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Abstract 

Dinoflagellates of the family Symbiodiniaceae are crucial photosymbionts in corals and other 

marine organisms. Of these algae, Cladocopium goreaui is one of the most dominant 

symbiont species in the Indo-Pacific. Here, we present an improved genome assembly of C. 

goreaui combining new long-read sequence data with earlier generated short-read data. 

Incorporating new full-length transcripts to guide gene prediction, the C. goreaui genome 

(1.2 Gb) exhibits a high extent of completeness (82.4% based on BUSCO protein recovery) 

and better resolution of repetitive sequence regions; 45,322 gene models were predicted, and 

327 putative, topologically associated domains of the chromosomes were identified. 

Comparison with other Symbiodiniaceae genomes revealed a prevalence of repeats and 

duplicated genes in C. goreaui, and lineage-specific genes indicating functional innovation. 

Incorporating 2,841,408 protein sequences from 96 broadly sampled eukaryotes and 

representative prokaryotes in a phylogenomic approach, we assessed the evolutionary history 

of C. goreaui genes. Of the 5,246 phylogenetic trees inferred from homologous protein sets 

containing two or more phyla, 35-36% have putatively originated via horizontal gene transfer 

(HGT), predominantly (19-23%) via an ancestral Archaeplastida lineage implicated in the 
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endosymbiotic origin of plastids: 10-11% are of green algal origin, including genes encoding 

photosynthetic functions. Our results demonstrate the utility of long-read sequence data in 

resolving structural features of a dinoflagellate genome and highlight how genetic transfer 

has shaped genome evolution of a facultative symbiont, and more broadly of dinoflagellates. 

Keywords: dinoflagellate genome, Cladocopium goreaui, phylogenomics 

Introduction 

Dinoflagellates of the family Symbiodiniaceae (LaJeunesse et al., 2018) are diverse 

microalgae, which are mostly symbionts critical to corals and other coral reef organisms. 

Symbiodiniaceae provide carbon fixed via photosynthesis and other essential nutrients to the 

coral hosts (Kopp et al., 2013; Muscatine et al., 1984). Environmental stress leads to 

breakdown of this partnership and loss of the algae, i.e. coral bleaching, putting the corals at 

risk of starvation, disease, and potential death (Hoegh-Guldberg, 1999). Recent studies of 

Symbiodiniaceae genomes have revealed extensive sequence and structural divergence 

(Aranda et al., 2016; Lin et al., 2015; Liu et al., 2018; Shoguchi et al., 2018), and potentially 

a greater, yet-to-be recognised phylogenetic diversity among these taxa (Dougan et al., 2022; 

González-Pech et al., 2021). A recent comparative analysis of genomes from 18 

dinoflagellate taxa (of which 16 are Symbiodiniaceae) revealed distinct phylogenetic signals 

between genic and non-genic regions (Lo et al., 2022), indicating differential evolutionary 

pressures acting on these genomes. This body of research illustrates how the evolutionary 

complexity of Symbiodiniaceae genomes may explain their diverse symbioses and ecological 

niches (González-Pech et al., 2019). 

Cladocopium, the most taxonomically diverse genus in family Symbiodiniaceae, is 

found predominantly in the Indo-Pacific (Bongaerts et al., 2015; LaJeunesse, 2005), in 

particular, the species Cladocopium goreaui (formally type C1) (Bongaerts et al., 2015; 

LaJeunesse, 2005). The earlier genome analysis of C. goreaui SCF055 (Liu et al., 2018) 

revealed the genetic capacity of the species to establish and maintain symbiosis with coral 

hosts, respond to stress, and to undergo meiosis: i.e. many of the implicated genes show 

evidence of positive selection. Although these results provide insights into the adaptive 

evolution of genes, the assembled genome, generated using only Illumina short read data, 

remains fragmented with 41,289 scaffolds (Liu et al., 2018). Additional analysis of the draft 

genome also indicated that some scaffolds may be of bacterial origin due to their anomalous 
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G+C content (Chen et al., 2020). As such, these data limit our capacity to reliably assess 

repetitive genomic elements, and evolutionary origins of the predicted genes. 

Here we present an improved, hybrid genome assembly for C. goreaui, combining 

novel PacBio long-read sequence data with the existing short-read sequence data from Liu et 

al. (2018), and incorporating new full-length transcriptome to guide gene prediction. 

Incorporating proteins predicted from the genome with those from 96 broadly sampled taxa 

of eukaryotes and representative prokaryotes in a phylogenomic analysis, we also assessed 

the evolutionary origins of genes in C. goreaui and other dinoflagellates, and the impact of 

horizontal genetic transfer (HGT) in shaping the evolution of this lineage. The earlier 

investigation based on transcriptome data from the bloom-forming, toxin-producing 

dinoflagellate Alexandrium tamarense (Chan et al., 2012) revealed evidence of HGT, 

implicating both prokaryote and eukaryote donors, in 14-17% of investigated protein trees. 

Few genes and no genome data of other dinoflagellates were available when that study was 

conducted. However, the genomic and genetic resources of dinoflagellates have grown 

appreciably in the last decade, enabling a more-balanced representation of taxonomic 

diversity to support such an analysis. In this study we examine how the nuclear genome of C. 

goreaui, and broadly that of dinoflagellates, has evolved and benefited from the acquisition 

of genomic (and functional) novelties through HGT. 

Results and Discussion 

Improved C. goreaui genome assembly reveals more repeats and more duplicated genes 

We generated PacBio long-read genome data (50.2 Gbp; Table S1) for C. goreaui SCF055 

and combined them with existing Illumina short reads in a hybrid approach to generate a de 

novo genome assembly (see Methods). The first published genome assembly of the SCF055 

isolate (Liu et al., 2018) was previously refined to exclude putative contaminant sequences 

(Chen et al., 2020). Compared to the draft assembly reported in Chen et al. (2020), our 

assembly exhibits a five-fold decrease in the number of scaffolds (6,843) and a three-fold 

increase in scaffold N50 length (354 Kbp; Table 1). Genome size was estimated at 1.3 Gbp 

based on k-mers (Figure S1), and our improved assembly (1.2 Gbp in size) is larger than the 

earlier draft (1.0 Gbp; Table 1). 

We also generated 65,432 near full-length transcripts using PacBio Iso-Seq reads to 

guide prediction of protein-coding genes. Using the same approach tailored for 
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dinoflagellates (Chen et al., 2020), we predicted 45,322 protein-coding genes (mean length 

15,745 bp) in the genome, compared to 39,066 (mean length 8,428 bp) reported in Chen et al. 

(2020). The majority (82.4%) of predicted genes are supported by transcript evidence. These 

predicted genes are markedly improved, evidenced by the 15.1% greater recovery of core 

conserved genes (BUSCO alveolate_odb10) (Manni et al., 2021) at 82.4% (Table 1). Most 

predicted proteins (40,495; 89.3%) have UniProt hits using sequence similarity (BLASTp; E 

≤ 10-5), 19,904 (43.9%) have hits in the curated Swiss-Prot database, 8,836 (19.5%) covering 

>90% of full-length Swiss-Prot proteins. The remaining 4,827 (10.7%) C. goreaui proteins 

have no significant hits in UniProt, indicating the prevalence of “dark” genes that encode 

functions yet to be discovered. 

We identified and compared the repeat content in the C. goreaui genome versus the 

earlier assembly in Chen et al. (2020). Excluding simple repeats, we found a higher repeat 

content (36.5% of total bases in the assembled genome; Figure 1a) in the current assembly 

than in the initial data (21.1%), with known repeat types accounting for 17.3% of total bases, 

compared to 5.6%. This result indicates a better resolution of repetitive regions in the revised 

genome with the incorporation of long reads. Long terminal repeats (LTR) and DNA 

transposons are the most prevalent repeat families (constituting 7.3% and 6.2% of total bases, 

respectively). The two repeat families exhibit distinct levels of sequence divergence: those 

with Kimura substitution values centred between 0 and 10 are more conserved than those 

with values centred between 15 and 25. Most LTRs are highly conserved in C. goreaui, a 

trend also observed in the genomes of other dinoflagellates (González-Pech et al., 2021; 

Stephens et al., 2020). 

Collinear gene blocks within a genome represent duplicated gene blocks, e.g. via 

segmental or whole-genome duplication. Based on the recovery of these gene blocks, we 

identified a greater proportion of duplicated genes than Chen et al. (Chen et al., 2020): 35,119 

(77.5% of 45,322) genes in duplicates, compared to 25,550 (65.5% of 39,006; Table 2). We 

found 31,827 (70.2%) genes in dispersed duplicates, suggesting a lack of conserved 

collinearity of genes in the C. goreaui genome. This attribute reflects the extensive structural 

rearrangements expected in genomes of facultative symbionts (González-Pech et al., 2019). 

With the improved structural annotation, we recovered a 2.39-fold greater number of 

tandemly repeated genes, and 387 genes (in 34 collinear blocks) implicated in segmental 

duplications (Table 2). Tandemly repeated genes in dinoflagellates are thought to be a 
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mechanism for improving transcriptional efficiency, particularly for genes encoding critical 

functions (Stephens et al., 2020). Comparing Gene Ontology (GO) terms annotated in the 

1,998 tandemly repeated genes against those in all C. goreaui genes, the top 3 enriched terms 

for Cellular Component (Table S2) are “chloroplast thylakoid membrane” (GO:0009535; p = 

1.5 × 10-7), “photosystem I reaction center” (GO:0009538; p = 5.4 × 10-7) and “photosystem 

II” (GO:0009523; p = 0.00042). This result indicates that genes encoding photosynthetic 

functions tend to appear in tandem repeats in C. goreaui, likely to facilitate their 

transcription. We applied the same approach to genes in segmental duplications and found the 

most significant enriched terms for this set is Biological Process, “recombinational repair” 

(GO:0000725, p = 7.2 × 10-5, Table S3). The repair of errors during genetic recombination is 

essential for maintaining genome integrity; conservation of collinear organization of genes 

implicated in this function likely reflects a stronger selective pressure acting on these genes 

than on the others. 

Topologically associated domains (TADs) and unidirectional gene blocks 

Recent studies have clarified interacting genomic regions via topologically associated 

domains (TADs) of dinoflagellate chromosomes (Marinov et al., 2021; Nand et al., 2021). 

Orientations of unidirectionally encoded gene blocks diverge from a TAD central region, 

converging at TAD boundaries (Nand et al., 2021). Regulatory elements such as promoters 

and enhancers for gene expression are hypothesized to be concentrated in these regions to 

regulate transcription of upstream or downstream unidirectional gene blocks (Lin et al., 

2021). To assess putative TAD regions in the revised C. goreaui genome, we first identified 

the unidirectionally encoded gene blocks. We followed Stephens et al. (2020) to enumerate 

gene-orientation change(s) in a ten-gene window, sliding across entire genome sequences; the 

tendency for no change in gene orientation is an indication for the prevalence of 

unidirectional encoding. We performed this analysis in a set of representative 

Symbiodiniaceae genomes (Figure 1d). Interestingly, we observed a lower percentage 

(34.7%) of ten-gene windows with conserved orientation in the revised C. goreaui genome, 

when compared to 44.6% in the assembly of Chen et al. (2020). The equivalent percentages 

in the more-contiguous, near-chromosomal level genome assemblies of S. microadriaticum 

(Nand et al., 2021) (13.9%) and F. kawagutii (Li et al., 2020) (34.5%) are also lower, 

compared to 46.1% in the more-fragmented assembly of B. minutum (Chen et al., 2020) 

(Figure 1d). However, when we assessed the sizes of unidirectional gene blocks in these 

genomes, they are clearly larger in the more-contiguous assemblies (Figure 1e). For instance, 
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32.6% of genes in C. goreaui are found in block sizes of 10 or more genes, compared to only 

7.6% in the earlier assembly (Figure 1e). These observations indicate that the lower recovery 

of ten-gene windows with conserved orientation is caused by the increased recovery of 

windows spanning two gene blocks with opposing orientations, as expected in TAD central 

or boundary regions, in the more-contiguous assemblies. In this way, the more-contiguous 

assembly enables better recovery of putative TAD regions. 

To assess putative TAD regions, we examined genomic regions between any two 

unidirectional gene blocks. We identified these regions requiring the gene blocks on either 

side to contain at least N number of genes, where N is 4, 6, 8, or 10. Figure 1f shows the 

recovery of these regions across threshold N in the representative genomes, with those with 

converging gene-block orientations (i.e. putative TAD boundaries) above the x-axis, and 

those with diverging orientations (i.e. putative TAD central regions) below the x-axis. We 

recovered orders of magnitude greater numbers of these regions in the more-contiguous C. 

goreaui assembly (e.g. 327 putative TAD boundaries) and in near-chromosomal level 

assemblies of S. microadriaticum (340) and F. kawagutii (454), than in the more-fragmented 

assemblies of B. minutum (59) and C. goreaui (15). The implicated unidirectional gene 

blocks on either side of these regions are also larger, e.g. at N = 10, we identified 25 putative 

TAD boundaries in C. goreaui, compared to only two in the earlier assembly; the assembly of 

F. kawagutii shows the greatest recovery of TAD-associated regions, with 129 putative TAD 

boundaries implicating blocks of 10 or more genes on either side. TAD boundaries have been 

reported to exhibit a dip in GC content in the middle of the sequence (Nand et al., 2021). We 

observed such a dip in GC content in 17/25 putative TAD boundary regions (at N = 10) in C. 

goreaui; an example is shown in Figure S2. Interestingly, our recovery of TAD-associated 

regions in C. goreaui is very similar to that in the chromosome-level assembly of S. 

microadriaticum (Figure 1f), suggesting that our revised assembly, although not derived 

specifically using chromosome configuration captures, e.g. in Nand et al. (2021), resolves a  

comparable number of TAD regions. 

We also identified genes that tend to disrupt the unidirectional coding of gene blocks, 

based on their distinct orientation from upstream and downstream genes; such disruptions 

have been observed in the chromosome-level genome assembly of S. microadriaticum (Nand 

et al., 2021). We identified 3799 (8.4%) of such genes in C. goreaui. Interestingly, these 

genes largely encode functions related to transposon elements. Comparing the annotated GO 
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terms in these genes versus those in all C. goreaui genes, two most significantly enriched 

terms for Molecular Function are “nucleic acid binding” (GO:0003676; p < 1.0 × 10-30) and 

“RNA-DNA hybrid ribonuclease activity” (GO:0004523; p = 1.8 × 10-20; Table S4), and the 

most significantly enriched term for Biological Process is “DNA integration” (GO:0015074; 

p =7.6 × 10-7; see Table S4). This result indicates the tendency for mobile genes to disrupt 

unidirectional coding, and to potentially exploit part of the unidirectional gene block to 

facilitate transcription. 

Evolutionary origin of C. goreaui genes  

We inferred a dinoflagellate phylogeny (Supplementary Figure S3) using 3,266 single-copy, 

strictly orthologous protein sets identified from 1,446,816 sequences of 30 dinoflagellate taxa 

including C. goreaui (Table S5; see Methods). This phylogeny is congruent with the 

established phylogeny of dinoflagellates (Price & Bhattacharya, 2017; Stephens et al., 2018) 

with distinct orders occurring in strongly supported clades (bootstrap support [BS] ≥ 90%). 

C. goreaui is placed in a well-supported (BS 100%) clade of family Symbiodiniaceae, and 

within the order Suessiales (BS 100%) to which the family belongs. This result confirms the 

phylogenetic position of C. goreaui in family Symbiodiniaceae based on putative orthologous 

proteins, a result that has been demonstrated recently based on whole-genome sequence data 

using an alignment-free phylogenetic approach (Lo et al., 2022). 

We then assessed the evolutionary origin of individual C. goreaui genes using protein 

data. We used 2,841,408 predicted protein sequences from 96 broadly sampled taxa of 

eukaryotes and prokaryotes (Table S5) to identify 177,346 putative homologous proteins sets 

based on sequence similarity (see Methods). Of the 45,322 C. goreaui proteins, 22,026 

(48.6%) are specific to dinoflagellates (i.e. 3,021, 8,748 and 10,257 are specific to C. 

goreaui, order Suessiales, and Dinophyceae; Figure 2a). These results indicate extensive 

lineage-specific innovation of gene functions following speciation or divergence of 

dinoflagellates, supporting the notion of extreme divergence of dinoflagellate genes (Dougan 

et al., 2022; González-Pech et al., 2021; Lin et al., 2015; Stephens et al., 2018).  

We found 4,601 (10.2% of 45,322) proteins to be shared exclusively with another 

phylum, in 1544 homologous sets (Figure 2b). Assuming that inadequate sampling is less of a 

concern in sets that contain a larger number of genes, we adapted the approach by Chan et al. 

(2012) to assess these putative gene-sharing partners (phylum) with dinoflagellates, based on 
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the minimum number of genes (x) in each set, at x ≥ 2, ≥ 20, ≥ 40 and ≥ 60. At x ≥ 2, the most 

frequent gene-sharing partners for dinoflagellates are Chromerida, Perkinsea and other 

alveolates (534), followed by Stramenopiles (195), Haptophyta (162), and Archaeplastida 

(146). This result supports the current systematic classification of dinoflagellates in the 

supergroup Alveolata, the Stramenopiles+Alveolata+Rhizara (SAR) clade (Burki et al., 2020; 

Hackett et al., 2007), and their close association with haptophytes (Ishida & Green, 2002) and 

Archaeplastida via endosymbiosis implicated by their plastid origin (Chan, Gross, et al., 

2011; Yoon et al., 2005). The earlier study based on transcriptome data from the bloom-

forming dinoflagellate Alexandrium tamarense (Chan et al., 2012) revealed a decrease in 

proportion of dinoflagellate genes shared with alveolates as x increased. This trend is not 

observed here, e.g. the percentage of genes showing exclusive sharing with alveolates is 

34.6%, 37.9%, 38.5% and 37.3% at x ≥ 2, ≥ 20, ≥ 40 and ≥ 60. This result suggests that the 

phylogenetic signal observed here is more robust than in the earlier study, boosted by the 

greater representation of dinoflagellate taxonomic diversity (30 taxa in Table S5). 

The remaining 18,695 (41.2%) C. goreaui proteins were recovered in 5,795 

homologous sets containing two or more phyla. To assess the evolutionary origins of these 

genes, we inferred a phylogenetic tree for each of these homologous protein sets; 5,246 

remained after passing the initial composition chi-squared test in IQ-TREE to exclude 

sequences for which the character composition significantly deviates from the average 

composition in an alignment (see Methods). Among the 5,246 trees, we adopted a 

computational approach (Stephens et al., 2016) to rapidly identify those in which 

Dinophyceae taxa form a strongly supported clade with one other phylum, based on observed 

BS at ≥ 90%, ≥ 70%, and ≥ 50% (Figure 2c; see Methods and Table S6 for detail of our tree-

sorting strategy); clades observed at higher BS threshold represent higher confidence results. 

All sorted trees using the three thresholds are available as Supplementary Data 1. We 

identified 2,080, 2,414 and 2,605 trees that fit these criteria at BS ≥ 90%, ≥ 70%, and ≥ 50% 

(Figure 2c); the classification of evolutionary origin for each sorting process is shown in 

Table S6. The proportions of distinct putative origins for the protein sets are consistent, e.g. 

those with putative alveolate origin are 24.9%, 24.8% and 24.0% at BS ≥ 90%, ≥ 70%, and ≥ 

50% (Figure 2c), reflecting the robust phylogenetic signal we recovered from these data. 

Remarkably, the evolutionary history of dinoflagellate proteins in more than one-half of the 

analysed 5,246 trees is too complicated to be classified using our approach, e.g. 2,641 

(50.3%) even at our least-stringent threshold of BS ≥ 50%. Some of these proteins (e.g. acyl-
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CoA dehydrogenase and GTP-binding protein of YchF family) are thought to have a shared 

origin with fungi or picoprasinophytes (Chan et al., 2012), which are likely to be artefacts due 

to limited dinoflagellate genome data and sampling bias.  

Genes implicating a history of horizontal transfer 

Trees containing a strongly supported monophyletic clade of dinoflagellates and 

taxonomically remote phyla (Categories F through O in Figure 2c) suggests a history of 

horizontal genetic transfer; they account for 35.1%, 34.9% and 36.4% of sorted trees at BS ≥ 

90%, ≥ 70%, and ≥ 50%. The proportion of HGT-implicated trees is greater than that (14–

17%) in the earlier study based on transcriptome of Alexandrium tamarense (Chan et al., 

2012). In this study, a more taxonomically balanced set of eukaryote taxa was used, including 

a larger representation of dinoflagellates and red algae. Therefore, the biases introduced by 

poor taxon-sampling are diminished, as demonstrated by the robustness of phylogenetic 

signal that we captured at different stringency levels.  

Dinoflagellates possess secondary (and some tertiary) plastids independently acquired 

from several algal lineages through endosymbioses (Gabrielsen et al., 2011; Yoon et al., 

2005). Genes from the endosymbionts were postulated to have been transferred to the host 

nuclear genome during this process. The implicated endosymbionts include the ancestral 

Archaeplastida lineages of red and/or green algae, and potentially other eukaryotic microbes 

e.g. haptophytes, allowing genetic transfer between dinoflagellates and these algal lineages 

during these events (Ishida & Green, 2002). Secondary plastids found in dinoflagellates and 

diatoms (stramenopiles) are thought to have arisen from an ancestral red alga (Janouškovec et 

al., 2010); both red and green algal derived genes have been described in these taxa (Chan, 

Reyes-Prieto, et al., 2011; Chan et al., 2012; Moustafa et al., 2009). 

Here, we focus on the high-confidence trees (clade recovery at BS ≥ 90%) as strong 

evidence for HGT. Of the 2,080 trees, 402 (19.3%) putatively derived from Archaeplastida 

(groups F through I in Figure 2c): 73 from Rhodophyta (F), 199 from Viridiplantae (G), and 

130 from any combination of Archaeplastida taxa (H and I). At the less-stringent BS 

threshold, this number is 589 (22.6% of 2,605). C. goreaui (and dinoflagellate) genes in these 

trees likely arose via endosymbiotic genetic transfer due to one or more plastid 

endosymbioses implicating ancestral Archaeplastida phyla, more evidently with green algae 

(in Viridiplantae) than with the red algae (Rhodophyta). 
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Figure 3a shows the phylogenetic tree of beta-glucan synthesis-associated protein 

homologs, with a strongly supported (BS 97%) monophyletic clade containing Viridiplantae 

(of green algae Chlamydomonas, Volvox and Chlorella), haptophytes, Stramenopiles 

(including diatoms), and dinoflagellates. The beta-glucans are key components of cellulose 

that form the thecate armour of the cell wall of dinoflagellates (Nevo & Sharon, 1969), and 

key carbohydrate storage (Salmeán et al., 2017). This tree suggests a putative green algal 

origin of the gene associated with beta-glucan synthesis in dinoflagellates and other closely 

related taxa, implicating an ancient HGT among these lineages This is a more parsimonious 

explanation than to invoke massive gene losses in other alveolates and microbial eukaryotes. 

Figure 3b shows the tree for putative abscisic acid 8′-hydroxylase, in which 

Viridiplantae taxa (largely plants) form a strongly supported (BS 100%) monophyletic clade 

with the diatom Fragilariopsis cylindrus and dinoflagellates. This tree supports a 

Viridiplantae origin of dinoflagellate genes, and subsequent divergence among the Suessiales 

(BS 98%) including C. goreaui. This enzyme is involved in regulating germination and 

dormancy of plant seeds via oxidation of the hormone abscisic acid (Footitt et al., 2011). It is 

also known as cytochrome P450 monooxygenase (Krochko et al., 1998). In dinoflagellates, 

this enzyme is known to regulate encystment and maintenance of dormancy (Deng et al., 

2017), and the expression of this gene was found to be upregulated as an initial response to 

heat stress in a Cladocopium species (Rosic et al., 2010). The tree in Figure 3b shows that the 

protein homologs in dinoflagellates share sequence similarity to those in plants, whereas 

homologs from other green algae (the more-likely sources of HGT) are absent; given that 

plants diverged from the green algal lineages, this result suggests that the green algal derived 

gene in plants, dinoflagellates and the diatom F. cylindrus likely subjected to differential 

functional divergence or gene loss among the green algae.  

We also found evidence for more-recent genetic exchanges. Figure 4 shows the tree for 

a putative sulphate transporter, which has a strongly supported (BS 93%) monophyletic clade 

containing dinoflagellates and Viridiplantae (mostly green algae), separate from the usual 

sister lineage of Stremenopiles expected in the SAR grouping in eukaryote tree of life (Burki 

et al., 2020). This protein is involved in sulphate uptake, which in green algae has direct 

impact on protein biosynthesis in the plastid (Melis & Chen, 2005). This tree suggests a 

putative green algal origin of the genes in dinoflagellates that implicates more-recent HGT 

than those observed in Figure 3. On the other hand, some green algal derived genes appear to 
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have undergone duplication upon diversification of dinoflagellates, e.g. the tree of a 

hypothetical protein shown in Figure S4. Although the function of this protein in 

dinoflagellates remains unclear, the homolog in Arabidopsis thaliana (UniProt Q94A98; 

At1g65900) is localised in the chloroplast and implicated in cytokinesis and meiosis 

(Depuydt & Vandepoele, 2021; Kaundal et al., 2010), lending support to endosymbiotic 

genetic transfer associated with plastid evolution (Sarai et al., 2020). The fact we found 

ancient and recent genetic exchanges between green algae and dinoflagellates suggests HGT 

is a dynamic and ongoing process during genome evolution of dinoflagellates.  

Red algal origin of secondary plastids is well established (Janouškovec et al., 2010; 

Yoon et al., 2002). The stronger signal of green algal than red algal origin we observed here 

based on a taxonomically broad and dinoflagellate-rich dataset (Table 1) lends support to the 

notion of an additional cryptic green algal endosymbiosis in the evolution of secondary 

plastids instead of the “shopping bag” hypothesis that postulates equal proportions of 

acquired red or green algal genes (Morozov & Galachyants, 2019). Although green algal 

derived plastids in some dinoflagellates are also known (Archibald & Keeling, 2002; 

Kamikawa et al., 2015), these taxa are not included in our analysis here due to lack of 

genome data.  

We observed a small proportion (7.1%) of trees that suggest putative genetic exchange 

between dinoflagellates with distantly related eukaryotes and prokaryotes, e.g. groups L 

through O in Figure 2c. We cannot dismiss that some of these may be artefacts due to 

sampling bias or even misidentified sequences in the database. For instance, the phylogeny of 

phosphatidylinositol 4-phosphate 5-kinase (Figure S5) shows a strongly supported (BS 

100%) clade containing 55 dinoflagellate sequences and one sequence from coral Porites 

lutea representing Metazoa; this may be a case of misidentification of the sequence from the 

dinoflagellate symbiont associated with the coral.  

Genes implicating vertical inheritance 

Among the high-confidence trees (recovery at BS ≥ 90%), 64.9% (groups A through E in 

Figure 2c) provide strong evidence of vertical inheritance; these trees contain a strongly 

supported (BS ≥ 90%) monophyletic clade containing dinoflagellates only (373), and 

dinoflagellates plus another closely related taxa of Alveolata (517), Stramenopiles (124), 

Rhizaria (65), and with SAR group in the presence of Haptophyta and Cryptophyta (270), as 
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expected based on our current understanding of eukaryote tree of life (Burki et al., 2020) 

Figure S6 shows an example of these trees, specifically, ubiquitin carboxyl-terminal 

hydrolase. In this tree, all the major phyla are mostly well-resolved in strongly supported 

clades, e.g. Dinophyceae, Rhizaria, Stramenopiles, and Rhodophyta, each at BS 100%, and 

the clade of Alveolata+Rhizaria (BS 90%). Figure 5 shows another tree that contains a 

strongly supported (BS 100%) monophyletic clade of the SAR group, within which three 

clades (two supported at BS 99%, one at BS 100%), each containing similar dinoflagellate 

taxa, are recovered, highlighting gene-family expansion. Proteins within the three subclades 

code for distinct functions: (a) an autophagy-related protein 18a (as with other non-

dinoflagellate proteins positioned elsewhere in the tree), (b) a transmembrane protein, and (c) 

the pentatricopeptide repeat-containing protein GUN1. This observation indicates vertical 

inheritance of the gene encoding transmembrane protein in dinoflagellates, which was then 

duplicated and underwent neofunctionalization to generate functional diversity.  

 

Concluding remarks 

Our results demonstrate the power of long-read sequence data in elucidating key genome 

features in C. goreaui, at a comparable capacity to chromosome-level genome assemblies of 

other Symbiodiniaceae, including the resolution of duplicate genes, repetitive genomic 

elements and TADs. These results support the expected high sequence and structural 

divergence of dinoflagellate genomes (Dougan et al., 2022; González-Pech et al., 2021). 

Comparative analysis of the genes revealed clear evidence of lineage-specific innovation in 

C. goreaui and in dinoflagellates generally, implicating about one-half of C. goreaui genes; 

many (52.9%) C. goreaui genes remain dark, for which the encoded functions are unknown 

(Stephens et al., 2018). Our gene-by-gene phylogenetic analysis revealed the intricate 

evolutionary histories of genes in C. goreaui and dinoflagellates, with many too complex to 

be unambiguously interpreted.  

Our results highlight how genetic transfer and gene duplication generated functional 

diversity and innovation in C. goreaui, and in combination with the conserved LTRs and 

DNA transposons, shaped the genome of this facultative symbiont (González-Pech et al., 

2019). The data generated from this study provide a useful reference for future studies of 

coral symbionts and more broadly of dinoflagellates and microbial eukaryotes. The identified 

TAD regions, for instance, provides an excellent analysis platform to assess the presence of 

conserved gene-regulatory elements, e.g. promoters or enhancers of gene expression, as 
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hypothesized in Lin et al. (2021) to facilitate transcription of the unidirectional gene blocks. 

Our analytic workflow can be adapted and applied to study TADs in other assembled 

genomes of dinoflagellates.  

Methods 

Generation of long-read genome and transcriptome data 

Cladocopium goreaui SCF055-01 is a single-cell monoclonal culture first isolated from the 

coral Acropora tenuis at Magnetic Island, Queensland, Australia (Howells et al., 2012). The 

cultures were maintained at the Australian Centre of Marine Science (AIMS) in Daigo’s IMK 

medium at 26°C, 90 uE/cm2/s-1. High molecular weight genomic DNA was extracted 

following the SDS method described in Wilson et al. (2002).The sample was sent to 

Ramaciotti Centre for Genomics (University of New South Wales, Sydney) for sequencing 

using the PacBio, first using RS II, then the Sequel platform (Table S1). DNA fragments of 

lengths 10–20 Kb were selected for the preparation of sequencing libraries. In total, 6.2 

million subreads were produced (50.2 Gbp).  

Total RNA was extracted from cultured SCF055 cells in exponential growth phase 

(~106 cells), combining the standard Trizol method with Qiagen RNeasy protocol, following 

Rosic and Hoegh-Guldberg (Rosic & Hoegh-Guldberg, 2010). Quality and quantity of RNA 

were assessed using a Bioanalyzer and Qubit. The RNA sample was sent to the sequencing 

facility at the University of Queensland’s Institute for Molecular Bioscience for generation of 

Iso-Seq data using the PacBio Sequel II platform. Iso-Seq library was prepared using the 

NEBNext Single Cell/Low Input cDNA Synthesis and Amplification Module and the 

SMRTbell Express Template Prep Kit 2.0 following standard protocol. Sequencing was 

conducted using half of a Sequel II SMRT cell. From these raw data, we generated 3,534,837 

circular consensus sequencing (CCS) reads (7.3 Gb; average 36 passes) using CCS v4.2.0. 

The CCS reads were then fed into the Iso-Seq pipeline v3.3.0 pipeline for standard Iso-Seq 

processing, which includes key steps of read refinement, isoform clustering, and polishing, 

resulting in 55,505 high-quality, non-redundant, polished Iso-Seq transcripts (total 79 Mb; 

N50 length 1,493 bases). 

De novo genome assembly combining short- and long-read sequence data 

We combined the long-read sequence data with all short-read sequence data from Liu et al. 

(2018) in a hybrid genome assembly using MaSuRCA v3.4.2 (Zimin et al., 2017). Because 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 20, 2022. ; https://doi.org/10.1101/2022.07.19.500725doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.19.500725
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 
 

the SCF055 culture is xenic, we adapted the approach in Iha et al. (2021) to identify and 

remove putative contaminant sequences from bacterial, archaeal, and viral sources. Bowtie2 

(Langmead & Salzberg, 2012) was first used to map the genome sequencing data (Illumina 

paired-end reads) using the --very-fast algorithm to the assembled genome scaffolds to obtain 

information of sequencing depth. BlobTools v1.1 (Laetsch & Blaxter, 2017) was then used to 

identify anomalies of GC content and sequencing depth among the scaffolds, and to assign a 

taxon to each scaffold (using the default "bestsum" algorithm) based on hits in a BLASTn (E 

≤ 10-20) search against the NCBI nucleotide (nt) database release 2020-01-08. We also 

mapped available transcriptome data onto the assembled genome to further assess gene 

structure to aid identification of intron-containing genes on the scaffolds as indication of 

eukaryote origin. To do this, we used our Iso-Seq transcripts (above) and the RNA-Seq data 

from Levin et al. (2016) that we assembled using Trinity v2.9.1 (Grabherr et al., 2011) in de 

novo mode. Mapping was conducted using minimap2 v2.17-r975-dirty (Li, 2018) (--

secondary=no -ax splice:hq -uf –splice-flank=no), for which the code has been modified to 

recognise alternative splice-sites in dinoflagellate genes. Using the taxon assignment, genome 

covarege, and transcript support information, we identified and removed putative 

contaminant sequences from the genome assembly following a decision tree based on these 

results (Figure S7).  

Estimation of genome size based on sequencing data 

To estimate the genome size, we adapted the k-mer-based approach used by González-Pech et 

al. (2021). We first enumerated k-mers of size k = 21 from the sequencing reads using 

Jellyfish v2.3.0 (Marçais & Kingsford, 2011). The resulting histogram (jellyfish histo --

high=1000000) of k-mer count was used as input for GenomeScope2 (Ranallo-Benavidez et 

al., 2020) to estimate a haploid genome size. Genome of C. goreaui (and other 

Symbiodiniaceae) are thought to be haploid (Liu et al., 2018) and we did not observe bimodal 

distribution of k-mer coverage expected in a diploid genome (Figure S1). 

Annotation of repeat content  

De novo repeat families were predicted from the genome assembly using RepeatModeler 

v1.0.11 (http://www.repeatmasker.org/RepeatModeler/). All repeats (including known 

repeats in RepeatMasker database release 20181026) were identified and masked using 

RepeatMasker v4.0.7 (http://www.repeatmasker.org/); the masked sequences were used for 
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ab initio gene prediction (below). The repeat landscape plot was generated with Perl script 

createRepeatLandscape.pl available from RepeatMasker.  

Ab initio prediction of protein-coding genes  

To predict protein-coding genes from the assembled genome sequences, we adopted the 

approach in Chen et al. (2020), using the workflow tailored for dinoflagellate genomes 

(https://github.com/TimothyStephens/Dinoflagellate_Annotation_Workflow), which was also 

applied in earlier studies of Symbiodiniaceae genomes (González-Pech et al., 2021; Liu et al., 

2018) 

Briefly, the transcriptome data (combining our 55,505 high-quality Iso-Seq transcripts 

and data from Levin et al. (2016); above) were mapped onto the assembled genome with 

Minimap2 (Li, 2018). All transcripts were combined into gene assemblies using PASA v2.3.3 

(Haas et al., 2003) for which the code was modified to recognise alternative splice sites 

(available at https://github.com/chancx/dinoflag-alt-splice). TransDecoder v5.2.0 (Haas et al., 

2003) was used to predict open reading frames on the PASA-assembled transcripts; these 

represent the transcript-based predicted genes. The predicted proteins were searched 

(BLASTP, E ≤ 10-20, >80% query cover) against a protein database consisting of RefSeq 

proteins (release 88) and predicted proteins of available Symbiodiniaceae genomes (Table 

S7). The gene models were checked for transposable elements using HHblits v2.0.16 

(Remmert et al., 2012) and TransposonPSI (http://transposonpsi.sourceforge.net/), searching 

against the JAMg transposon database (https://github.com/genomecuration/JAMg); those 

containing these elements were removed from subsequent steps. After removal of redundant 

sequences based on similarity using CD-HIT v4.6.8 (Li & Godzik, 2006) (-c 0.75 -n 5), the 

final curated gene models were used to identify high-quality “golden genes” using the script 

Prepare_golden_genes_for_predictors.pl from the JAMg pipeline 

(http://jamg.sourceforge.net/), altered to recognise alternative splice sites. 

We used four other programs for predicting protein-coding genes. The “golden genes” 

above were used as a training set for SNAP (Korf, 2004) and AUGUSTUS v3.3.1 (Stanke et 

al., 2006) to predict genes from the repeat-masked genome; the code for AUGUSTUS was 

altered to recognise alternative splice sites of dinoflagellates (available at 

https://github.com/chancx/dinoflag-alt-splice). We also used GeneMark-ES (Lomsadze et al., 

2005) and MAKER v2.31.10 (Holt & Yandell, 2011) for which code was modified to 
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recognise alternative splice sites, in protein2genome mode guided by SwissProt database 

(retrieved 27 June 2018) and other predicted proteins from Symbiodiniaceae (Table S7). 

Finally, gene predictions from all five methods, i.e. the ab initio predictions (from 

GeneMark-ES, AUGUSTUS, and SNAP), MAKER protein-based predictions, and PASA 

transcript-based predictions, were integrated using EvidenceModeler v1.1.1 (Haas et al., 

2008) to yield the gene models; see Chen et al. (2020) for detail. The gene models were 

further polished with PASA (Haas et al., 2003) for three rounds to incorporate isoforms and 

UTRs, yielding the final gene models.  

Functional annotation of C. goreaui genes 

For functional annotation, all predicted proteins were searched against all protein sequences 

on Uniport (release 2021_03). Only hits with E ≤ 10-5 were retained. Gene Ontology (GO) 

terms associated with top hits were first retrieved from Uniprot website using the 

“Retrieve/ID mapping tool”, then mapped to the corresponding queries.  

Analysis of duplicated genes 

To identify and classify duplicated genes, we first performed all-versus-all BLASTp (E ≤ 10-

5) on corresponding proteins of all predicted genes. The top five hits (excluding the query 

itself) were used as input for MCScanX (Wang et al., 2013) in duplicate_gene_classifier 

mode to classify genes into five categories: singleton (single-copy genes), dispersed (paralogs 

away from each other; i.e. at least 20 genes apart), proximal (paralogs near each other), 

tandem (paralogs in tandem gene block) and segmental (duplicates of collinear blocks). 

GO enrichment analysis 

R package topGO (Alexa & Rahnenführer, 2009) was used for enrichment analysis of GO 

terms. In total, 21,356 genes were annotated with one or more GO terms; these were used as 

the background set. Genes in tandem repeats and segmental duplication are used as the test 

set to search for enriched GO terms, in independent analyses. Fisher’s exact test is applied to 

assess statistical significance, instances with p ≤ 0.01 is considered significant. 

Analysis of unidirectional gene blocks and TADs 

For this part of analysis, we focused on five representative assembled genomes of 

dinoflagellates: C. goreaui from this study, C. goreaui from Chen et al. (Chen et al., 

2020)Fugacium Kawagutii (Li et al., 2020), Breviolum minutum (Chen et al., 2020), and 
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Symbiodinium microadriaticum (Nand et al., 2021). Unidirectional gene blocks were 

identified based on a block of genes within which their orientiations are the same. A putative 

TAD boundary is the region at which the orientations of two blocks converged. A putative 

TAD central region is the region at which the orientations diverged. We analysed putative 

TAD regions and unidirectional gene blocks based on the minimum number of genes within a 

block, N, at N = 4, 6, 8 and 10.  

To validate the putative TADs, we searched for GC dip in the TAD boundaries, 

following Nand et al. (Nand et al., 2021). On each scaffold, for each sliding 4Kb-window, we 

calculated the localised G+C content. A putative region of GC dip is identified based on three 

criteria: (1) the G+C in a 4Kb region is lower than average GC content of the entire scaffold 

(i.e. the background); (2) the largest difference between the localised G+C and the 

background G+C is larger than 0.05%; and that (3) the implicated region is longer than 5000 

bp. 

Phylogenomic analysis of C. goreaui genes 

To investigate the putative origins of C. goreaui genes, we compiled a comprehensive protein 

database (2,841,408 sequences) of 96 broadly sampled taxa from diverse lineages, 

encompassing eukaryotic, bacterial, and archaeal taxa; of which 30 are dinoflagellates (Table 

S5). For species where there were multiple datasets for the same isolate, the protein 

sequences were clustered at 90% sequence identity using CD-HIT-v4.8.1(Li & Godzik, 2006) 

to reduce redundancy. Isoforms are reduced to retain one representative protein (longest) per 

genes. 

Using all 2,841,408 protein sequences from the database (Table S5), homologous 

protein sets were inferred using OrthoFinder-v2.3.8 (Emms & Kelly, 2015) at default setting. 

For this analysis, we restricted our analysis to 177,346 putative homologous sets of C. 

goreaui proteins (i.e. sets in which one or more C. goreaui sequence is represented). For 

homologous sets contain only Dinophyceae and one other phylum (an exclusive gene-sharing 

partner), the putative gene-sharing partner was assessed based on the number of implicated 

homologous sets, requiring at least x number of genes in each set (for x = 2, 20, 40, and 60). 

For the other protein sets, multiple sequence alignment was performed using MAFFT-v7.453 

(Katoh & Standley, 2013) with parameters --maxiterate 1000 --localpair. Following Stephens 

et al. 2018 (Stephens et al., 2018), ambiguous and non-phylogenetically informative sites in 
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each alignment were trimmed using trimAl-v1.4.1 (Capella-Gutiérrez et al., 2009) in two 

steps: trimming directly with -automated1, then with -resoverlap 0.5 -seqoverlap 50. A 

maximum likelihood tree for each protein set was inferred from these trimmed alignments, 

using IQ-TREE2 (Minh et al., 2020), with an edge-unlinked partition model and 2000 

ultrafast bootstraps. The initial step of IQ-TREE2 by default is to perform a composition chi-

squared test for every sequence in an alignment, the sequence for which the character 

composition significantly deviates from the average composition in the alignment is removed. 

Alignments filtered this way were further removed if the target C. goreaui sequence was 

removed, and if the alignment contains no more than four sequences. In total, 5,246 trees 

were used in subsequent analysis.  

Inference of the dinoflagellate species tree 

To infer the dinoflagellate species tree, we first inferred homologous protein sets with 

OrthoFinder-v2.3.8 for the 30 dinoflagellate taxa and Perkinsus marinus (outgroup) in Table 

S5. The 3,266 strictly orthologous, single-copy protein sets (i.e. sets in which each 

dinoflagellate taxon is represented no more than once) were used for inferring the species 

tree. For each set, multiple sequence alignment was performed, the alignment was trimmed, 

per our approach described above. A consensus maximum likelihood reference species tree 

was then inferred using IQ-TREE2 , with an edge-unlinked partition model and 2000 ultrafast 

bootstraps. 

Inference of C. goreaui gene origins 

Putative origins of C. goreaui genes were identified based on the presence of strongly 

supported clades (determined at a bootstrap support threshold) that include C. goreaui (and/or 

other dinoflagellates) and one other taxon group (e.g., a phylum). We used PhySortR 

(Stephens et al., 2016) to quickly sort through thousands of protein trees (i.e. we assume 

these as gene trees) for the specific target clades, independently at bootstrap thresholds of 

≥90% (more stringent, higher confidence), ≥70%, and ≥50% (less stringent, lower 

confidence); default values were used for other parameters. Our 176-step tree-sorting strategy 

is detailed in Table S6. Briefly, we sorted the trees based on recovery of a strongly supported 

monophyletic clade containing both the subject group (dinoflagellates) and target group in 

three stages: first (a) with target groups implicated in endosymbiosis in the evolution of 

plastid (e.g. Archaeplastida); then (b) with closely related target group expected under 

vertical inheritance, and finally (c) with other remotely related eukaryote or prokaryote target 
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group as further indication of horizontal genetic transfer. At each stage, the subject group 

would proceed from the most inclusive (i.e. dinoflagellates plus other closely related taxa in 

the SAR supergroup, Cryoptophyta and Haptophyta), and progressively the most distant 

lineage was removed in each iterative sorting, leaving only dinoflagellates. For each subject 

group, the target group would proceed similarly from the most inclusive, e.g. in stage one, all 

three phyla of Archaeplastida, to subsequent individual phylum. 

Supplementary Materials 

Figure S1. Genome size estimation for Cladocopium goreaui using GenomeScope v2.0. 

Figure S2. An example of G+C dip observed in the C. goreaui genome of a putative 
boundary of topologically associated domain (TAD). 

Figure S3. Species tree of 29 dinoflagellate taxa and Perkinsus as outgroup, inferred from 
3,266 strictly orthologous (single-copy) protein sets. 

Figure S4. Maximum likelihood tree showing gene expansion of a green algal derived gene 
family. 

Figure S5. Maximum likelihood tree of phosphatidylinositol 4-phosphate 5-kinase showing 
possible misidentification of the sequence from the dinoflagellate symbiont associated with 
the coral. 

Figure S6. Maximum likelihood tree of ubiquitin carboxyl-terminal hydrolase showing 
strong evidence of vertical inheritance. 

Figure S7. Decision tree for identification and removal of putative contaminant sequences. 

Table S1. PacBio long-read genome sequencing data from C. goreaui generated in this study. 

Table S2. Enriched GO terms for tandemly repeated genes, shown for Biological Process 
(BP), Cellular Component (CC), and Molecular Function (MF). 

Table S3. Enriched GO terms for genes in segmental duplicates, shown for Biological 
Process (BP), Cellular Component (CC), and Molecular Function (MF). 

Table S4. Enriched GO terms for genes disrupting unidirectional coding of gene blocks, 
shown for Biological Process (BP), Cellular Component (CC), and Molecular Function (MF). 
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Table S5. Protein database for phylogenomic analysis. 

Table S6. Sorting order of phylogenetic trees and the associated classifications. 

Table S7. Protein sequences used to guide ab initio prediction of protein-coding genes. 

Data S1. All sorted trees where Dinophyceae taxa form a strongly supported clade with one 

other phylum  
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Tables 

Table 1. Metrics of the revised genome assembly and predicted genes of C. goreaui, 

compared to the earlier assembled genome.  

  Earlier assembly  
(Chen et al. 2020) 

Revised assembly 
(this study) 

Assembly size (Gbp) 1.0 1.2 

Number of scaffolds 41,235 6,843 

Genome scaffolds N50 (Kbp) 91 354 

Genome GC-content (%) 44.76 44.38 

Number of predicted genes 39,006 45,322 
percentage of BUSCO proteins recovered 
(alveolata_odb10) 67.3 82.4 

Genes with transcript support (%) 76.5 82.5 

Average gene length (bp) 8,428 15,745 

Average CDS length (bp) 1,625 2,018 

Average number of exons per gene 12.4 17.2 

Average exon length (bp) 130.4 120.4 

Genes with introns (%) 95.9 95.9 

Number of introns per gene 11.4 16.2 

Average intron length (bp) 593.5 838.8 

Splice donor motif (%) 
GT 35.7 36.6 
GC 43.3 43.6 
GA 20.8 19.8 

Splice acceptor with AGG motif (%) 96.3 96.1 

Number of intergenic regions 24,243 39,720 

Average length of intergenic regions (bp) 9,539 7,388 

 

 

 

 

Table 2. Types of gene duplication identified in C. goreaui. 

 
Earlier assembly 

(Chen et al. 2020) 
Revised assembly 

(this study) 
Singleton 13,456 (34.5%) 10,203 (22.5%) 

Dispersed 24,441 (62.6%) 31,827 (70.2%) 
Proximal 273 (0.7%) 907 (2.0%) 
Tandem 836 (2.1%) 1,998 (4.4%) 

Segmental 0 (0.0%) 387 (0.9%) 
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Figure legends 

 

Figure 1. Genome features of C. goreaui. (a) Repeat families identified in the revised 

genome assembly; repeat landscape shown for the (b) revised genome assembly of C. 

goreaui (highlighted in bold-face) and (c) the earlier assembly of from Chen et al. (2020). (d) 

Frequency of strand-orientation change in 10-gene windows and (e) cumulative percentage of 

genes in unidirectionally encoded blocks, shown for five representative Symbiodiniaceae 

genomes: Breviolum minutum (Chen et al. 2020), C. goreaui (Chen et al. 2020), C. goreaui 

(boldfaced, this study), Fugacium kawagutii (Li et al. 2021), and Symbiodinium 

microadriaticum (Nand et al. 2021); and (f) number of inter-block regions in each genome 

assembly indicating putative TAD central regions and boundaries, shown for representative 

genomes, based on the minimum number of genes in a unidirectional block. Bars above the x-

axis represent inter-block regions at which orientations of unidirectional blocks converged, 

whereas bars below the x-axis represent those at which the orientations diverged. 

 

Figure 2. Evolutionary origins of C. goreaui genes. (a) C. goreaui genes classified based on 

the number of recovered protein homologs in other taxa. (b) Distribution of phyla with 

respect to exclusive gene-sharing partners for C. goreaui, based on the number of 

homologous sets that contain only C. goreaui and the other phylum, across the minimum 

number of genes in each set (x) at x ≥ 2, ≥ 20, ≥ 40 and ≥ 60. (c) Distribution of phyla that are 

found to share genes with dinoflagellates, based on the number of inferred protein trees in 

which dinoflagellates and one other phylum were recovered in a monophyletic clade, 

assessed at bootstrap support (BS) ≥ 90%, ≥ 70% and x ≥ 50%. 

 

Figure 3. Maximum likelihood trees of (a) beta-glucan synthesis-associated protein and (b) 

abscisic acid 8'-hydroxylase, suggesting ancient gene origins from Viridiplantae. The 

ultrafast bootstrap support of IQ-TREE2 is shown at each internal node; only values ≥70% 

are shown. Unit of branch length is the number of substitutions per site.  

 

Figure 4. Maximum likelihood trees of putative sulfate transporter, suggesting recent gene 

origins from Viridiplantae. The ultrafast bootstrap support of IQ-TREE2 is shown at each 

internal node; only values ≥70% are shown. Unit of branch length is the number of 

substitutions per site.  
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Figure 5. Maximum likelihood protein tree showing vertical inheritance and gene expansion 

among dinoflagellates, with distinct clades containing a transmembrane protein, the 

autophagy-related protein 18a, and the pentatricopeptide repeat-containing protein, GUN1. 

The ultrafast bootstrap support of IQ-TREE2 is shown at each internal node; only values 

≥70% are shown. Unit of branch length is the number of substitutions per site. 
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Figure 1. Genome features of C. goreaui. (a) Repeat families identified in the revised genome assembly; 
repeat landscape shown for the (b) revised genome assembly of C. goreaui (highlighted in bold-face) and 
(c) the earlier assembly of from Chen et al. (2020). (d) Frequency of strand-orientation change in 
10-gene windows and (e) cumulative percentage of genes in unidirectionally encoded blocks, shown for 
five representative Symbiodiniaceae genomes: Breviolum minutum (Chen et al. 2020), C. goreaui (Chen 
et al. 2020), C. goreaui (boldfaced, this study), Fugacium kawagutii (Li et al. 2021), and Symbiodinium 
microadriaticum (Nand et al. 2021); and (f) number of inter-block regions in each genome assembly 
indicating putative TAD central regions and boundaries, shown for representative genomes, based on the 
minimum number of genes in a unidirectional block. Bars above the x-axis represent inter-block regions 
at which orientations of unidirectional blocks converged, whereas bars below the x-axis represent those 
at which the orientations diverged.
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Figure 2. Evolutionary origins of C. goreaui genes. (a) C. goreaui genes classified based on the 
number of recovered protein homologs in other taxa. (b) Distribution of phyla with respect to exclu-
sive gene-sharing partners for C. goreaui, based on the number of homologous sets that contain only 
C. goreaui and the other phylum, across the minimum number of genes in each set (x) at x ≥ 2, ≥ 20, 
≥ 40 and ≥ 60. (c) Distribution of phyla that are found to share genes with dinoflagellates, based on 
the number of inferred protein trees in which dinoflagellates and one other phylum were recovered 
in a monophyletic clade, assessed at bootstrap support (BS) ≥ 90%, ≥ 70% and ≥ 50%.
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Figure 3. Maximum likelihood trees of (a) beta-glucan synthesis-associated protein and (b) abscisic acid 
8'-hydroxylase, suggesting ancient gene origins from Viridiplantae. The ultrafast bootstrap support of 
IQ-TREE2 is shown at each internal node; only values ≥70% are shown. Unit of branch length is the 
number of substitutions per site. 
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Figure 4. Maximum likelihood trees of putative sulfate transporter, suggesting recent gene origins 
from Viridiplantae. The ultrafast bootstrap support of IQ-TREE2 is shown at each internal node; 
only values ≥70% are shown. Unit of branch length is the number of substitutions per site. 
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Figure 5. Maximum likelihood protein tree showing vertical inheritance and gene expansion among 
dinoflagellates, with distinct clades containing a transmembrane protein, the autophagy-related 
protein 18a, and the pentatricopeptide repeat-containing protein, GUN1. The ultrafast bootstrap 
support of IQ-TREE2 is shown at each internal node; only values ≥70% are shown. Unit of branch 
length is the number of substitutions per site.
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