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hunter-gatherer-like ancestry with both imputed 1x and high-coverage data (Figure 6B). In order to 312 

compare the admixture results across imputed data with different depths of coverage, we took the 313 

difference between ancestry proportions estimated for the validation and imputed genomes for each 314 

ancestry component and each coverage (Figure 6C). We observed larger differences with imputed 315 

0.1x and 0.25x data. For the remaining depths of coverage, the small differences distributed around 316 

0 show no indication that imputation introduced any substantial bias towards a particular ancestry in 317 

this analysis. 318 

ROH estimated in imputed and high-coverage genomes overlap   319 

Then, we first quantified ROH using transversions only to minimize the aDNA damage impact on the 320 

validation estimates. We examined how well the imputed and the validation ROH overlapped in 321 

chromosome 10 for each depth of coverage and for four different individuals, namely Ust’-Ishim39 322 

(Siberia), Rathlin145 (Europe), A46046 (Americas) and Mota40 (Africa) (Figure 7A). The imputed 0.1x 323 

data had an excess of ROH when compared to the high-coverage data. This likely results from i) 324 

reduced imputation accuracy and ii) removal of a large proportion of heterozygous sites when 325 

applying post-imputation filters (Figure 4C). As the depth of coverage increased, the number of 326 

falsely identified ROH tended to decrease, while most validation ROH were also found amongst the 327 

imputation ROH. We then compared the total ROH lengths, stratified by segment size, measured in 328 

the imputed data with the validation data for the different depths of coverage and the same four 329 

individuals (Figure 7B). Again, we found the largest discrepancies between validation and imputed 330 

0.1x data, with an excess of ROH segments, particularly of the shortest kind (0.5-1.0 Mb). For 331 

coverages above 0.1x, the total ROH lengths in the imputed genomes were close to the validation 332 

ROH. Lastly, restricting to imputed 1x data, we contrasted the total length of small ROH (<1.6 Mb) 333 

with the total length of longer ROH (⩾1.6 Mb) obtained with transversions only (Figure 7C) and all 334 

sites (Figure 7D). When using transversions only, the total ROH lengths estimated for high-335 

coverage and corresponding imputed 1x genomes were similar, particularly for the European 336 

genomes. Furthermore, the ROH trends for the ancient individuals mostly agreed with documented 337 
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ROH for their present-day counterparts, with Africans having the smallest total ROH lengths and 338 

Native Americans the longest41.  339 

Imputation seems to correct damage in ROH estimates in the case of Sumidouro5 340 

When we added transitions to estimate ROH, the distance between imputed and validation ROH 341 

increased for some genomes (Figure 7D). In the case of the ancient Native American 342 

Sumidouro546, this distance dramatically increased. The high-coverage estimate for Sumidouro5 343 

was now located between the African and European values, but the imputed estimate remained 344 

close to both the high-coverage and imputed values obtained with transversions only. For this 345 

genome, we found major differences between high-coverage ROH sizes obtained with transversions 346 

only and all sites, whereas the corresponding imputed ROH were highly consistent (Figure S12). 347 

This indicates that the discordance between validation and imputed ROH, when transitions were 348 

introduced, originated from the validation data. Indeed, Sumidouro5 is a very damaged genome 349 

(40% deamination rate)46, which likely led to an excess of heterozygous calls in the high-coverage 350 

data, despite the quality filtering (see Supplementary Section 2). 351 
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 352 

Figure 5: Principal component analysis (PCA) of imputed and high-coverage ancient genetic data, 353 

and present-day data in 1000 Genomes reference panel: A) projections for 1x imputed, high-354 

coverage and present-day data along the first two principal components, where 1000 Genomes 355 

individuals are plotted in gray and population labels are shown in the average location of the 356 

individuals from the same population, ancient individuals are colored by region and/or epoch, with 357 

the high-coverage and imputed individuals represented by full circles and triangles, respectively; the 358 

plot on the left contains the coordinates of the whole data set and the plot on the right shows the 359 

coordinates of European modern individuals as well as of the European-labeled ancient individuals 360 

that cluster with these; B) boxplots of the normalized differences in coordinates between validation 361 

and corresponding 1x imputed genomes for the first 10 principal components and resulting p-values 362 

from testing whether differences are significantly different from 0; individual data points are overlaid 363 

and colored according to the region and/or epoch as in the previous plot; C) -log10 p-values obtained 364 
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when testing whether differences between imputed and validation data are significantly different 365 

across the six depths of coverage and for the first four principal components; the red dashed line 366 

indicates a p-value of 0.01. 367 

  368 
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Figure 6: Unsupervised admixture analyses of European ancient individuals with three clustering 369 

populations: A) resulting admixture proportions and clusters for the reference and the 21 European 370 

individuals in this study, with validation results on top and imputed 1x below; B) admixture estimates 371 

for each of the three clusters obtained with imputed 1x (triangles) and validation (full circles) data for 372 

each of the 21 individuals, where error bars represent one standard error of the estimates; C) 373 

boxplots of the differences between the values of ancestry components obtained with the high-374 

coverage and imputed data across all depths of coverage.  375 
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Figure 7: Runs of homozygosity (ROH) estimates for the high-coverage and corresponding imputed 377 

genomes: A) ROH locations in chromosome 10 found using transversions only with high-coverage 378 

and imputed genomes, in the case of four ancient individuals, namely, Mota40 (~4,500 ybp (years 379 

before present), Africa), A46046 (~4,600 ybp, Americas), Rathlin145 (~3,900 ybp, Europe), Ust’-380 

Ishim39 (~45,000 ybp, Siberia); B) total length of ROH discriminated by individual ROH length 381 

categories, estimated for imputed and high-coverage genomes (HC) using transversion sites for the 382 

four aforementioned individuals; C) total length of long (≥1.6 Mb) vs. small (<1.6 Mb) ROH 383 

segments for validation (full circles) and 1x imputed (triangles) genomes using transversion sites 384 

only and (D) using transversions and transitions. 385 

Discussion 386 

Here we showed that low-coverage ancient genomes can be imputed with similar accuracy as 387 

modern genomes. In particular, we obtained accurate results at common variants, for coverages 388 

starting at 0.5x from MAF>5% (or at 0.75x from MAF>2%). However, this threshold is dependent on 389 

the ancient genomes’ ancestry. We observed that how well populations are represented in the 390 

reference panel can have a profound impact on imputation accuracy, with genotyping errors at 391 

alternative allele sites above 5% and up to 25% among African 1x genomes. These populations are 392 

underrepresented in the reference panel, whereas European genomes are better represented, and 393 

their imputation resulted in low error rates. Most Native American ancient genomes were also 394 

accurately imputed, and there are no reference populations with 100% Native American ancestry, 395 

but only with mixed ancestry. This result has far-reaching implications for the potential of imputing 396 

ancient genomes, since it is not guaranteed that there will be a present-day population that directly 397 

descends from the population which the ancient individual originates from without having admixed. 398 

Our results suggest that using admixed reference populations that share recent ancestry with the 399 

target ancient genomes can be enough in order to attain accurate imputation.      400 

 401 
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For most genomes, we obtained similar results with high-coverage and imputed data with coverages 402 

as low as 0.5x for the downstream analyses we carried out, i.e., PCA, admixture clustering and 403 

ROH estimation. Imputation did not introduce major bias for the first principal components, nor did it 404 

considerably increase the proportion of any of the three main ancestry components found in 405 

Europeans. The similarity of validation and imputed ROH segments is worthy of note, since ROH 406 

estimation typically requires reliable knowledge of genotypes, which is only available for high-407 

coverage genomes. This means that ROH estimation methods designed for diploid data can 408 

become possible with low-coverage ancient genomes after imputation.  409 

 410 

Although we did not remove transition sites prior to imputation, we found that transversion and 411 

transition sites were imputed with comparable accuracy. In fact, when we compared ROH estimates 412 

performed with transversions and all sites, we observed that imputation corrected ROH in the case 413 

of Sumidouro5, with 40% C-to-T mismatch frequency at the end of the reads. Given this 414 

observation, imputation of ancient genomes has the potential of correcting genotypes that are 415 

affected by damage and other sources of error. It remains to assess whether we can accurately 416 

impute contaminated ancient genomes in such a way that contaminating sequences do not 417 

contribute to the final genotypes. 418 

 419 

We did not explore numerous genotype and haplotype-based applications that can greatly benefit 420 

from imputation of low-coverage ancient genomes, such as temporal selection scans and local 421 

ancestry inference. Moreover, genotype imputation, in general, is expected to improve as more and 422 

larger reference datasets become available. The recent release of 200K whole-genome sequences 423 

in the UK Biobank47, which can be used as a reference panel for imputation, offers an opportunity to 424 

improve imputation performance in the case of low-coverage European genomes, including ancient 425 

genomes, especially at rare variants and lower depths of coverage. In the case of ancient DNA, 426 

when the target genome is not well represented by modern reference populations or when a boost 427 

in imputation accuracy is required, additional reference panels can be assembled with high-quality 428 
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ancient genomes of individuals with more closely shared ancestry. Furthermore, the number of 429 

sequenced ancient genomes has been growing exponentially and with no sign of slowing down. 430 

This means that more and more ancient genomes will be available with different ancestries and 431 

from different periods and with that comes the opportunity to expand existing reference panels with 432 

ancient genomes and to implement imputation in a more standardized way.  433 

Methods 434 

In this section, we describe the methods implementation, starting with imputation, that includes all 435 

the file processing, imputation using GLIMPSE and using Beagle4.1, then the three downstream 436 

applications (PCA, genetic clustering analyses and ROH) and finishing with the two reference data 437 

sets used in this study. 438 

1. Imputation  439 

a. File processing prior to imputation  440 

We downsampled high-coverage (10x-59x range) ancient genomes to coverages 0.1x, 0.25x, 0.5x, 441 

0.75x,1.0x and 2.0x, using samtools29 v1.10. Then, we computed genotype likelihoods for the 442 

downsampled and the original high-coverage genomes for variant sites present in the 1000 443 

Genomes phase 3 reference panel16 phased with TOPMed17 (see methods section 3.a). 444 

 445 

To generate the genotype calls and genotype likelihoods, we used bcftools29 v1.10 and, as default, 446 

the command bcftools mpileup with parameters -I -E -a 'FORMAT/DP' --ignore-RG, followed by 447 

bcftools call -Aim -C alleles. To call genotypes from the high-coverage genomes, we have applied 448 

additional parameters for quality control (more details below). 449 

 450 

We also generated both genotype calls from the high-coverage genomes and genotype likelihoods 451 

for the downsampled data (1x) with ATLAS48 v0.9.9 (see Supplementary Section 1 and 452 
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Supplementary Section 2) using the MLE caller and the empirical post-mortem damage (PMD) 453 

pattern observed across reads, as described in https://bitbucket.org/wegmannlab/atlas/wiki. For 454 

sake of time, we skipped the first step, splitMerge, that separates single-end alignments by length 455 

and merges the mates of paired-end reads and requires specification of the different libraries 456 

contained in a bam file. It is often the case that an ancient genome is obtained from a mixture of 457 

paired-end and single-end libraries. We observed that this first step we skipped did not have much 458 

impact when the bam files only had single-end libraries, but the genotype calling was seemingly less 459 

accurate when there were paired-end libraries in the bam files. So, we do not report here results we 460 

obtained from ATLAS calls from ancient genomes that were sequenced from paired-end libraries. 461 

 462 

To obtain a trimmed validation dataset (see Supplementary Section 2), we trimmed five base pairs 463 

at both ends of the reads using the command trimBam from the package bamutil49 v1.0.14. Then, 464 

we called genotypes using bcftools v1.10, as previously described. 465 

 466 

The final validation dataset was obtained by implementing the following filtering approach46:  i) 467 

genotype calling with bcftools v1.10 with mapping and base quality filters of 30 and 20 (-q 30 -Q 20), 468 

respectively, and with the parameter -C 50, as recommended by the SAMtools developers for BWA 469 

mapped data to reduce mapping quality for reads with an excess of mismatches; ii)  exclusion of the 470 

sites that are not in the 1000 Genomes accessible genome strict mask50; iii) removal of sites located 471 

in regions known to contain repeats (RepeatMask regions in UCSC Table Browser51, 472 

http://genome.ucsc.edu/); iv) filtering out sites with extreme values of depth of coverage when 473 

comparing to the average genome coverage: below the maximum of one third of the mean depth of 474 

coverage (𝐷𝑜𝐶) and eight, that is, max )!"#
$
, 8,, and depth above twice the average depth; v) 475 

filtering out of sites with the field QUAL below 30.  476 

 477 

 478 
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b. Imputation using GLIMPSE 479 

We imputed the downsampled genomes using GLIMPSE12 v1.1.1. First, we used GLIMPSE_chunk 480 

to split chromosomes into chunks of sizes in the range 1 – 2 Mb and included a 200-kb buffer region 481 

at each side of a chunk. Second, imputation was performed with GLIMPSE_phase on the chunks 482 

with parameters --burn 10, --main 15 and --pbwt-depth 2, with 1000 Genomes as the reference 483 

panel. And then, we ligated the imputed chunks with GLIMPSE_ligate.   484 

c. Imputation using Beagle4.1 485 

To evaluate how GLIMPSE performs compared to Beagle4.110 regarding imputation of low-486 

coverage ancient genomes, we imputed the same data, but restricted to 1.0x, with Beagle4.1 with 487 

parameters --modelscale 2 and --niterations 0, that represent a trade-off between accurate results 488 

and running times.    489 

d. Imputation accuracy evaluation 490 

We used GLIMPSE_concordance to quantify imputation accuracy and genotype concordance, 491 

having the high-coverage data as validation. Only sites that were covered by at least eight reads 492 

and whose genotypes have a posterior probability of 0.9999 or more were used in validation. With 493 

GLIMPSE_concordance we obtained (i) imputation accuracy, that is, the squared correlation 494 

between dosage fields VCF/DS (DS varies between 0 and 2 that can be seen as a mean genotype 495 

value obtained from the genotype probabilities: 𝐷𝑆 = ∑ 𝑖𝐺𝑃%&
%'( , where 𝐺𝑃% is the genotype 496 

probability for genotype 𝑖) in imputed and validation datasets, divided in MAF bins, and (ii) genotype 497 

discordance, i.e., proportion of sites for which the most likely imputed genotype is different from the 498 

corresponding validation genotype for homozygous reference allele (RR), heterozygous (RA) and 499 

homozygous alternative allele sites (AA). We also estimated non-reference-discordance, NRD, 500 

defined as 𝑁𝑅𝐷 = (𝑒)) + 𝑒)* + 𝑒**)/(𝑚)* +𝑚** + 𝑒)) + 𝑒)* + 𝑒**), where 𝑒+ and 𝑚+ stand for the 501 

number of errors and matches at sites of type X, respectively. NRD is an error rate which excludes 502 
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the number of correctly imputed homozygous reference allele sites, which are the majority, thus 503 

giving more weight to imputation errors at alternative allele sites. 504 

2. Downstream analyses 505 

a. File processing 506 

We filtered the imputed data by imposing that, for each variant site, the genotype probability 507 

(VCF/GP) for the most confidently imputed genotype to be at least 0.80. Then, we generated two 508 

datasets with different minor allele frequency (MAF) filters: MAF>5% (6,550,734 SNPs) for the data 509 

used in PCA and ROH analyses, and MAF>1% (11,553,877 SNPs) for admixture analysis, since 510 

with stricter MAF filters we would lose sites that distinguish the different populations. We used 511 

PLINK52 v1.90 to merge 1000 Genomes, high-coverage and imputed data into one file. In the case 512 

of PCA and admixture analyses, we intersected the resulting sites with the ones present in the Allen 513 

Ancient DNA Resource (AADR) data genotyped at the 1240K array sites44, that we refer to as the 514 

“1240K dataset” hereafter.   515 

b. PCA 516 

We performed PCA with smartpca (eigensoft53 package v7.2.1) without outlier removal (outliermode: 517 

2). The 10 first principal components (numoutevec: 10) were calculated using the 1000 Genomes 518 

genetic data and both the imputed and high-coverage data were projected onto the resulting 519 

components (lsqproject: YES).  520 

 521 

To perform the t-tests to test if there were significant differences in coordinates between validation 522 

and corresponding 1x imputed genomes for the first 10 principal components, we used the default R 523 

function t.test, running it in unpaired mode to test whether the mean of the differences was 524 

significantly different from 0 with a two-sided alternative hypothesis.  525 

 526 
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c. Admixture analysis 527 

We estimated admixture proportions for 21 ancient Europeans with the software ADMIXTURE43 528 

v1.3.0 in unsupervised mode. For the reference panel, we used a subset of the 1240K dataset 529 

containing nine western hunter gatherers, 26 Anatolian farmers and 26 individuals of Steppe 530 

ancestry44 (see Table S2). Contrary to the imputed and high-coverage genomes, the reference data 531 

are pseudo-haploid. We merged the reference panel with each of the imputation datasets (different 532 

coverages) with plink v1.90. We removed sites that were missing in more than 30% of the 533 

individuals. We proceeded similarly for the high-coverage dataset. We ran ADMIXTURE on seven 534 

configurations: merged reference panel and high-coverage individuals, and merged reference panel 535 

with each of the six imputed data sets (with initial coverage between 0.1x and 2.0x).  For each 536 

configuration and number of clusters, we ran ADMIXTURE for K between two and five with 20 537 

replicates (20 different seeds) and chose the replicate that yielded the largest log-likelihood value. In 538 

the final run, we obtained the standard error and bias of the admixture estimates using the option --539 

B 1000 that calculates these quantities with bootstrapping and 1000 replicates. 540 

d. Runs of homozygosity (ROH) 541 

We estimated ROH with plink v1.90 with the parameters45 --homozyg, --homozyg-density 50, --542 

homozyg-gap 100, --homozyg-kb 500, --homozyg-snp 50, --homozyg-window-het 1, --homozyg- 543 

window-snp 50 and --homozyg-window-threshold 0.05. We estimated ROH twice: i) using 544 

transversion sites only, thus excluding sites that can be affected by aDNA damage, and ii) using 545 

both transversions and transitions.   546 

 547 

3. Datasets 548 

a. Ancient genomes in this study 549 

The 43 downsampled and imputed ancient genomes (Table S1) were obtained from the “Ancient 550 

Genomes dataset” that was compiled in the context of the study of Allentoft et al23. 551 
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b. Reference panel for imputation 552 

We used a version of 1000 Genomes v5 phase 3 (2,504 genomes)16, where the genomes were re-553 

sequenced at 30x, and subsequently phased using TOPMed17, and with sites present in TOPMed. 554 

Only biallelic sites were retained (~90 million SNPs) and singletons were excluded. This panel was 555 

lifted over from build 38 to hg19 reference genome assembly using Picard liftoverVCF 556 

(https://gatk.broadinstitute.org/hc/en-us/articles/360037060932-LiftoverVcf-Picard-), with 557 

hg38ToHg19 chain from the University of California, Santa Cruz liftOver tool 558 

(http://hgdownload.cse.ucsc.edu/goldenpath/hg38/liftOver/). 559 

 560 

c. Reference panel for genetic clustering analyses 561 

We extracted a subset of the 1240K dataset44 containing ancient individuals of the three ancestries 562 

we were interested in: 26 Anatolian farmers (Anatolia_N), 26 Steppe individuals (Steppe_EMBA), 563 

and nine western-hunter gatherers (WHG), as specified in Table S2, to the exclusion of Loschbour, 564 

a genome that was also included in the dataset of 42 high-coverage genomes that we downsampled 565 

and imputed. We converted this subset from eigenstrat format to plink bed using the convertf 566 

command (eigensoft package v7.2.1). After that, we used plink v1.190 to do all of the data handling, 567 

such as merging plink bed files and filtering out sites with high missingness.  568 
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