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Abstract 
 
 
Aquatic ecosystems offer a continuum of water flow from headwater streams to 

inland lakes and coastal marine systems. This spatial connectivity influences the 

structure, function and dynamics of aquatic communities, which are among the most 

threatened and degraded on earth. Environmental DNA achieves biodiversity 

surveys in these habitats in a high-throughput, spatially integrated way. Here, we 

determine the spatial resolution of eDNA in dendritic freshwater networks that are 

typical of aquatic habitats. Our intensive sampling campaign comprised over 430 

eDNA samples across 21 connected lakes, allowing us to analyse detections at a 

variety of scales, from different habitats within a lake to entire lake networks. We 

found strong signals of within-lake variation in eDNA distribution reflective of typical 

habitat use by both fish and zooplankton. Most importantly, we also found that 

connecting channels between lakes resulted in an accumulation of downstream 

eDNA detections in lakes with a higher number of inflows, and as networks 

increased in length. These findings have profound implications for the interpretation 

of eDNA detections in aquatic ecosystems in global-scale biodiversity monitoring 

observations. 
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Introduction 
 

In freshwater, the direction and strength of water flow among habitats shapes 

processes of recolonization, genetic diversity, adaptation, ecological flows, and 

facilitates population resilience1,2. Within lakes or rivers, there is further partitioning 

according to fine-scale environmental variables such as water temperature and 

oxygen concentration; some organisms are adapted for life in the littoral zones of 

lakes while others specialise in the deeper waters of the pelagic zone. Given its 

importance, spatial connectivity has become a major concern in conservation when 

designing habitat management plans for threatened freshwater populations which 

are declining at a catastrophic rate3–5. Historically, genetic data obtained directly 

from inhabiting organisms has provided valuable information for inferring the biotic 

connectivity of freshwater habitats6. The non-destructive and non-invasive nature of 

environmental DNA (eDNA) sampling is important in contributing to species 

conservation goals and cultural sensitivities, as many communities reject traditional 

lethal survey netting7. However, the wider adoption of species detection based on 

eDNA by researchers, managers and policy makers depends heavily on our ability to 

accurately interpret eDNA signals, particularly when trying to distinguish organisms 

that currently inhabit a particular habitat, from those that inhabit nearby habitats, or 

organisms previously but no longer occupying the area8. This is particularly relevant 

for conservation and biodiversity projects, for example, when assessing the 

presence of rare or invasive species.  

 

It is generally accepted that the complex “natural history” of environmental 

nucleic acids combined with prevailing environmental and hydrological conditions 

can influence the spatial or temporal resolution of species detection. Spatial scales 

of detection are likely to be an interaction between the rate of initial local production 

of eDNA, combined with subsequent dilution and transport in the environment 

(including vertical settling), and eventual degradation of DNA molecules9,10. 

Situations with weak transport effects (perhaps combined with high dilution) will 

produce local signals that rapidly dissipate in strength further from the source 

population. In these cases, eDNA has shown high spatial fidelity with visual or trap-

based surveys11. For example, harbour porpoise eDNA could not be detected further 

than 10m away from the animals due to dilution effects12. In contrast, when 
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prevailing environmental conditions produce strong transport effects, possibly 

combined with high rates of initial eDNA production or low rates of dilution, eDNA 

signals can be transported away from the initial source population of animals, 

signalling regional, rather than local, biodiversity8. To date, studies investigating 

eDNA transport have concentrated on downstream movement in lotic systems, 

which varies with the velocity of river flow but is likely to be a significant force in 

shaping nucleic acid distribution13–15. Other types of water movement, such as 

hydrological forces within lakes have been less well studied (although see16,17). 

Thus, the accurate spatial interpretation of eDNA-based surveys in aquatic networks 

depends on explicitly modeling the retention and flow dynamics of eDNA away from 

local habitats on a landscape scale. 

 

Here, we used an eDNA metabarcoding approach to analyse zooplankton and 

fish communities in three lake networks containing 21 Canadian boreal lakes 

connected only by surface flow, quantifying the spatial distribution of eDNA signals 

within and among lakes, as well as among networks. We validated eDNA-based 

results against both current and historical population records collected since the 

1970s. To investigate within-lake patchiness in eDNA signals, we examined how 

eDNA sampled in different zones of the lake matched known habitat use by animals 

(i.e., littoral, epilimnetic and deep-water). We also evaluated the frequency of 

downstream detection of eDNA and the influence of hydrological factors. To 

investigate between-lake variation in eDNA signals, we classified eDNA based on 

whether it matched historical and current population records as either expected or 

unexpected. Finally, we propose a series of spatially-explicit models in which the 

arrangement of lakes within a network influences the dynamics of eDNA, using a 

patch dynamics perspective18. In all these systems, we assumed that each lake had 

the same local production of eDNA. Proposed models of within-network eDNA 

transport (Figure 1A) are as follows:  

1) High-flow networks leading to short retention time for eDNA and high water 

turnover within lakes; there is insufficient retention time for the degradation of eDNA 

within the site. Prediction: unexpected detections (detection of species that do not 

reside in the particular habitat) increase gradually with lake chain number and eDNA 

reflects regional rather than local diversity. 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 21, 2022. ; https://doi.org/10.1101/2022.07.20.500822doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500822
http://creativecommons.org/licenses/by-nc/4.0/


5 
 

2) Low flow networks with slow water turnover, leading to higher retention 

time for eDNA within lakes and degradation of most of the eDNA signal within 

resident lakes. Prediction: eDNA detections correspond to local diversity rather than 

regional diversity and the rate of unexpected detections remains relatively constant 

throughout the system (both within and among lakes).  

3) Mixed networks in which lakes have varied water retention times. The 

shorter the retention time, the more likely the eDNA signal will flow downstream. 

Prediction: some parts of the network retain local signal and more dynamic parts 

retain regional signal. Unexpected detections vary according to the local flow regime. 

 

Results 

 

We detected all fish species with eDNA that were recorded by conventional 

techniques at the IISD Experimental Lakes Area. We also made additional 

detections of Esox masquinongy, which is known to exist regionally. After controlling 

for sequences detected in blank samples and mock communities, we made 1,909 

detections across the dataset, with an average of 4.6 species detections per sample 

(Extended data table 1). Sample accumulation curves for every lake were reflective 

of good sampling coverage using the 12S marker, based on our assessment of the 

plateaued sampling curves (Extended data figure 1). Of detections found in the lake 

samples (i.e. shoreline, deep-water and pelagic-surface samples), 67% were 

validated by conventional current and historical fish monitoring records. Those that 

were predicted by conventional monitoring methods had significantly higher per-

sample ASV abundances (Quasipoisson GLM, p < 0.001, predicted by fishing 

records median = 949, IQR: 156-3267 Not predicted by fishing records, median: 3, 

IQR: 1-122). 

 

We made 6630 zooplankton detections with the COI dataset with an average 

of 31.8 ASVs per sample that could be assigned to class level or below. Sample 

accumulation curves indicated that sampling coverage was not as extensive as that 

observed for fish (Extended data figure 1). The COI marker detected many other 

taxa that are not considered zooplankton and were excluded from further analysis; 

primarily insects (Extended data figure 2). Of 264 zooplankton ASVs detected, 36 
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matched to Calanoida, 33 to Cyclopoida, 67 to Cladocera, 23 to Diptera, and 100 to 

Rotifera. 

 

Within-lake variation in eDNA distribution  

 

We detected different fish community compositions among different habitats 

within the lakes (e.g. shoreline, deep-water, pelagic-surface transect, in- and out-

flows, PERMANOVA R2 = 3.69%, p < 0.001). Hypothesis testing showed that the 

interaction between fish habitat preference and eDNA sample location was a 

significant predictor of eDNA ASV abundances (X = 85.8, p < 0.001). In general, 

ASVs were most abundant when eDNA sample location matched known fish habitat 

preferences. In particular, ASV abundances from profundal species were highest in 

deep-water samples; these species were infrequently detected by shoreline or 

pelagic samples when these species were known to be present in the lake (Figure 

2A, Extended data figure 3). Littoral-benthic ASVs were much more abundant in the 

shoreline samples, and a greater diversity of littoral species were found with the 

shoreline samples than any other sample type in the largest lakes (Extended data 

figure 3). Generally, the largest, stratified lakes in our study had the greatest 

distinctions between community compositions found in different sample types 

(Extended data figure 3). 

 

We also found strong spatial structure in zooplankton ASV abundance. The 

interaction between eDNA sample location and zooplankton habitat use was a 

significant predictor of ASV abundance (Χ = 168.6, p < 0.001). Deep-water samples 

had larger counts of hypolimnetic zooplankton, but no littoral species. Hypolimnetic 

zooplankton ASVs were not abundant in the pelagic-surface or shoreline samples. 

Samples taken at the shoreline were best at detecting littoral zooplankton, which 

were rarely found in other locations, and samples in the pelagic-surface transect 

were best at detecting pelagic species (Figure 2B, Extended data figure 4).  

 

Between-lake variation 

  

 Modelling demonstrated increased numbers of unexpected eDNA detections 

in lakes as connectivity increased. Here we included lake chain number as a proxy 
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for connectivity, but the same results applied to connectivity described as an 

increasing number of inflows (see methods). For the fish dataset, there was a 

significant interaction between count type (i.e. expected or unexpected eDNA 

detections, as defined by detection compared with conventional surveys) and the 

position in the lake chain (Figures 3 and 4, GLMM, LRT = 12.56, p = 0.0004) on the 

number of detections per sample. While unexpected detections moderately 

increased in lakes further down the networks, expected detections remained roughly 

constant throughout the networks (Figure 4). These unexpected detections mostly 

matched species living in the lake directly upstream to the one being sampled 

(Figure 3). In the zooplankton dataset, the interaction between count type and lake 

chain number was not significant. Instead, there was a significant main effect of lake 

chain number on all detections, with both expected and unexpected detections 

increasing downstream (Figures 3 and 4, GLMM, LRT = 4.88, p = 0.027).  

 

There was a significant interaction between sample location and count type 

on the number of species detected, meaning that both expected and unexpected 

detections were not distributed evenly throughout the freshwater networks for either 

fish or zooplankton eDNA (fish GLMM: LRT = 42.7, p < 0.001; zooplankton GLMM: 

LRT = 79.8, p < 0.001). When considering fish eDNA detections that are expected 

when compared to conventional methods, all sample locations detected equal 

species richness (Figure 4). This was also broadly similar to the zooplankton eDNA 

detections, except that there was a difference between the zooplankton deep water 

and inflow locations in the post-hoc testing, with inflows detecting fewer species 

matching the conventional survey (5.5 taxa in deep water samples versus 4.1 in 

inflow samples, p = 0.024). When considering fish eDNA detections not matched by 

conventional methods, post-hoc tests showed a higher number of these types of 

detections in inflows (mean 4.8 species) when compared with shoreline (2.1 species, 

p < 0.001), deep water (2.0 species, p < 0.001) and pelagic-surface (2.2 species, p < 

0.001) samples (Figure 4). Zooplankton eDNA behaved similarly, with greater 

amounts of these mismatched detections in certain areas of the lake (GLMM, LRT = 

79.8, p < 0.001). Specifically, higher numbers of mismatched detections were 

detected in the inflows (1.5 taxa) compared to the deep water (0.61 taxa, p = 0.011), 

the outflows (0.85 taxa, p = 0.023), the shoreline (0.87 taxa, p = 0.047), and the 

pelagic-surface (0.40 taxa, p < 0.001). There were also significant differences 
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between the outflows and pelagic-surface samples (p = 0.002), and between the 

shoreline and pelagic-surface samples (p = 0.002).   

 

Stream discharge and eDNA detections 

 

 Inflow discharge did not interact with count type to influence the numbers of 

fish eDNA detections found in the inflow samples (GLMM, LRT = 0.0001, p = 0.99). 

Moreover, there were no significant main effects of inflow discharge (GLMM, LRT = 

0.0003, p = 0.996) or count type (GLMM, LRT = 1.06, p = 0.304) on the number of 

eDNA detections. The zooplankton dataset displayed a different pattern, with a 

significant interaction between inflow discharge and count type (GLMM, LRT = 4.02, 

p = 0.045); as the inflows increased in discharge, the number of expected counts per 

sample increased. Unexpected counts were lower than expected counts overall, and 

slightly decreased as stream discharge increased.  

  

Discussion 

 

Our intensive sampling campaign involving 430 samples across 21 connected 

lakes allowed us to analyse eDNA detections at multiple scales, spanning different 

habitats within a lake to entire lake networks. Our results emphasise the importance 

of considering aquatic connectivity – both within lakes and flowing connections 

between lakes – in shaping the distribution of molecular detections. Given that 9.5% 

of known species occupy freshwater habitats, including one third of the world’s 

vertebrates, and that freshwater habitats are characterised by connectivity, our 

results have major implications for the application and interpretation of eDNA to 

characterise, survey and monitor aquatic communities4.  

 

Lakes with greater connectivity (i.e., those further downstream or with a 

greater number of inflows) had more unexpected detections of fish eDNA. This 

analysis only included data from samples collected within the lakes themselves (i.e., 

not samples collected in inflow and outflow streams or surrounding ponds), thus 

precluding the contribution of a greater number of inflow samples to the 

accumulation of additional detections. Occasionally, the unexpected eDNA signal 

was very strong, being found in the majority of samples from a lake. This suggests 
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that eDNA is detecting animals that have not been caught with conventional 

techniques. Despite these few occurrences, long-term ecological research sites are 

some of the best places in the world to perform this kind of comparison between 

molecular and conventional fishing techniques, because of the comprehensive 

sampling effort and extensive species databases covering many lakes. It is likely, 

therefore, that eDNA from upstream lakes is transported via the inflow and then 

becomes mixed with the downstream epilimnion. While we might expect downstream 

lakes to have a greater species richness generally due to increasing size, 

downstream lakes were not consistently the largest in our study. Moreover, the rate 

of increase in unexpected detections was much higher than the moderate increase in 

expected detections further down the networks. Previously, invertebrate eDNA has 

been shown to travel between 9 and 12km downstream from a river flowing 

downstream from a lake13. Other studies have also shown the transport and 

accumulation of eDNA on the scale of several kilometres8,19–22. With regard to our 

model scenarios, this points to a model similar to scenario 1 – the propensity for the 

downstream accumulation of DNA, in which lower retention times do not allow for the 

complete degradation of eDNA within a lake and thus molecular signal accumulates 

with greater freshwater connectivity.  

 

Inflows and outflows create fine-scale physical, chemical and biological 

heterogeneity across lakes23. This also applies to eDNA, as we found heterogeneous 

eDNA signals in both the inflows and outflows of lakes. Sometimes small fish and 

littoral zooplankton live in streams, but we also found eDNA originating from other 

fish species that would not normally dwell in streams. As a result of these two 

phenomena, species richness detected in inflows was high compared with samples 

from other locations. Moreover, there were large amounts of “unexpected” detections 

in inflow samples that did not match the composition of the receiving lake. In some 

instances, it was clear that non-resident eDNA was flowing from the inflow and 

creating a plume of DNA into the downstream lake. For example, the inflow of lake 

665 contained large amounts of DNA from pearl dace (Margariscus natchtriebi) and 

longnose dace (Rhinichthys cataractae), both of which are residents of upstream 

lake 467 (Chain 2, Figure 1B). Likewise, the inflow of lake 979 contained eDNA from 

non-resident Iowa darter (Etheostoma exile), which is a resident of upstream lake 

240. The pelagic-surface sampling points closest to these inflows in lake 665 and 
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lake 979 have a similar community composition to the water sampled at the inflow, 

but this non-resident signal is not apparent in further pelagic-surface sampling 

points. This plume of non-resident eDNA might be facilitated by the fact that both 

receiving lakes are reasonably narrow “channel”-shaped lakes coupled with a 

proportionally large inflow. It is possible that morphometry combined with the degree 

of connectivity is an understudied determinant of the level of incursion from residual 

molecular signal.  

 

Although the streams at IISD-ELA are relatively small, they are also short in 

length, and can therefore contribute to downstream eDNA signals before the 

molecules degrade. The complexity of interacting factors may explain the lack of a 

simple relationship between discharge and eDNA detections that is consistent 

across fish and zooplankton eDNA. Intuitively, we might expect increased stream 

discharge to carry eDNA further downstream24. However, increased water volume 

has also been shown to have a moderately diluting effect on eDNA copy number25,26. 

Flow regime might also act indirectly on eDNA detectability by affecting other abiotic 

factors, such as the levels of inhibitors in the water or degree of particle settling or 

resuspension from the streambed, which influences the amount of eDNA 

detected15,27. Other studies hint at a seasonal effect on eDNA transport in inflows 

and accumulation in downstream habitats; at the time of sampling, some inflows 

were slow flowing as it was the height of summer. While some flash rain events did 

occur during our six-week sampling period, stream flow is typically highest during 

spring snowmelt in this region. However, simply measuring stream discharge at 

single time points may be less likely to reflect the potential transport of eDNA among 

lake ecosystems, compared to a more integrated picture of ongoing eDNA 

accumulation in downstream lakes. 

 

We have demonstrated robust evidence for the spatial partitioning of DNA 

signals within a lake. Largely, the habitat preferences of fish and zooplankton 

defined the community composition of the eDNA signals found in those sample 

locations. Strikingly, the thermocline seems to be an important factor in restricting 

eDNA flow to surface waters, as hypolimnetic species are almost exclusively 

detected in profundal cold water. During the summer months, some zooplankton 

e.g., Leptodiaptomus sicilis and fish species like lake trout (Salvelinus namaycush) 
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and slimy sculpin (Cottus cognatus) are isolated to profundal cold water below the 

thermocline due to their oxythermal habitat requirements, and we found that their 

eDNA was almost exclusively detected in those respective environments. This is a 

seasonal pattern driven by stratification of lakes, which isolates both cold water 

species and their eDNA to the bottom of lakes during the warmer months16,28,29, 

resulting in little hydrologic connectivity between the epilimnion and hypolimnion. 

Studies using radioactively-labelled water added to similar sized lakes showed that 

there is very limited diffusive exchange across the thermocline and concluded that 

the thermocline acts as a barrier inhibiting the downward transfer of turbulent mixing 

energy30,31. This could explain the infrequent detection of DNA belonging to cold-

water species in any other parts of the lake. Some of our study lakes were too 

shallow to stratify. Our sampling design still incorporated a water sample from the 

bottom of these small, shallow lakes, but in these cases the detected community 

composition was more similar to samples from the shoreline and pelagic-surface 

waters (Extended data figures 3 and 4). In large, stratified lakes, however, the 

detected community composition differed greatly between deep water samples and 

shoreline/pelagic-surface samples.  

 

eDNA from littoral fish species was spatially structured between the shoreline 

and pelagic samples, with samples at the shoreline containing more littoral fish 

sequences such as fathead minnows (Pimephalas promelas), yellow perch (Perca 

flavescens) and blacknose shiner (Notropis heterolepis). This pattern was even more 

pronounced with littoral zooplankton, which were very rarely detected in pelagic or 

deep-water samples. In particular, Polyphemus pediculus, a predatory littoral 

cladoceran, had very high sequence numbers in shoreline samples. We found the 

separation of distinct littoral and pelagic communities surprising, because radio-

tracer experiments in IISD-ELA lakes have shown that the epilimnion is fully mixed 

within one day of tritiated water injection31, due to wind stress on the lake surface. 

However, the heterogeneous eDNA signal originates from the larger lakes in our 

study, where distinct community compositions were detected between shoreline and 

pelagic epilimnion samples, reflecting the habitat preferences of these species 

(Extended data figure 4). These larger lakes likely support unique littoral and pelagic 

fish and zooplankton communities, as well as present longer times for eDNA signals 

to mix across the epilimnion. Other eDNA studies from single lakes have hinted at 
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this finding; for example, small littoral fish were found to have a greater relative 

sequence abundances in shoreline samples compared to samples from the centre of 

large lakes (1480ha29; 122ha and 4343ha32). 

 

Within lakes, heterogeneity in species detection with eDNA is shaped by 

heterogeneity in habitat and thermal structure. Especially in larger lakes, eDNA 

signals had spatial structure that reflected the habitat preferences of animals. There 

is also clear evidence that eDNA can reflect upstream communities of organisms 

when a high degree of ecosystem connectivity is present. Using a landscape 

perspective of freshwater ecology, lakes are explicitly viewed as connected to each 

other and their catchment area. eDNA does not accumulate homogeneously 

downstream, but both landscape factors (i.e., the position of the lake relative to 

others in the network) as well as individual lake-specific factors such as 

morphometry influence the degree of eDNA signal. We have highlighted how motion 

in water, which is a fundamental process in freshwater systems, will shape 

detectable eDNA signals and therefore biomonitoring sampling designs. 
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All data have been deposited in DataDryad under doi:10.XXX/XXX.XXX The 

bioinformatic pipeline from adapter removal to sample table creation can be found in 

the github repository https://github.com/CristescuLab/YAAP, as ASV_pipeline.sh.  

 

Methods 

 

Sampling for eDNA was conducted from June to July 2017 at the International 

Institute for Sustainable Development Experimental Lakes Area (IISD-ELA), Ontario, 

Canada, a facility for whole-lake ecosystem experimentation and monitoring. 

Situated on the Canadian Shield, a geological formation dominated by granite 

bedrock, the region is characterized by a high density of lakes linked primarily by 

surface water flow with negligible groundwater flow. We collected 430 water samples 

from three lake chains composed of 21 lakes ranging in size from 2-210 hectares 

(Figure 1B; Chain 1 = 9 lakes; Chain 2 = 6 lakes; Chain 3 = 6 lakes). We selected 

lake chains with the most complete historical population records of fish and 

zooplankton communities. Conventional monitoring and enumeration of fish and 

zooplankton populations in these lakes has taken place with varying levels of 

intensity since the 1960s. Lakes in each chain were connected by streams of varying 

flow regimes. We characterised lakes according to lake chain number, which 

measures landscape position relative to other lakes, linearly connected through 

surface flow33.  

 

Several lakes have been monitored annually to bi-annually for fish (spring and 

fall sampling) using a combination of non-lethal gillnetting and trapnetting34,35 

(Extended data table 2). All other lakes have been surveyed 1-2 times using a set of 

experimental gillnets, trap nets and minnow traps36. Since 2014, several lakes have 

been sampled using a modified version of the Ontario Ministry of Natural Resources 

Broadscale Monitoring method, which applies both North American and Ontario 

small mesh nets in an area-weighted fashion across depth strata37.  

 

Between 1968 and 2017, many of the study lakes have been sampled for 

zooplankton using Schindler-Patalas traps38, nets, and tube samplers39. Several of 

the study lakes have been sampled biweekly during the open-water season for up to 

53 years. On most sampling dates, a minimum of 300 animals were identified to 
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species level. For full details of historical population monitoring, see Supplementary 

Note 1. We took additional zooplankton hauls in 2017 to ensure that all lakes had 

current species richness information, using a 30cm diameter net with 53 μm mesh 

lowered to 1.5m above the lake bed. Samples were preserved in formalin for 

morphological identification40. 

 

eDNA collection and analysis 

 

Each of the 21 lakes were sampled for eDNA using a variety of strategies. To 

evaluate spatial differences across lakes, a transect of 500ml pelagic-surface 

samples was taken at five evenly spaced intervals across the lake, including the 

deepest point of the lake (n = 5). To evaluate depth-specific patterns in eDNA 

distribution, samples along the same transect and at the same sites were taken at 

1m depth using a pole sampler (n = 5). In addition, deep water samples (2m from the 

sediment surface) were taken at sampling stations 3 and 4 on the transect using a 

van Dorn bottle, (n = 2). We also took 2 samples from the shoreline of each lake, and 

2 samples from major inflows and outflows that could be identified on each lake 

(Extended data figure 5). Filtering of water samples was completed within six hours 

of collection onto 47mm GF/F filters (ThermoFisher Scientific; nominal pore size = 

0.7µm). Filters were dry frozen at -20⁰C and transported to McGill University on dry 

ice for molecular analysis. 

 

eDNA molecular analysis 

 

DNA was extracted from filters using the Qiagen Blood and Tissue kit with 

some modifications to the manufacturer’s instructions (Supplementary Note 2). 

Extractions were treated with the OneStep PCR Inhibitor Removal Kit (Zymo 

Research, Irvine, California).  

 

We created amplicon libraries with two markers; the COI marker was used for 

targeting broader eukaryotic biodiversity41 and the 12S marker was used to 

characterise the fish assemblages42. DNA was amplified in triplicate 12.5µl reactions 

with some changes from the original publications (Supplementary Note 2). PCR 

amplicons for each sample were combined, cleaned with AMPure beads and 
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indexed with the Nextera DNA indexing kit for 96 samples (Illumina). A second 

clean-up with AMPure beads was performed, and libraries were quantified and 

normalised to 5ng/ul. A mock community of North American fish species was 

sequenced alongside our samples to evaluate the efficiency of our molecular 

methods and bioinformatics steps (Extended data table 3). Equimolar amounts of 

DNA were combined and a total of 433 samples were allocated across five 

sequencing lanes and sequenced with even depth per sample. Sequencing was 

conducted using 2x300bp Illumina MiSeq at the McGill University and Génome 

Québec Innovation Centre, Montréal. 

 

Bioinformatics 

 

Génome Québec, Montréal, provided a set of demultiplexed sequences that 

were used for the bioinformatics analyses. We used a denoising pipeline to filter 

errors and cluster sequences into amplicon sequence variants or ASVs43. This 

approach includes sorting the sequences into markers (12S and COI sequences), 

adapter removal, quality filtering, merging and quality control (Supplementary Note 

3). We filtered the merged and vetted sequences, based on a sequence length ± 

20bp around the target amplicon size (152-192bp for 12S, 293-333bp for COI; 

Supplementary Note 3). The remaining sequences were dereplicated, low-

abundance sequences were removed and ASVs were created (Supplementary Note 

3). Finally, all reads were aggregated into a count matrix for analysis that gives the 

number of reads per sample per ASV. This pipeline can be found at 

https://github.com/CristescuLab/YAAP. 

 

We assigned taxonomy to the ASVs using BLAST+44 with high stringency 

parameters (98% identity, 90% query coverage for 12S, 95% identity, 95% query 

coverage for COI) and used the last common ancestor algorithm in BASTA45 to 

assign taxonomic identity (Supplementary Note 3). For the 12S marker, we matched 

to a local database composed of sequences from fish species during the last 50 

years of monitoring data at the IISD-ELA as well as government surveys of the same 

region. For the COI marker, we used a local copy of the NCBI database 

(downloaded on the 12 August 2018). We then created a subset of zooplankton taxa 

that had been assigned at least family-level taxonomic identity in the following 
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groups: Amphipoda, Calanoida, Cyclopoida, Diplostraca, Chaoboridae, Rotifera, 

Ostracoda and Trichoptera. We performed an adjustment of sequence numbers 

based on the small amount of contamination that appeared in the mock community; 

this was done by calculating proportions for each species that would remove the 

contamination from the mock community and the negative controls and then 

adjusted this to every sample’s library size. We then subtracted this amount of 

sequences from every library. 

 

Statistics  

 

We used the vegan v 2.5-246 package in R (v 4.0.2) to compute diversity statistics 

and visualise species accumulation curves. We performed the following analyses to 

address our original objectives:  

 

1. Within-lake variation in eDNA distribution  

 To examine the contributions to within-lake patchiness in eDNA distribution, we 

initially analysed whether eDNA sample location in the lake (e.g. shoreline, deep-

water, pelagic-surface transect, in- and out-flows) influenced the recovered eDNA 

community composition by performing PERMANOVA using a Bray-Curtis 

dissimilarity matrix on the ASV abundance x sample table with sample location as 

the explanatory variable. Separate models were created for fish and zooplankton 

data. Samples were permuted 999 times with lake identity as a strata effect.  

 

We then conducted hypothesis testing on per-sample ASV abundances in 

relation to typical habitat use by each species. Fish and zooplankton specialists 

classified species or higher taxonomic groups according to their habitat use (Fish: 

littoral-benthic, mid-water benthic, profundal cold water, pelagic; Zooplankton: littoral, 

profundal cold water, and pelagic (Extended data table 4). We fitted generalised 

mixed effects models using glmmTMB with a zero-inflated negative binomial 

distribution47 to assess the interaction between species habitat use and eDNA 

sample location (epilimnion, deeper water, shoreline) on per sample ASV 

abundances for each species. Separate models were created for fish and 

zooplankton. We accounted for effects that might be due to differing library sizes by 
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including this as an offset term. We allowed intercepts to vary according to lake and 

species by including these as crossed random effects. We assessed the importance 

of the interaction between habitat preference and sample location in predicting the 

ASV abundances by testing significance using a likelihood ratio test with a Chi-

squared distribution. We used the DHARMa v0.4.4 package to test for 

overdispersion, correct handling of zero-inflated data, and model assumptions48. 

Finally, we visually explored the contribution of lake size and lake state (i.e. stratified 

or mixed) to the distribution of eDNA at different sample locations within the lakes.  

 

2. Between-lake variation in species detection 

We investigated our model predictions (Figure 1A), which describe the role of 

freshwater connectivity in explaining expected and unexpected species detections 

made with eDNA. We categorised fish and zooplankton eDNA detections as 

unexpected if they were not predicted by population records from current and 

historical surveys for the lake in question. We created statistical models with the 

number of species detections per sample as the response variable. Each water 

sample provided two datapoints, one count of expected detections and one count of 

unexpected detections. We therefore included the filter identity as a random effect. 

We included sample location (i.e., pelagic, deep water, shoreline), lake chain number 

and count type (i.e. expected or unexpected detections) as explanatory variables, as 

well as the two-way interactions between sample location and count type, and lake 

chain number and count type. Including these two-way interactions would investigate 

whether certain sample locations are predisposed to give more unexpected 

detections. It would also investigate whether increasing connectivity (i.e. lakes 

downstream in the lake network) would increase unexpected eDNA detections. 

Initially we also included the number of inflows to a lake in the model, but we found 

that this explained the same proportion of variation as lake chain number and 

therefore removed this term. Because species detection is likely to increase with 

increasing library size, we also included scaled library size as a covariate in the 

model. We fitted two series of models in glmmTMB using the negative binomial 

family (for the fish dataset) and the poisson family (for the zooplankton dataset). We 

tested for overdispersion and model assumptions using the DHARMa v0.4.4 

package to confirm that these were the best distributions to use with the respective 
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datasets48. We confirmed the significance of the fixed effects terms using a likelihood 

ratio test with a Chi-squared. Model reduction was performed to remove any non-

significant terms, although in all cases we retained library size as a covariate, 

because this is a requisite part of our experimental design. We used the emmeans 

v1.7.0 package to perform post-hoc tests to investigate the differences in how 

detections accumulated in lake networks for expected and unexpected detections. 

 

3. Stream discharge and eDNA detections 

We investigated the role of stream discharge in explaining eDNA detections in 

inflows that did not match detections from conventional methods. We hypothesised 

that streams with a greater discharge would transport more eDNA from upstream 

lakes, resulting in greater numbers of unexpected detections in receiving lakes. We 

created a subset of the dataframe with expected and unexpected detections that 

only included samples from these stream inflows. Discharge was measured either 

using weirs between lakes or by placing a current flow meter (Gurley Precision 

Instruments, Troy NY) at five points across the width of each stream and calculating 

discharge in cms49. We then created negative binomial glmmTMB models for fish 

and zooplankton datasets as before, investigating the interaction between discharge 

and count type (i.e. expected and unexpected) on the number of detections in the 

samples. As before, we confirmed the significance of the fixed effects terms using a 

likelihood ratio test with a Chi-squared distribution and used the DHARMa package 

to test for model assumptions48. We retained library size as a covariate in all models.  
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Figure captions 
 
Figure 1A: We propose a ‘spatially explicit model’ in which the arrangement and the 
size of patches (lakes) influences the dynamics of eDNA. We assume a movement 
of DNA directional to the flow. For simplicity we can assume that all patches can 
sustain equally diverse communities (as in patch dynamics perspectives18). 
Proposed models are as follows: 
1) High flow networks leading to short retention time for eDNA and high water 
turnover within patches; there is insufficient retention time to ensure the degradation 
of eDNA within the site. Prediction: eDNA reflects regional rather than local 
diversity, and unexpected detections increase with increasing lake connectivity. 
2) Low flow networks leading to higher retention time of eDNA within patches and 
slower water turnover within patches: most of the eDNA signal will degrade within 
the resident patch. Prediction: the genetic diversity recovered by eDNA in 
downstream patches corresponds mainly to local diversity rather than regional 
diversity. 
3) Mixed networks in which patches can have different flow regimes, some with low 
and some with high retention time. The shorter the retention time the more likely the 
flow of eDNA signal downstream. Prediction: some parts of the 
network retain local signal and more dynamic parts retain regional signal. 
In the figure darker shading represents higher rates of unexpected detections with 
eDNA and a bolder arrow represents higher water flow between patches.  
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Figure 1B: Maps of the three lake networks and aerial view of the connected lake 
and stream habitats of the Experimental Lakes Area, Ontario (Panel A – Chain 1, 
Panel B – Chain 2, Panel C – Chain 3). Each lake at the Experimental Lakes Area 
has a unique identification number, which are represented on the map. An aerial 
photograph shows the connected lakes of Chain 1 (Panel D). 
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Figure 2: Fish eDNA ASV count is influenced by the interaction between sample 
location (deep water, shoreline or pelagic-surface transect) and classification of fish 
habitat (littoral-benthic, midwater-benthic, profundal or pelagic). eDNA ASV counts 
reflect the fish species using those habitats. Fish with a profundal habitat preference 
were principally found in deep water samples while littoral-benthic fish were 
predominantly detected in the shoreline samples. Zooplankton eDNA read count was 
also influenced by the interaction between the location at which the samples were 
collected and the habitat classification of the zooplankton. eDNA ASV counts reflects 
the zooplankton species’ habitat use. Zooplankton species with a profundal habitat 
preference were principally found in deep water samples while littoral zooplankton 
was predominantly detected in the shoreline samples. 
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Figure 3: Bubble plot to show eDNA detections of each species in each lake. Lakes 
are ordered by lake network, and within each lake network they are ordered by their 
position within the network beginning with headwater lakes. Bubbles represent the 
summed ASV counts for all the samples associated with that lake, including the 
inflows and outflows. Bubble size is weighted by the number of ASV counts. The 
colour of the bubble compares eDNA detections to detections with conventional 
monitoring methods. Blue = expected according to conventional monitoring, green = 
not expected according to conventional monitoring but present in the lake 
immediately upstream (according to either monitoring method), orange = unexpected 
according to conventional methods, grey = no data on whether species is expected 
or unexpected because conventional monitoring is not adequate in that habitat. 
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Figure 4: Number of per-sample expected and unexpected eDNA detections as a 
function of lake chain number and sample location for fish (A, B) and zooplankton (C, 
D) datasets. Unexpected eDNA detections are those not matched by historical and 
current fishing and zooplankton records. Across all three networks, there is a pattern 
of an increase in unexpected fish species detections in downstream lakes, which is 
not reflected by expected detections. Plots show back-transformed model predictions 
from negative binomial GLMMs built in glmmTMB.  
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