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Abstract  

Mammalian neocortex contains a highly diverse set of cell types. These types have been mapped 

systematically using a variety of molecular, electrophysiological and morphological approaches.  

Each modality offers new perspectives on the variation of biological processes underlying cell 

type specialization.  While many morphological surveys focus on branching patterns of individual 

cells, fewer have been devoted to sub-cellular structure of cells.  Electron microscopy (EM) 

provides dense ultrastructural examination and an unbiased perspective into the subcellular 

organization of brain cells, including their synaptic connectivity and nanometer scale morphology. 

Here we present the first systematic survey of the somatic region of nearly 100,000 cortical cells, 

using quantitative features obtained from EM. This analysis demonstrates a surprising sufficiency 

of the perisomatic region to recapitulate many known aspects of cortical organization, while also 

revealing novel relationships. Parameters of cell size, nuclear infolding and somatic synaptic 

innervation co-vary with distinct patterns across depth and between types.  Further, we describe 

how these subcellular features can be used to create highly accurate predictions of cell-types 

across large scale EM datasets. More generally, our results suggest that the shifts in cellular 

physiology and molecular programming seen across cell types accompany profound differences 

in the fine-scale structure of cells.  
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Introduction 

 

The different cell types of neocortex vary in their complex dendritic and axonal 

morphologies,1–7 along with their physiological properties8,9 and molecular expression profiles.10–

13 Large scale electron microscopy (EM) data with automated reconstructions14–17 creates both 

opportunities and challenges for examining the structural variation of cell types across cortex. EM 

provides an opportunity to study a host of morphological and subcellular detail that has not 

historically been studied at a large quantitative scale. Further, large scale EM enables the study 

of connectivity patterns between diverse cell types. However, in very large scale EM datasets with 

tens to hundreds of thousands of cells, it is impractical to manually classify all the cells in the 

dataset. Existing methods for automated cell-typing based on morphology often necessitate 

nearly complete axonal or dendritic reconstructions.2,8,18 Such reconstructions currently require 

manual correction to the segmentation, often referred to as proofreading, which is prohibitively 

time consuming at scale. Furthermore, cells can be classified at varying degrees of refinement, 

from high level distinctions (neurons vs non-neuronal cells), to highly specific types (Chandelier 

cells, or a particular transcriptomic type).  Depending on the scientific question and perspective 

of the investigator, different levels of cell type classification are desirable. This highlights the need 

for a flexible automated solution which can map differing cell classification schemes at varying 

levels of resolution.  

 

Focusing on the somatic region of cells provides a unique window for analysis that 

balances these challenges and opportunities.  The probability of a segmentation containing an 

error grows with the size of the segmentation, so analysis that is restricted to a local region is less 

sensitive to such errors. The soma is a unique local region in that there is only one per cell, and 

of obvious importance to the biology of the cell.  For example, because the soma is the hub for 

dendritic branches and sits close to the site of action potential initiation, inputs to this region have 

a great influence on the firing of the cell.  Moreover, all the machinery for translating DNA into 

proteins sits within this cellular compartment, and structural correlates of this machinery are all 

visible within the EM imagery. Despite this, several basic properties of this compartment have not 

been measured quantitatively and at a large scale and may vary between types.  First, individual 

cells have widely varying sizes and corresponding demands for gene expression and metabolic 

load,10 which might induce shifts in their nuclear and cytosolic size. Second, there are anecdotal 

reports of differences in nucleus infoldings varying across cortical cell types and modulated by 

activity.19,20 Third, in excitatory cells, somatic input has been noted to be dominated by inhibitory 

sources.21 Although this is less well characterized for inhibitory subtypes, some have larger 

fractions of excitatory input.22,23 In addition, different types of inhibitory axons show preference or 

avoidance of the somatic compartment.21,22  Therefore, even a coarse measurement such as the 

total somatic synaptic density might reflect differences in cell-type specific connectivity23–25 and 

thus vary across types. Fourth, smaller scale features of cellular morphology have been described 

for specific cell types,23  but little quantitative work has been done in this area across all the full 

diversity of cortical cells.  The local somatic region contains both somatic membrane and proximal 

dendritic shafts thereby enabling the examination of properties like the size and distribution of 

spines.4,26 
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Here we report the first large scale survey of somatic properties of cells as measured with 

EM across the cortical depth. From the analysis of these properties we describe some novel 

structural patterns of cortical organization. We integrate our analysis with a systematic anatomical 

study of a columnar region of cortex, where an anatomical based classification of all cells has 

been performed. The concept of a cell type is a categorical label which implies that all the cells 

within that category have stereotyped patterns to all its relevant attributes.  There is not broad 

agreement about what attributes are relevant or what methods define stereotypy, and so cell type 

definitions can be controversial. We use the term “cell type” in this manuscript to refer to the 

abstract concept of stereotyped variation across cells. However, when talking about particular 

categories, we will use the term “class” and “subclass” here to refer to levels of distinctions within 

this particular categorical scheme. This classification describes cell classes at the level of neurons 

and non-neuronal classes, and sub-classes within the excitatory and inhibitory populations. We 

demonstrate that there is enough variation in features amongst cells to build quantitative cellular 

classification models that predict cell classes and subclasses with high accuracy and enable 

dataset-wide predictions. This both improves the ability to find many examples of cells of a specific 

category and allows better measurements of neuronal connectivity with less proofreading (in 

preparation), solving one of the key problems to exploring large scale EM datasets. These results 

demonstrate that cortical cells have profound differences in the anatomical structure of their 

somatic region and provides a novel platform to understand how specialized biological demands 

affect somatic and nuclear properties. 

Results 

We analyzed the larger portion of a 1.4mm x 800um x 800um volumetric serial section EM 

dataset from mouse visual cortex,14 that contains a dense segmentation of cells along with a 

nucleus segmentation and large scale synapse detection.15,27  The quality of the automated 

segmentation and amount of proofreading varies across the dataset and different structures, but 

in general the quality of the nucleus segmentation is high for cells away from the edges of the 

dataset, and the quality of the cellular segmentation is high near the somas of cells. This dataset 

includes 82,454 high quality nuclear detections fully enclosed within the boundaries of the volume 

(see methods) and spans cortical Layer 1 through to the white matter (Fig. 1a). For each cell we 

analyzed the nucleus and somatic region of the 3D segmentation (Fig. 1b) within a 15um radius 

around the nuclear center point. We also included synapse information within this region (Fig. 

1b,c-e). For a subset of 1909 cells in a 100 um columnar region of VISp (referred here to as the 

column), we had manual labels for cellular classes and neuronal subclasses (Excitatory: Layers 

2/3,4,6, and Layer 5 inter-telencenphalic (IT), near-projecting (NP) and extra-telencenphalic (ET) 

and Inhibitory: Martinotti cell (MC), Basket cell (BC), Bi-polar cell (BPC) and neurogliaform cell 

(NGC), Nonneurons: astrocyte, oligo-precursor cell (OPC), oligodendrocyte, microglia, pericyte) 

(Fig. 1b). For all neurons within this column, we also analyzed the nano-scale structure of the 

postsynaptic compartments, what we are terming a “post synaptic shape”(PSS) (see methods) 

within 60um of the nucleus center (Fig. 1g) . 
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Fig. 1) Systematic evaluation of soma and nucleus features from a large scale EM dataset. a) Rendering 
of a small fraction of neurons from a large scale dataset covering all layers of cortex and multiple visual 
areas, with 1207 rendered and then cutaway to reveal the full morphology of 2 selected neurons on the 
right portion of the dataset.  b) rendering of all the neuronal cells from a 100 um column of data for which 
manual cell type labels were given. Cell class and subclass labels and color schemes used in the paper 
are shown to the right. c) a 2d view of a single EM section of data with nuclear detections in light blue and 
somatic regions in gray. d) an enlarged view of the  portion of c (red box) showing a single somatic 
segmentation with the nucleus in blue and the cytoplasm of the cell in gray. e) a series of enlarged 2d views 
of a single synapse onto the somatic region in d (orange box) showing a single synapse onto that cell. The 
left column shows the raw EM image, and the left column includes the synapse prediction overlaid in orange  
f) a 3d mesh rendering of the somatic region of a cell including its cellular membrane (gray), its nucleus 
segmentation (blue), and the location of synapses as orange spheres (size indicates voxel size of synapse 
prediction).  g) Examples of fine scale morphologies of postsynaptic shapes.  

Nucleus Features 

We began by systematically analyzing geometric properties of the nucleus, including their 

volume, surface area, and depth from the pial surface. In addition, we quantified the fraction of 

nucleus membrane area that was within an infolding (Fig. 2a-c) (see methods). The nucleus has 

anecdotally been described as having different degrees of infolding in different cell types,20,28 but 

a systematic quantification has not been done across cortical types.   

 

Nucleus features of excitatory neurons have a striking laminar organization, wherein the 

borders between layer ⅔ (L23), layer 4 (L4), layer 5 (L5), and layer 6 (L6) are all clearly 

demarcated by shifts in the distribution of nucleus volumes. (Fig. 2d).  Furthermore, the fraction 

of membrane inside an infolding also varies widely and systematically depending on depth (Fig. 

2b). Layer ⅔ neurons have largely smooth nuclear membranes. There is a clear gradient of 

infolding within layer 4. All layer 5 excitatory cells have high degrees of infolding, despite the 

notable diversity of cell types and sizes within that population, which is reflected in the notable 
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increased variation of nucleus volume in that layer.29  Infolding drops sharply again in layer 6 (Fig. 

2c).  

   

Inhibitory cells on the other hand have less striking laminar patterns, but with more overall 

variation. They have a wider variation of nucleus volumes, which are overlapping with excitatory 

cells, with the exception of the larger layer 5 neurons. They have 15 to 30% of their membrane 

within an infolding, regardless of their position within cortex.  This makes them quite distinct from 

excitatory neurons in layer 1, 2/3, 4 and 6 of cortex, but highly overlapping in layer 5 (Fig. 2b).   

 

Non-neuronal cells had generally smaller nuclei compared to neuronal cells, though 

astrocytes overlap in this distribution with the smallest neurons. Each non-neuronal cell class 

exhibited a distinct range and consistency in their nucleus volume across the layers of cortex. 

Non-neuronal cells generally did not have infoldings, though microglia, OPCs and 

oligodendrocytes had less spherical and convex shapes.  Perictyes had the least reliable nucleus 

segmentations in the dataset, but when segmented well they had the smallest overall volumes 

with shapes dominated by their close apposition to the vascular walls (Fig. 2c). 

 

Nucleus features were extracted for all cells in the dataset and a 2-dimensional embedding 

was computed. This low-dimensional space is plotted in Figure 2e with manual class labels in 

color and all the unlabelled cells in gray (column =1,639, unlabelled=80,815)). The distinct 

clustering of different cell classes suggests that neuronal and non-neuronal cells can be 

separated using these metrics alone, and that most non-neuronal classes have distinct nuclear 

shapes (Fig. 2c).   
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Fig. 2) Nuclear shape and infolding features show laminar and cell-type distinctions. a) 2D view of a single 
EM section of data with the cell body in lightgray, the nuclear membrane in black with the portion of the 
membrane considered in a fold highlighted in orange. b) Fraction of the nuclear membrane within a fold 
plotted against distance from the pial surface. Human labeled cell-types are represented in color (n=1,639) 
and unlabelled examples in light gray (n=80,815). Cortical layer boundaries are noted by the dashed lines. 
c) 3D mesh renderings of representative nuclei from different neuronal and nonneuronal cell-types with the 
folded surface area highlighted in orange. d) Nuclear volume in um3 plotted against distance from the pial 
surface, colored as in b). e) 2D UMAP embedding of all neuronal and nonneuronal cells inferred from 
nuclear size features, infolding features, and cortical depth (n=82,454).  

Somatic Features 

We then calculated similar geometric properties of the somatic region of cells (see 

methods), including the total volume, surface area, cytosolic volume, the ratio of the nucleus 

volume to the soma volume, and the average distance from the centroid of the nucleus to the 

centroid of the soma.  We also measured the number and density of synapses detected on the 

somatic region of the cell. Together these somatic and nucleus features represent a feature space 

that can be extracted automatically from most cells in the segmentation (75% of nuclei).  We 

filtered out soma regions that represented direct soma to soma merges (n=3,852), which naturally 

fall out as statistical outliers (see methods, Extended Data  figure 1a).  Plotting just the metrics of 

the nucleus volume versus the surface area of the cell within 15 microns of the center of the 

nucleus, reveals a surprisingly striking separation between the major cell classes found in the 

brain (Fig. 3a).  

 

Similar to their nucleus features, excitatory neurons showed laminar shifts in their somatic 

volume and surface area (Extended Data  Fig. 5)  The excitatory neurons show a consistent 

synapse density that slightly varies in a linear fashion with depth through the cortical volume, with 

a notable increase in variation in layer 5 that correlates with the 3 sub-classes found there with 

ET cells having larger synapse densities, NP cells with low synapse densities and IT cells in 

between (Fig. 3b, d).   

 

Neurons identified as inhibitory showed less laminar variation in somatic size, however 

they are on average smaller than excitatory cells in the same cortical layer (Extended Data  Fig. 

5). On the other hand, inhibitory cells have much larger density of somatic innervation than 

excitatory cells, but also have a much wider degree of variation, reflecting their rich diversity of 

sub-classes (Fig. 3b,d). 

 

Based on nucleus volume and soma cutout area alone (Fig. 3a), microglia, 

oligodendrocytes, OPCs, astrocytes, and pericytes occupy largely distinct portions of this 2-

dimensional space. The notably large surface area measurement for astrocytes is explained by 

the high density of their processes near the soma. Moreover, the high prevalence of segmentation 

mergers of pericytes with cortical vasculature results in variability in their soma size features as 

represented by the range in soma surface area in Figure 3a. As expected, all nonneuronal cells 

had very low soma synapse counts and thus are clearly distinct from neurons across laminar 

layers (Fig. 3b). 
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Following the same framework as in Figure 2d, soma features were extracted for all cells 

in the dataset. A new low dimensional embedding was computed based on somatic features in 

addition to the previously reported nucleus features. Consistent with the diversity observed in 

individual features, low dimensional embeddings of the feature space show variation that 

correlates with the manually labeled cell classes (Fig. 3c). As before, nonneuronal cell classes 

occupy distinct areas of the feature space. Note that despite the variability in pericytic somatic 

features, they are still well separated in the low dimensional embedding space, likely due to the 

distinguishability from nuclear features alone. On the other hand, adding the soma features 

improves the separation between inhibitory and excitatory cells, with two distinctly inhibitory 

clusters and finer separation between excitatory neurons in different layers. However, some 

distinctions between neuronal classes are not as clear. For example, a subset of inhibitory cells 

overlap with the Layer 5 excitatory cells due to similarities in somatic size and fraction of nuclear 

infolding.  We therefore searched for additional quantitative features that we could extract from 

the local region around cell bodies to aid in separating these neuronal classes further.   

 

 
Fig. 3) Somatic shape and synapse features further distinguish neuronal and nonneuronal cell class types. 
a) Somatic surface area in um2 (within 15um from the nuclear center) plotted against nuclear volume um3. 
b) Somatic synapse density um2 plotted by distance from the pial surface. c) 2D UMAP embedding of all 
neuronal and nonneuronal cells inferred from somatic features, nuclear features and cortical depth. a-c) 
Human labeled class types in color and unlabelled cells in gray. d) 3D mesh renderings examples of 15 um 
somatic cutouts in gray and somatic synapses in orange. Size of individual spheres relative to the size of 
the post-synaptic density. 

Post Synaptic Shape Features 

Proximal processes of cells display large variations in fine morphology. For example, 

some excitatory dendritic branches are covered with a high density of short stubby spines, others 

have long wispy spines or filopodia. Inhibitory branches vary from being very smooth and uniform, 

to those that vary in caliper, and some are covered in smaller spine-like protrusions.23,30 These 
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differences are visible on the dendritic arbor even in close proximity to the soma (Fig. 4). We 

developed a method to summarize the statistics of the proximal arbor within 60 microns of the 

nucleus center. This feature combines the patterns of synaptic innervation with the fine 

morphological structure of the post-synaptic neuron surrounding any given synapse (Fig. 4).31  

Briefly, this method computationally segments the compartment on the post-synaptic side of a 

synapse, which we refer to as the post-synaptic shape (PSS).  This shape typically represents 

either a portion of the soma, the shaft of a dendrite, or a spiney protrusion, though it can also be 

onto an axon or axon-initial segment.  We then used a PointNet auto-encoder to summarize a 

latent space of PSSs (Fig. 4a) (see methods).  This resulted in a continuous latent space where 

PSS objects of similar morphological character were closer together (Extended Data  Fig. 2). This 

representation recapitulates well known distinctions between PSSs such as dendritic shafts 

versus spines versus somatic compartments, but also more fine grained distinctions, such as 

variations in the size and shape of spines (Extended Data  Fig. 3).  

 

We then summarized a cell’s distribution of PSSs by binning the PSS space into 30 shape 

bins and 4 distance bins based upon the distance from the soma (see methods), resulting in a 

120 dimensional vector, similar in spirit to a multi-dimensional Sholl analysis.32 Examining 

individual example cells of different types suggest that this feature effectively quantifies 

differences in the fine scale synaptic distribution of different cell types (Fig. 4c).  For example, the 

layer 5 ET and basket cell both contain large numbers of somatic synapses, but the layer 5 ET 

cell has a much higher density of spines.  The Layer 5 NP cell has a lower number of spines, but 

also the distribution of its spines is less concentrated in the PSS shape bins that correspond to 

smaller shorter spines, compared to the L5 ET cell.  Some inhibitory cells contain counts in the 

bins associated with spines, consistent with the fact that some inhibitory dendrites do have 

protrusions.  However, these protrusions most often lack the classic spine neck and bulbous head 

morphology of most spines on excitatory cells.  Because they are similar in shape, this analysis 

groups these inhibitory “thorn” like protrusions  with the smaller stubby spines found on excitatory 

cells.23  Consistent with that, the bipolar example shown here contains an elevated number of 

such small protrusions,26 including in the somatic region, whereas the smoother dendritic shafts 

of this basket cell example contain virtually no counts in these bins.  (Fig. 4c). This distance 

dependent PSS histogram was calculated for all neurons within the column. We then recomputed 

a low dimensional embedding by aggregating nucleus, somatic and PSS features (Fig. 4d).  Note 

that the addition of the PSS-based features results in a near complete distinction between 

inhibitory and excitatory neurons within this space.  
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Fig. 4) Post Synaptic Shape (PSS) Features. a) Procedure for building a PSS dictionary model. The set of 

shapes is used to train a PointNet autoencoder which learns a latent feature vector of a fixed size (1024). 

This autoencoder is then applied to all shapes in the dictionary to generate a set of latent feature vectors. 

K-means with K = 30 is applied to this to obtain a set of cluster centers for binning the shapes. b) Schematic 

showing procedure for creating the PSS histogram. The PSS are binned by shape type (30 bins calculated 

from a) and distance from the soma (4 bins) from 0 - 60 microns with 15 micron bin sizes. For each synapse, 

its shape type is determined by finding the closest cluster center in the latent feature space and its distance 

bin is determined by using the location of the synapse center. The resulting histogram is a 2D histogram 

shown above with the shapes in the x direction and distances in the y direction. c) Examples of 60 micron 

cutouts of 2 different types of cells with their spatial histograms shown as heatmaps. The top row shows 

the shape of the cluster center of each of the 30 clusters. In each heat map, darker boxes indicate higher 

values. Observe that the pattern of the overall histogram is very different between the two cell types. d) 2D 

UMAP of all neurons in the column inferred after concatenating nucleus, soma and PSS features. Observe 

the separation of inhibitory and excitatory neurons. 

Classifiers 

For the cells in the column, we collected three sets of features: nucleus and soma features 

for all cells, and PSS features for the neurons.  The cell classes and sub-classes defined across 

the column appear to have distinct fingerprints when visualized by the z-scored feature heatmaps 

(Fig. 5a). A low dimensional embedding of the combined features of neurons colored by sub-class 

supports that perspective (Fig. 5b). However, in order to quantitatively compare how well different 

feature spaces separate cells at different levels of distinction, we fit a collection of classification 

models that could be applied to all the cells in the dataset (see methods).  We took a hierarchical 

approach (Fig. 5c), developing a cascade of classifiers to sort cells at increasingly finer 
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distinctions.  At each step (1-5) in the hierarchy we trained a series of classifiers using the different 

feature sets available for that step (Fig. 5d). 

 

We then integrated the steps into a meta-model, where individual cells are sequentially 

sorted down the hierarchical tree. We found an optimal combination of classifiers which predicted 

cell types with a 92% overall accuracy (Fig. 5d) (see methods). This performance is high across 

different portions of the cell-type space, including between the inhibitory sub-classes whose 

definitions historically have come from their targeting patterns or dendritic morphology.  The 

largest single confusion between types here was between adjacent layers of similar pyramidal 

classes, where arguably the strict laminar boundaries found in the manual labels might not be 

biologically accurate (Fig. 5e). This demonstrates that these features are indeed useful for 

separating cell-types based on local somatic reconstructions of cortical cells.  

 

 
Fig. 5) A combination of nucleus, soma, and PSS features predict neuronal and nonneuronal subclasses 
for unlabelled cells. ai) depth, nucleus and soma feature matrix depicting z score values for all cells within 
the manually labeled column. Cells ordered by manual subclass labels, class and subclass colors noted in 
the bars at the top. Some sub-classes are compressed relative to others in order to better illustrate the 
variation across classes. Dashed marks along the x axis denote segments of 100 cells (1127 excitatory 
neurons, 141 inhibitory neurons, 325 nonneurons) aii) pss feature matrix for all neurons within the manually 
labeled column. Cell ordering matches the matrix in ai. b) 2D UMAP embedding inferred from depth, 
nucleus, soma, and pss features of all neurons within the column dataset colored by human labeled 
subclass. c) diagram of hierarchical model framework to predict nonneuronal class and neuronal subclass 
using a set of 5 models. Initial objects are outputs of a segmentation based nucleus detection model (in 
preparation) and include neuronal nuclei, nonneuronal nuclei and errors. Cells are subsequently sorted and 
pushed through the hierarchical framework based on predictions from higher level models. d) Accuracy and 
F1 scores for all trained models at each level of the hierarchical framework in b. Bolded values denote 
which model was used in the metamodel due to highest performance. Overall metamodel performance 
based on the confusion matrix in c is noted in the lower right corner. e) Confusion matrix results for all cells 
within the column based on subclass predictions from the hierarchical metamodel. 
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Generalization to other datasets  

 To test whether the features we extracted were generalizable to other datasets from 

cortex, the same metrics were collected from a second dataset (see methods). The second 

dataset covers all layers of cortex, but is only 50um thick and so most cells are severely cut off. 

The same nucleus, soma and PSS features were extracted for all cells. Cells in the second 

dataset occupy similar areas when transformed into the low embedding space fit by the features 

extracted from the first dataset (Fig 6b-d). Similar to the first dataset, as more features are added, 

the separation between cell class and neuronal subclass increases.  Further, the feature to feature 

correlations between the soma and nucleus features are highly similar between the two datasets 

(Fig. 6e).  Because the PSS feature used a 60um cutout the PSS spatial histograms were often 

highly truncated for some cells, causing systematic differences between the datasets. We could 

however, use a meta-model constructed solely with nucleus and somatic features to predict sub-

class in the second dataset in a way that aligns with what we expected based upon performance 

tests in the larger dataset (Fig. 6f, Extended Data Fig. 1b).  This suggests these features are 

generally useful and reliable metrics that can be used to identify cells in experiments that are not 

large enough to capture morphology beyond the soma.  

 

 
Fig. 6) Application of soma and nucleus features to second dataset.  A) An overview of the dataset that 

covers a mm2 of cortex but is only 50um thick. Rendering of all the nuclei analyzed within this dataset, 

colored by manual neuronal and nonneuronal class labels.  B) A UMAP of the nucleus features from this 

dataset, colored by human labeled cell class. The UMAP is fit based on dataset 1, and the points from 

dataset 1 are included in this plot in gray. C) a UMAP of the nucleus and soma features, again colored by 

human labeled cell classes and dataset 1 points in gray.  D) A UMAP plot of all features, where the neurons 

are colored by their class.  E) The canonical correlation analysis of soma and nucleus features across the 

two datasets.  F) To the left, a 2D UMAP embedding inferred from soma and nucleus features displaying 

all cells from the column in dataset 1, including errors. Colored by manual subclass labels. On the right, the 
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same embedding as before except dataset 1 is in gray. Overlaid is dataset 2 now colored by metamodel 

subclass predictions. 

Discussion 

Here we report the first large scale quantitative study of the somatic region of cortical brain 

cells using electron microscopy. We’ve shown that different cell-types have systematic differences 

in their local somatic features that reveal interesting biological patterns and allow cell-classes to 

be quantitatively distinguished.  

 

For example, nuclear infoldings have been observed in a wide variety of cell types, 

neuronal and non-neuronal, both in live cells and fixed material.28,33,34 In dataset 1, the degree of 

nuclear infoldings varied starkly by excitatory sub-class with different patterns of variation within 

laminar layers. Specifically, we report the existence of a spatial gradient within excitatory cells in 

layer 4, which might reflect previously described gradients in gene expression.10  Alternatively, 

the overall pattern of nuclear infolding which is shared across layer 5 types,  might suggest a 

common mechanism despite their broad differences in gene expression, electrophysiological 

properties and connectivity.8,10 These gradients in excitatory cells could be related to a 

developmental mechanism, given that cortex develops in a laminar fashion, while interneurons, 

which don’t exhibit laminar shifts in nuclear infolding, migrate in from other parts of the brain. 35 

 

There is some evidence that in some cell types that nucleus infoldings are distinct calcium 

microdomains.27 However, their functional importance has not been clearly established.  Infolding 

of the nuclear membrane should reduce the intranuclear diffusion time to the nuclear membrane 

and increase the total surface area. A natural hypothesis would thus predict that cells with a higher 

demand for producing RNA out of the nucleus, should therefore have more infolding.  However, 

our observations do not support this hypothesis because all subclasses of layer 5 excitatory cells 

(which span a wide range of sizes and overall levels of gene expression) have remarkably 

consistent levels of infolding.  On the other hand, we observe a remarkably consistent scaling of 

the volume of the nucleus and the volume of the cytoplasm of cells across these subclasses, 

which supports the view that cells scale their overall size in relation to demands of gene 

expression. 

 

A mechanism of infolding has been proposed whereby laminar associated domains 

(LADs) on the heterochromatin attach to the nuclear envelope, and a force is exerted that brings 

the heterochromatin under tension which causes the membrane to fold.34 If LAD accessibility and 

binding to the lamin is driving nuclear infolding, then these data would suggest that measurements 

of these phenomena should exhibit clear spatial patterns across the cortical depth. Further, 

genomic analyses should show consistency of LAD accessibility across the layer 5 pyramidal sub-

classes, despite large differences in gene expression. Examining the developmental origins of 

infolding within these varied layer 5 types could produce insight into the mechanisms underlying 

this phenomena.  

   

Our results reveal some novel properties of distinct cell classes.  Near projecting neurons 

were first described as a set of Layer 5 cells expressing Slc17a8, which did not project to 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.499976doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?NTVr6L
https://www.zotero.org/google-docs/?I2Hvdq
https://www.zotero.org/google-docs/?X6uFrU
https://www.zotero.org/google-docs/?nVnKIi
https://www.zotero.org/google-docs/?aHXYVE
https://doi.org/10.1101/2022.07.20.499976
http://creativecommons.org/licenses/by-nc/4.0/


contralateral cortex or any of several sub-cortical structures.36 They have also been characterized 

as being enriched in a genetic line, and having a small round somatic shape.29,36 Since then, 

transcriptomics and retro-seq experiments has confirmed4  that they are a rare, but highly 

conserved subclass of neurons across several species.37 Morphologically they have been 

characterized as having sparse long straight basal dendrites and distinct electrophysiological 

properties.8 Our description here adds some important facts to their functional profile.  They 

appear to have one of the lowest densities of synaptic input of all cell sub-classes we identified, 

on both shafts, somas and spines.  What synapses they do have on spines are often on 

uncharacteristically long and spindle-like spines.  This suggests that NP cells might be an 

intriguing target to understand the role of spine shape in cortical computation.38–40 

 

Our observation that spine shapes vary systematically across cell types could relate to 

differences in the average age or nature of spines across those types,41 as at least VIP dendrites 

have been shown to have much more motile spines than other interneurons,26 and some spiny 

SST+ interneurons have highly multi-synaptic spine like protrusions.23 We observed some clear 

but previously unquantified differences in features of different inhibitory sub-classes in cortex.  

Basket cells are known to have a high rate of connectivity to pyramidal cells and vice versa, on a 

per cell basis, but our data shows that this correlates with a higher overall density of synapses 

onto those cells compared to other subtypes (Extended Data  Fig 5).24,42,43  Furthermore, the 

martinotti subtypes have some notable variation of synaptic density on their soma, and 

neurogliaform cells have a strikingly lower density of synapses on their somatic region.   

 

It should be noted explicitly that the level of description of cell classes and sub-classes 

presented here is not meant to reflect a final refined definition of cell types in the mouse visual 

cortex. In particular, the 100 um column is small enough that it doesn’t fully sample the space of 

inhibitory cells. All the inhibitory cells were not given a label and some known types are missing 

or only single examples are found.  For example, there are no chandelier cells found in that 

dataset. Exploring the space of soma and nucleus features often co-varies with variation in 

connectivity patterns of individual cells, suggesting that further sub-divisions are necessary and 

justified by these data.  Furthermore, the precise sub-class definitions of individual excitatory cells 

is subject to reasonable debate. In particular, classifying excitatory cells across the layer ⅔ and 

layer 4, and layer 5 and layer 6 borders can vary from rater to rater on a 10-20 microns length 

scale. Nonetheless, the variation across the major classes and sub-classes shown here 

demonstrates that the somatic structure of individual neurons is modulated by cell type 

specialization.  

  

The classifications we have produced here will be immensely useful for researchers 

mining these data for biologically interesting patterns of connectivity. Because the features used 

in this study do not require immense proofreading, the predictions are accurate across most of 

the dataset. This means the cell type connectivity of individual neurons or axonal fragments can 

be directly queried for targets which contain a single soma in the dataset. In the present release 

of the dataset, this means over 50% of a typical cell's outputs can be classified.38 Another use 

case for these predictions is to aggregate common inputs to a subclass of cells to find axon 

fragments with strong specificity for that subclass. Furthermore, these features can be extracted 
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from datasets where full reconstruction is not possible, as we demonstrated with Dataset 2. These 

use cases demonstrate how an accurate data set wide cell classification transforms such datasets 

into a research resource for exploring the cell type specificity of connectivity. This success 

reinforces a more general phenomenon, that not only are different cell types expressing different 

proteins, but that these changes leave a unique imprint on cells that can be measured in highly 

localized structures with electron microscopy.  

Methods 

Dataset 1  

Dataset 1 consists of a 1.4mm x 800um x 800um volumetric serial section EM dataset 

from mouse visual cortex of a male P87 mouse.  This covers all layers of cortex and spanning 

primary visual cortex and two higher visual areas.  The dataset has been described in detail 

elsewhere.35  Briefly, two photon imaging was performed on the mouse, which was subsequently 

prepared for electron microscopy.  The specimen was then sectioned and imaged using 

transmission electron microscopy.36 The images were then stitched, aligned,7 and processed 

through a deep learning segmentation algorithm,7 followed by manual proofreading (manuscript 

in preparation). For dataset 1, all cells within a 100um region were labeled by human experts as 

a nonneuron, neuron or error with class and subclass labels where applicable. This is described 

in detail elsewhere (manuscript in preparation). Cells where the nucleus was surrounded by error 

ID 0 were excluded to remove edge volume edge effects. Due to high levels of proofreading in 

the column, there were very few errors thus the training set was augmented with manually labeled 

errors from the entire dataset. 

Dataset 2 

The second dataset covers a millimeter square cross-sectional area, and 40 microns of 

depth within primary visual cortex of a P49 male mouse. This dataset is described in detail 

elsewhere (manuscript in preparation). The largest available segmentation spans Layer 2/3 of 

cortex through to Layer 6. After applying the nuclear detection model (manuscript in preparation) 

and filtering out all nuclear objects below 25 um3 and cells that were cut off by the volume border, 

82,148 cells were used for the analysis. Class type of each cell was labeled manually and used 

as ground truth. Due to thinness of the volume, much of the distal cell morphologies were cut off 

and thus subclass type labeling was not possible. Nuclear and somatic meshes were cleaned 

using the same heuristic procedure outlined above.  

Generating Nucleus Features 

We analyzed nuclei using the results of a deep neural network segmentation (manuscript 

in preparation), extracted the mesh using marching cubes and obtained the largest component of 

the detected mesh.  

 

We further filtered the detections from this algorithm in that any detected objects less than 

25 um3 were filtered out as errors. Nuclear features were then extracted on the remaining meshes 

(n=129,769). These features included, nucleus volume, nucleus area, the area to volume ratio, 
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nucleus surface area within an infolding, the fraction of the total surface area within an infolding, 

and cortical depth (measured as the distance from the pial surface). Nucleus fold features were 

extracted by creating a shrink wrapped37 mesh for each nucleus mesh. We then calculated the 

distance of each vertex on the nucleus mesh from the shrink-wrapped mesh and any vertex further 

than 150 nm was considered within an infolding.  

Generating Somatic Features 

For each nucleus detection the somatic compartment was identified as the ID in the 

segmentation which surrounded >80% of the nucleus. Somatic segmentations went through a 

heuristic cleaning procedure to remove missing slices of data and incorrectly merged fragments. 

Since each soma was matched to its corresponding nucleus, 15 microns surrounding the nucleus 

center of mass was cut out from the dense segmentation and converted into a binary mask.  

Binary dilation by 5 voxels in 3d was performed, followed by filling of all holes, and then binary 

erosion of 3 voxels.  The resulting binary mask was meshed using marching cubes and connected 

component analysis was run on the result. The largest connected component mesh was retained, 

and any disconnected components were dropped. Somatic features were extracted for all 129,769 

nuclear detections within the dataset. These somatic features included soma area, soma volume, 

the area to volume ratio, the number of synapses on the somatic cutout, and the soma synapse 

density. Using both the somatic and nucleus meshes, we calculated the ratio between the nucleus 

volume and soma volume and the offset between the two, measured as the euclidean distance 

between nuclear center of mass and soma center of mass.  

 

Filtering procedure: After identifying the segment IDs within a 15um bounding box around each 

nucleus, if over 20% of these IDs corresponded to error ID 0, they were filtered out. The majority 

of these error cases were cells close to the volume border or areas in the volume with higher 

segmentation errors such as those near blood vessels. Somatic meshes that were merged with 

other somas in the dataset were also filtered out. These cells were statistical outliers that clustered 

together in the low embedding feature space based on soma and nucleus features (Supplemental 

Fig. 1b) and thus were removed based on their location within that space. Finally, cells that were 

predicted as errors based on the soma and nucleus feature object model were also removed from 

analysis. This resulted in a final set of 82,454 cells, neuronal and nonneuronal. 

Generating PSS Features 

Around each synapse, we extracted a 3500nm region to obtain the synapse region mesh. 

This mesh was then segmented using the CGAL surface segmentation algorithm38 which splits 

regions based on differences in thickness. We adapted our previously developed method24 to 

identify the PSS region by using a local skeleton calculated from the synapse region mesh, rather 

than a precomputed whole cell mesh. This allowed us to adapt this method for cells in the dataset 

without the need for proofreading.  

 

Given a cell for which all PSS have been extracted within a 60 micron radius from the 

nucleus center, the objective was to build a descriptor that encapsulates the various properties of 

the PSS. In particular, we aim to capture two of these properties: the type of shape of the PSS 

and the distance of the PSS from the soma.  For the shape, a dictionary of all shape types is built 
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using the dictionary dataset from.24 These shapes were rotationally normalized and used to train 

a pointnet autoencoder39 to learn a latent representation of size 1024. The high dimensional latent 

space spanning all these shapes is a continuous space (Extended Data Fig 3) which was used to 

generate a Bag of Words model40 for the shapes. For this, we performed K-means clustering with 

K=30 to estimate cluster centers. The top row of Fig. 4c shows the shape in the dictionary that is 

closest to each of these cluster centers. For distance binning, we split the 60 micron radius around 

the nucleus center  into four 15 micron radial bins (Figure 4b). All PSS were then binned according 

to their shape and distance properties.  

Hierarchical Framework 

We defined an object as the segmentation associated with a predicted nucleus 

(manuscript in preparation) from which nucleus, soma, and PSS features could be extracted. A 

hierarchical framework was designed to predict the cell type of any such object (Fig. 5c). From 

Dataset 1, there were 84,539 objects. The first level in the hierarchy predicts whether the object 

was a neuron, nonneuron, or an error. All objects predicted as errors were excluded from all 

subsequent analyses except for metamodel prediction evaluation. Nonneuronal cells were then 

classified as one of the following: astrocyte, microglia, oligodendrocyte, oligodendrocyte 

precursor cells (OPC), or pericyte. For neurons, cells were predicted as either excitatory or 

inhibitory followed by a separate subclass classifier for each class type. Excitatory subclasses: 

Layer 2/3 pyramidal, Layer 4 pyramidal, Layer 5 IT, Layer 5 ET, Layer 5 near projecting (NP) 

pyramidal, Layer 6 IT, Layer 6 CT pyramidal. Inhibitory subclasses: Basket cells, Bipolar cells, 

Martinotti cells, and Neurogliaform cells. 

 

Soma and nucleus features were extracted from the 3D mesh of all objects and PSS 

features were extracted from all neurons within the column. For each level of the hierarchy, 

multiple classifiers were trained using either nucleus and depth features only, nucleus depth and 

soma features, or nucleus soma depth and PSS features. Within each level, performance of the 

various classifiers was evaluated based on accuracy and F1 score (a measure for precision and 

recall). The metamodel was defined as the sequential combination of the best performing 

classifiers at each level. 

Individual Classifiers 

For each classifier, model type was chosen using a randomized grid search for the 

following models: Support Vector Machine SVM with a linear kernel, SVM with a radial basis 

function kernel, Nearest Neighbors, Random Forest Classifier, Decision Tree and Neural 

Network. For each type, 50 models were trained with varying parameters and the top performing 

model was chosen. This model was then further optimized using 5-fold cross validation with 20% 

held out for validation. Training, and test examples were held consistent across models for direct 

performance comparison within each level. 

 

The top level of the hierarchy (the object model), distinguished neurons from non-neurons 

as well as erroneous detections.  Here,  the nucleus features alone were sufficient to separate 

neuronal from non-neuronal nuclei as well as erroneous detections with an F1 score of 98.7%.  

Adding somatic features to this model did not significantly change performance. For the non-
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neuronal class model,, somatic features did notably improve the accuracy of distinguishing 

between non-neuronal types from 84% to 95%.  The neuron class model simply distinguished 

excitatory from inhibitory neurons.   Here, again the soma features improved the classification 

accuracy over the nucleus only features from 88% to 98%. Consistent with the qualitative 

impression given by the low dimensional projections, the principle confusion for the soma-nucleus 

models exists between the inhibitory and excitatory cells, particularly in Layer 5 (Extended Data 

Fig. 4).  Adding in the PSS features raised performance to 99.6%. The excitatory subclass model 

distinguished between 7 different laminar specific pyramidal types.  Here, the soma and nucleus 

features performed the best, with 90% accuracy.  The inhibitory subclass model distinguished 

between the 4 sub-classes of inhibitory cells found in the columnar region. Performance improves 

significantly as you add in the somatic and PSS features, topping out with an F1 score of 93.1%.  

Metamodel  

We tested the overall performance for predicting the leaves of the tree using different 

combinations of the individual classifiers.  We found that the best performing meta-model used 

the best performing classifier at each step (bolded Fig. 5d), with the exception of one, the object 

class step. This was because the classifier trained on nucleus features alone had a larger number 

of confusions between neurons and non-neurons than the classifier trained with soma and 

nucleus features, leading to  lower overall performance (accuracy & F1) in the meta-model.  

Contributions  

Analyzed Data: LE, SS, FC, CSM 

Developed Nucleus Model: SM, GM, LE, FC 

Cell Typing: AB, NDC, CSM 

Paper Writing: LE, SS, FC  

Dataset + segmentation generation: collaboration Proofreading: collaboration  

Analysis infrastructure: collaboration  
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Extended Data  

 
Extended Data Fig. 1) 2D UMAP embedding of soma and nucleus features across the dataset 1. a) UMAP 

embedding of all the cells in the dataset, including errors (n=129,769). Each point represents an individual 

cell, color represents the object class prediction from the soma and nucleus based model (Fig. 5), blue 

represents neuronal predictions, green nonneuronal and gray errors. Note that soma to soma segmentation 

merge errors are quantitatively distinguishable from other neurons and errors and thus filtered out from 

further analyses based on these metrics. b) UMAP embedding inferred from soma nucleus features from 

neuronal and nonneuronal predictions only (n=82,454 cells). Each point represents an individual cell and 

color represents subclass predictions based on a hierarchical model where each classifier is trained on 

soma and nucleus features only. 
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Extended Data Fig. 2) 2D UMAP embedding of all shapes in the PSS Dictionary. The numbers indicate the 

bin centers mapped in this 2D space and the corresponding PSS meshes on the right show the shape 

associated with each bin center. Bins 1-8 range in spine shapes, Bins 9-23 are shaft shapes and Bins 24-

29 are soma shapes. 
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Extended Data Fig. 3) Average PSS histogram visualization for all cells within each subclass category in 

column. Note that these are different from the histograms in Figure 4 since those show the histograms for 

specific cells. Below each histogram is a mesh extracted within a 60 micron radius of the center of the 

nucleus. 
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Extended Data. Fig. 4) Performance of hierarchical classifiers as constrained by various feature sets. a) 
Confusion matrices for model performance across the human labeled column for classifiers trained on 
nucleus only features, soma and nucleus features, pss soma and nucleus features and the metamodel (as 
described in Fig. 5). Rows represent ground truth labels and columns represent predictions. Performance 
noted as the normalized accuracy across different subclasses. b) The same as a, however performance is 
noted as the number of cells correct irrespective of subclass size.  

 

 
Extended Data Fig. 5) Neuronal subclass distribution of individual soma and nucleus features. Distribution 

and variation of individual features plotted by neuronal subclass labels from the human labeled column 

dataset. Mean and variance each subclass represented by the boxplots while individual cells are noted in 

the overlaid swarm plots. Color denotes human assigned subclass labels. 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.499976doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.499976
http://creativecommons.org/licenses/by-nc/4.0/

	Quantitative Census of Local Somatic Features in Mouse Visual Cortex
	Authors
	Abstract
	Introduction
	Results
	Nucleus Features
	Somatic Features
	Post Synaptic Shape Features
	Classifiers
	Generalization to other datasets

	Discussion
	Methods
	Dataset 1
	Dataset 2
	Generating Nucleus Features
	Generating Somatic Features
	Generating PSS Features
	Hierarchical Framework
	Individual Classifiers
	Metamodel
	Contributions

	References
	Extended Data


