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Abstract

We present a unified conceptual framework and the associated software package
for single molecule Förster Resonance Energy Transfer (smFRET) analysis from single
photon arrivals leveraging Bayesian nonparametrics, BNP-FRET. This unified frame-
work addresses the following key physical complexities of a single photon smFRET
experiment, including: 1) fluorophore photophysics; 2) continuous time kinetics of
the labeled system with large timescale separations between photophysical phenomena
such as excited photophysical state lifetimes and events such as transition between
system states; 3) unavoidable detector artefacts; 4) background emissions; 5) unknown
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number of system states; and 6) both continuous and pulsed illumination. These phys-
ical features necessarily demand a novel framework that extends beyond existing tools.
In particular, the theory naturally brings us to a hidden Markov model (HMM) with
a second order structure and Bayesian nonparametrics (BNP) on account of items 1,
2 and 5 on the list. In the second and third companion manuscripts, we discuss the
direct effects of these key complexities on the inference of parameters for continuous
and pulsed illumination, respectively.

Why It Matters
smFRET is a widely used technique for studying kinetics of molecular complexes. However,
until now, smFRET data analysis methods required specifying a priori the dimensionality
of the underlying physical model (the exact number of kinetic parameters). Such approaches
are inherently limiting given the typically unknown number of physical configurations a
molecular complex may assume. The methods presented here eliminate this requirement and
allow estimating the physical model itself along with kinetic parameters, while incorporating
all sources of noise in the data.

1 Introduction
Förster Resonance Energy Transfer (FRET) has served as a spectroscopic ruler to study
motion at the nanometer scale [1–4], and has revealed insight into intra- and intermolecular
dynamics of proteins [5–11], nucleic acids [12], and their interactions [13, 14]. In particular,
single molecule FRET (smFRET) experiments have been used to determine the pore size
and opening mechanism of ion channels sensitive to mechanical stress in the membrane [15],
the intermediate stages of protein folding [16, 17], and the chromatin interactions modulated
by the helper protein HP1α involved in allowing genetic transcription for tightly packed
chromatin [18].

A typical FRET experiment involves labeling molecules of interest with donor and accep-
tor dyes such that the donor may transfer energy to the acceptor via dipole-dipole interaction
when separated by distances of 2-10 nm [19]. This interaction weakens rapidly with increas-
ing separation R and goes as R−6 [20, 21].

To induce FRET during experiments, the donor is illuminated by a continuous or pulsat-
ing light source for the desired time period or until the dyes photobleach. Upon excitation,
the donor may emit a photon itself or transfer its energy nonradiatively to the acceptor which
eventually relaxes to emit a photon of a different color [20, 21]. As such, the data collected
consists of photon arrival times (for single photon experiments) or, otherwise, brightness
values in addition to photon colors collected in different detection channels.

The distance dependence in the rate of energy transfer between donor and acceptor is
key in using smFRET as a molecular ruler. Furthermore, this distance dependence directly
manifests itself in the form of higher fraction of photons detected in the acceptor channel
when the dyes are closer together (as demonstrated in Fig. 1). This fraction is commonly
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Figure 1: A cartoon figure illustrating smFRET data. For the experiments considered
here, the kinetics along the reaction coordinate defined along the donor-acceptor distance
are monitored using single photon arrival data. In the figure above, photon arrivals are
represented by green dots for photons arriving into the donor channel and red dots for
photons arriving in the acceptor channel. For the case where donor and acceptor label one
molecule, a molecule’s transitions between system states (coinciding with conformations) is
reflected by the distance between labels measured by variations in detected photon arrival
times and colors.

referred to as the FRET efficiency,

εFRET =
nA

nA + nD
=

1

1 + (R/R0)6
,

where nD and nA are the number of donor and acceptor photons detected in a given time
period, respectively. Additionally, R0 is the characteristic separation that corresponds to a
FRET efficiency of 0.5 or 50% of the emitted photons emanating from the acceptor.

Now, the aim of smFRET is to capture on-the-fly changes in donor-acceptor distance.
However, this is often confounded by several sources of stochasticity which unavoidably ob-
scure direct interpretation. These include: 1) the stochasticity inherent to photon arrival
times; 2) a detector’s probabilistic response to an incoming photon [22]; 3) background emis-
sions [2]; and 4) fluorescent labels’ stochastic photophysical properties [2]. Taken together,
these problems necessarily contribute to uncertainty in the number of distinct system states
visited by a labeled system over an experiment’s course [23–25].

Here, we delve into greater detail into items 2 and 4. In particular, item 2 pertains
to questions of crosstalk, detector efficiency, dead time, dark current, and instrument re-
sponse function (IRF) introducing uncertainty in excited photophysical state lifetime assess-
ments [22, 26, 27].

Item 4 refers to a collection of effects including limited quantum yield and variable
brightness due to blinking of dyes caused by nonradiative pathways [28, 29], photobleaching
or permanent deactivation of the dyes [2, 28, 29], spectral overlap between the donor and
acceptor dyes which may result in direct excitation of the acceptors or leaking of photons into
the incorrect channel [2, 26], or a donor-acceptor pair’s relative misalignment or positioning
resulting in false signals and inaccurate characterization of the separation between labeled
molecules [2, 30].
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Though the goal has always remained to analyze the rawest form of data, the reality of
these noise properties has traditionally led to the development of approximate binned photon
analyses even when data is collected at the level of single photons across two detectors.
Binning is either achieved by directly summing photon arrivals over a time period when
using single photon detectors [23, 31] or by integrating intensity over a few pixels when
using widefield detectors [32].

While binned data analyses can be used to determine the number and connectivity of
system states [33]–by computing average FRET efficiencies over bin time windows and using
them in turn to construct FRET efficiency histograms [23, 25, 31, 34–36]–they come at the
cost of averaging kinetics that may exist below a time bin not otherwise easily accessible [32,
37, 38]. They also eliminate information afforded by, say, the excited photophysical state
lifetime in the case of pulsed illumination.

While histogram analyses are suited to infer static molecular properties, kinetics over
binned time traces have also been extracted by supplementing these techniques with a hidden
Markov model (HMM) treatment [23, 25, 34–36, 39].

Using HMMs, binned analysis techniques immediately face the difficulty of an unknown
number of system states visited. Therefore, they require the number of system states as an
input to deduce the putative kinetics between the candidate system states.

What is more, the binned analysis’ accuracy is determined by the bin sizes where large
bins may result in averaging of the kinetics. Moreover, increasing bin size may lead to
estimation of an excess number of system states. This artifact arises when a system appears
to artificially spend more time in the system states below the bin size [38]. To address
these challenges, we must infer continuous time trajectories below the bin size through,
for example, the use of Markov jump processes [32] while retaining a binned, i.e., discrete
measurement model.

When single photon data is available we may avoid the binning issues inherent to HMM
analysis [32, 40, 41]. Doing so, also allows us to directly leverage the noise properties of
detectors for single photon arrivals (e.g., IRF) well calibrated at the single photon level.
Moreover, we can now also incorporate information available through photophysical state
lifetimes when using pulsed illumination otherwise eliminated in binning data. Incorporating
all of this additional information, naturally, comes with added computational cost [37] whose
burden a successful method should mitigate.

Often to help reduce computational costs, further approximations on the system kinetics
are invoked such as assuming system kinetics to be much slower than FRET label exci-
tation and relaxation rates. This approximation helps decouple photophysical and system
(molecular) kinetics [16, 37, 42, 43].

What is more, as they exist, the rigor of direct photon arrival analysis methods are further
compromised to help reduce computational cost by treating detector features and background
as preprocessing steps [16, 37, 42, 43]. In doing so, simultaneous and self-consistent inference
of kinetics and other molecular features becomes unattainable. Finally, all methods, whether
relying on the analysis of binned photons or single photon arrival, suffer from the “model
selection problem”. That is, the problem associated with identifying the number of system
states warranted by the data. More precisely, the problem associated with propagating the
uncertainty introduced by items 1-4 into a probability over the models (i.e., system states).
Existing methods for system state identification only provide partial reprieve.
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For example, while FRET histograms identify peaks to intuit the number of system states,
these peaks may provide unreliable estimates for a number of reasons: 1) fast transitions
between system states may result in a blurring of otherwise distinct peaks [1] or, counter-
intuitively, introduce more peaks [25, 38]; 2) system states may differ primarily in kinetics but
not FRET efficiency [40]; 3) detector properties and background may introduce additional
features in the histograms.

To address the model selection problem, overfitting penalization criteria (such as the
Bayesian information criterion or BIC) [23, 44] or variational Bayesian [24] approaches have
been employed.

Often, these model selection methods assume implicit properties of the system. For
example, the BIC requires the assumption of weak independence between measurements
(i.e., ideally independent identically distributed measurements and thus no Markov kinetics
in state space) and a unique likelihood maximum, both of which are violated in smFRET
data [24]. Furthermore, BIC and other such methods provide point estimates rather than
full probabilities over system states ignoring uncertainty from items 1-4 propagated over
models [45].

As such, we need to learn distributions over system states and kinetics warranted by the
data and whose breadth is dictated by the sources of uncertainty discussed above. More
specifically, to address model selection and build joint distributions over system states and
their kinetics, we treat the number of system states as a random variable just as the current
community treats smFRET kinetic rates as random variables [25, 40, 41]. Our objective is
therefore to obtain distributions over all unknowns (including system states and kinetics)
while accounting for items 1-4. Furthermore, this must be achieved in a computationally
efficient way avoiding, altogether, the draconian assumptions of existing in single photon
analysis methods. In other words, we want to do more (by learning joint distributions over
the number of system states alongside everything else) and we want it to cost less.

If we insist on learning distributions over unknowns, then it is convenient to operate
within a Bayesian paradigm. Also, if the model (i.e., the number of system states) is un-
known, then we must further generalize to the Bayesian nonparametric (BNP) paradigm [25,
41, 46–53]. BNPs directly address the model selection problem concurrently and self-
consistently while learning the associated model’s parameters and output full distributions
over the number of system states and the other parameters.

In this series of three companion manuscripts, we present a complete description of single
photon smFRET analysis within the BNP paradigm addressing noise sources discussed above
(items 1-4). In addition, we develop specialized computational schemes for both continuous
and pulsed illumination for it to “cost less”.

Indeed, mitigating computational cost becomes critical especially with the added com-
plexity of working within the BNP paradigm. This, in itself, warrants a detailed treatment
of continuous and pulsed illumination analyses in two companion manuscripts.

To complement this theoretical framework, we also provide to the community a suite of
programs called BNP-FRET written in the compiled language Julia for high performance.
These freely available programs allow for comprehensive analysis of single photon smFRET
time traces on immobilized molecules obtained with a wide variety of experimental setups.

In what follows, we will first present a forward model. Next, we will build an inverse
strategy to learn full posteriors within the BNP paradigm. Finally, multiple examples are
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presented by applying the method to simulated data sets across different parameter regimes.
Experimental data are treated in the two subsequent companion manuscripts.

2 Forward Model

2.1 Conventions
To be consistent throughout our three part manuscript, we precisely define some terms as
follows

1. a macromolecular complex under study is always referred to as a system,

2. the configurations through which a system transitions are termed system states, typi-
cally labeled using σ,

3. FRET dyes undergo quantum mechanical transitions between photophysical states,
typically labeled using ψ,

4. a system-FRET combination is always referred to as a composite,

5. a composite undergoes transitions among its superstates, typically labeled using φ,

6. all transition rates are typically labeled using λ,

7. the symbol N is generally used to represent the total number of discretized time win-
dows, typically labeled with n, and

8. the symbol wn is generally used to represent the observations in the n-th time window.

2.2 smFRET Data
Here, we briefly describe the data collected from typical smFRET experiments analyzed by
BNP-FRET. In such experiments, donor and acceptor dyes labeling a system can be excited
using either continuous illumination, or pulsed illumination where short laser pulses arrive
at regular time intervals. Moreover, acceptors can also be excited by nonradiative transfer
of energy from an excited donor to a nearby acceptor. Upon relaxation, both donor and
acceptor can emit photons collected by single photon detectors. These detectors record the
set of photon arrival times and detection channels. We denote the arrival times by

{Tstart, T1, T2, T3, . . . , TK , Tend},

and detection channels with
{c1, c2, c3, . . . , cK}

for a total number of K photons. In the equations above, Tstart and Tend are experiment’s
start and end times. Further, we emphasize here that the strategy used to index the detected
photons above is independent of the illumination setup used.
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Throughout the experiment, photon detection rates from the donor and acceptor dyes
vary as the distance between them changes, due to the system kinetics. In cases where the
distances form an approximately finite set, we treat the system as exploring a discrete system
state space. The acquired FRET traces can then be analyzed to estimate the transition rates
between these system states assuming a known model (i.e., known number of system states).
We will lift this assumption of knowing the model a priori in Sec. 3.2.

Cases where the system state space is continuous fall outside the scope of the current
work and require extensions of Ref. [54] and Ref. [55] currently in progress.

In the following subsections, we present a physical model (forward model) describing
the evolution of an immobilized system labeled with a FRET pair. We use this model
to derive, step-by-step, the collected data’s likelihood given a choice of model parameters.
Furthermore, given the mathematical nature of what is to follow, we will accompany major
parts of our derivations with a pedagogical example of a molecule labeled with a FRET pair
undergoing transitions between just two system states to demonstrate each new concept in
example boxes.

2.3 Likelihood
To derive the likelihood, we begin by considering the stochastic evolution of an idealized sys-
tem, transitioning through a discrete set of total Mσ system states, {σ1, . . . , σMσ}, labeled
with a FRET pair having Mψ discrete photophysical states, {ψ1, . . . , ψMψ

}, representing the
fluorophores in their ground, excited, triplet, blinking, photobleached, or other quantum
mechanical states. The combined system-FRET composite now undergoes transitions be-
tween Mφ =Mσ×Mψ superstates, {φ1, . . . , φMφ

}, corresponding to all possible ordered pairs
(σj, ψk) of the system and photophysical states. To be precise, we define φi ≡ (σj, ψk), where
i = (j − 1)Mψ + k.

Assuming Markovianity (memorylessness) of transitions among superstates, the proba-
bility of finding the composite in a specific superstate at a given instant evolves according
to the master equation [40]

dρ(t)

dt
= ρ(t)G, (1)

where the row vector ρ(t) of length Mφ has elements coinciding with probabilities for finding
the system-FRET composite in a given superstate at time t. More explicitly, defining the
photophysical portion of the probability vector ρ(t) corresponding to system state σi as

ρσi(t) =
[
ρσi,ψ1(t) ρσi,ψ2(t) . . . ρσi,ψMψ (t)

]
,

we can write ρ(t) as

ρ(t) =
[
ρσ1(t) ρσ2(t) . . . ρσMσ (t)

]
.

Furthermore, in the master equation above, G is the generator matrix of size Mφ × Mφ

populated by all transition rates λφi→φj between superstates.
Each diagonal element of the generator matrix G corresponds to self-transitions and is

equal to the negative sum of the remaining transition rates within the corresponding row.
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That is, λφi→φi = −
∑

j 6=i λφi→φj . This results in zero row-sums, assuring that ρ(t) remains
normalized at all times as described later in more detail (see Eq. 5). Furthermore, for
simplicity, we assume no simultaneous transitions among system states and photophysical
states as such events are rare (although the incorporation of these events in the model
may be accommodated by expanding the superstate space). This assumption results in
λ(ψi,σj)→(ψl,σm) = 0 for simultaneous i 6= l and l 6= m, which allows us to simplify the
notation further. That is, λ(ψi,σj)→(ψi,σk) ≡ λσj→σk (for any i) and λ(ψi,σj)→(ψk,σj) ≡ λσj ,ψi→ψk

(for any j). This leads to the following form for the generator matrix containing blocks of
exclusively photophysical and exclusively system transition rates, respectively

G =



Gψ
σ1

−
∑
j 6=1

λσ1→σjI λσ1→σ2I . . . λσ1→σMσ
I

λσ2→σ1I Gψ
σ2

−
∑
j 6=2

λσ2→σjI . . . λσ2→σMσ
I

... ... . . . ...
λσMσ→σ1I λσMσ→σ2I . . . Gψ

σMσ
−
∑
j 6=Mσ

λσMσ→σjI

 , (2)

where the matrices on the diagonal Gψ
σi

are the photophysical parts of the generator matrix
for a system found in the σi system state. Additionally, I is the identity matrix of size Mψ.

For later convenience, we also organize the system transition rates λσi→σj in Eq. 2 as a
matrix

Gσ =


∗ λσ1→σ2 λσ1→σ3 . . . λσ1→σMσ

λσ2→σ1 ∗ λσ2→σ3 . . . λσ2→σMσ

λσ3→σ1 λσ3→σ2 ∗ . . . λσ3→σMσ... ... ... . . . ...
λσMσ→σ1 λσMσ→σ2 λσMσ→σ3 . . . ∗

 , (3)

which we call system generator matrix.
Moreover, the explicit forms of Gψ

σi
in Eq. 2 depend on the photophysical transitions

allowed in the model. For instance, if the FRET pair is allowed to go from its ground
photophysical state (ψ1) to the excited donor (ψ2) or excited acceptor (ψ3) states only, the
matrix is given as

Gψ
σi
=

 ∗ λσi,ψ1→ψ2 λσi,ψ1→ψ3

λσi,ψ2→ψ1 ∗ λσi,ψ2→ψ3

λσi,ψ3→ψ1 0 ∗

 =

 ∗ λex λdirect
λd ∗ λFRETσi

λa 0 ∗

 , (4)

where the ∗ along the diagonal represents the negative row-sum of the remaining elements,
λex is the excitation rate, λd and λa are the donor and acceptor relaxation rates, respectively,
and λdirect is direct excitation of the acceptor by a laser, and λFRETσi

is the donor to acceptor
FRET transition rate when the system is in its i-th system state. We note that only FRET
transitions depend on the system states (identified by dye-dye separations) and correspond
to FRET efficiencies given by

εFRETσi
=

λFRETσi

λFRETσi
+ λd

,

9
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where the ratio on the right hand side represents the fraction of FRET transitions among
all competing transitions out of an excited donor, that is, the fraction of emitted acceptor
photons among total emitted photons.

With the generator matrix at hand, we now look for solutions to the master equation
of Eq. 1. Due to its linearity, the master equation accommodates the following analytical
solution:

ρ(t) = ρ(t0) exp ((t− t0)G) ≡ ρ(t0) Π(t− t0), (5)

illustrating how the probability vector ρ(t) arises from the propagation of the initial prob-
ability vector at time t0 by the exponential of the generator matrix (the propagator matrix
Π(t − t0)). The exponential maps the transition rates λφi→φj in the generator matrix to
their corresponding transition probabilities πφi→φj populating the propagator matrix. The
zero row-sums of the generator matrix guarantee that the resulting propagator matrix is
stochastic (i.e., has rows of probabilities that sum to unity,

∑
j πφi→φj = 1).

Example I: State Space and Generator Matrix

For a molecule undergoing transitions between its two conformations, we have Mσ = 2
system states given as {σ1, σ2}. The photophysical states of the FRET pair labeling
this molecule are defined according to whether the donor or acceptor are excited.
Denoting the ground state by G and excited state by E, we can write all photophysical
states of the FRET pair as {ψ1 = (G,G), ψ2 = (E,G), ψ3 = (G,E)}, where the first
element in the ordered pair represents the donor state. Further, here, we assume no
simultaneous excitation of the donor and acceptor owing to its rarity.

Next, we construct the superstate space with Mφ = 6 ordered pairs {φ1 =
(ψ1, σ1), φ2 = (ψ2, σ1), φ3 = (ψ3, σ1), φ4 = (ψ1, σ2), φ5 = (ψ2, σ2), φ6 = (ψ3, σ2)}. Fi-
nally, the full generator matrix for this setup reads

G =

[
Gψ
σ1

− λσ1→σ2I λσ1→σ2I
λσ2→σ1I Gψ

σ2
− λσ2→σ1I

]

=


∗ λex λdirect λσ1→σ2 0 0
λd ∗ λFRETσ1

0 λσ1→σ2 0
λa 0 ∗ 0 0 λσ1→σ2

λσ2→σ1 0 0 ∗ λex λdirect
0 λσ2→σ1 0 λd ∗ λFRETσ2

0 0 λσ2→σ1 λa 0 ∗

 .

Both here, and in similar example boxes that follow, we choose values for rates com-
monly encountered in experiments [17]. We consider a laser exciting a donor at rate
λex = 10ms−1. Next, we suppose that the molecule switches between system states σ1
and σ2 at rates λσ1→σ2 = 2.0ms−1 and λσ2→σ1 = 1ms−1.
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Furthermore, assuming typical lifetimes of 3.6 ns and 3.5 ns for the donor and
acceptor dyes [17], their relaxation rates are, respectively, λd = 1/3.6 ns−1 and λa =
1/3.5 ns−1. We also assume that there is no direct excitation of the acceptor and thus
λdirect = 0. Next, we choose FRET efficiencies of 0.2 and 0.9 for the two system states
resulting in λFRETσ1

= λd/4 = 0.06 ns−1 and λFRETσ2
= 9λd = 2.43 ns−1.

Finally, these values lead to the following generator matrix (in ms−1 units)

G =


−12 10.0 0 2.0 0.0 0.0

277000 −347002 70000 0.0 2.0 0.0
285000 0.0 −285002 0.0 0.0 2.0
1.0 0.0 0.0 −11 10.0 0
0.0 1.0 0.0 277000 −2777001 2500000
0.0 0.0 1.0 285000 0.0 −285001

 .

After describing the generator matrix and deriving the solution to the master equation,
we continue by explaining how to incorporate observations into a likelihood.

In the absence of observations, any transition among the set of superstates are uncon-
strained. However, when monitoring the system using suitable detectors, observations rule
out specific transitions at the observation time. For example, ignoring background for now,
the detection of a photon from a FRET label identifies a transition from an excited photo-
physical state to a lower energy photophysical state of that label. On the other hand, no
photon detected during a time period indicates the absence of radiative transitions or the
failure of detectors to register such transition. Consequently, even periods without photon
detections are informative in the presence of a detector. In other words, observations from
a single photon smFRET experiment are continuous in that they are defined at every point
in time.

Additionally, since smFRET traces report radiative transitions of the FRET labels at
photon arrival times, uncertainty remains about the occurrences of unmonitored transitions
(e.g., between system states). Put differently, smFRET traces (observations) only partially
specify superstates at any given time.

Now, to compute the likelihood for such smFRET traces, we must sum those probabilities
over all trajectories across superstates (superstate trajectories) consistent with a given set of
observations. Assuming the system ends in superstate φi at Tend, this sum over all possible
trajectories can be very generally given by the element of the propagated vector ρ(Tend)
corresponding to superstate φi. Therefore, a general likelihood may be written as

L = p(φi) = [ρ(Tend)]i. (6)

However, as the final superstate at time Tend is usually unknown, we must therefore
marginalize (sum) over the final superstate to obtain the following likelihood

L =

Mφ∑
i=1

p(φi) = ρ(Tend)ρ
T
norm, (7)

where all elements of the vector ρnorm are set to 1 as a means to sum the probabilities in
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vector ρ(Tend). In the following sections, we describe how to obtain concrete forms for these
general likelihoods.

2.3.1 Absence of observations

For pedagogical reasons, it is helpful to first look at the trivial case where a system-FRET
composite evolves but no observations are made (due to a lack, say, of detection channels).
In this case, all allowed superstate trajectories are possible between the start time of the
experiment, Tstart, and end, Tend. This is because the superstate cannot be specified or oth-
erwise restricted at any given time by observations previously explained. Consequently, the
probability vector ρ(t) remains normalized throughout the experiment as no superstate tra-
jectory is excluded. As such, the likelihood is given by summing over probabilities associated
to the entire set of trajectories, that is,

L = p((T1, e1), . . . , (TK , eK)|G) = ρ(Tstart)Π(Tend − Tstart)ρ
T
norm = ρ(Tend)ρ

T
norm = 1, (8)

where {e1, . . . , eK} are the emission times of all emitted photons, not recorded due to lack
of detection channels and thus not appearing on the right hand side of the expression.

In what follows, we describe how the probability vector ρ(t) does not remain normalized
as it evolves to ρ(Tend) when detectors partially collapse knowledge of the occupied superstate
during the experiment. This results in a likelihood smaller than one. We do so for the
conceptually simpler case of continuous illumination for now.

2.3.2 Introducing observations

To compute the likelihood when single photon detectors are present, we start by defining a
measurement model where the observation at a given time is dictated by ongoing transitions
and detector features (e.g., crosstalk, detector efficiency). As we will see in more detail later,
if we describe the evolution of a system by defining its states at a discrete time points and
these states are not directly observed, and thus hidden, then this measurement model adopts
the form of a hidden Markov Model (HMM). Here, Markovianity arises when a given hidden
state only depends on its immediate preceding hidden state. In such HMMs, an observation
at a given time is directly derived from the concurrent hidden state.

As an example of an HMM, for binned smFRET traces, an observation is often approx-
imated to depend only on the current hidden state. However, contrary to such a naive
HMM, an observation in a single photon setup in a given time period depends on the cur-
rent superstate and the immediate previous superstate. This naturally enforces a second
order structure on the HMM where each observed random variable depends on two super-
states as we demonstrate shortly. A similar HMM structure was noted previously to model
a fluorophore’s photo switching behavior in Ref. [56].

Now, in order to address this observation model, we first divide the experiment’s time
duration into N windows of equal size, ε = (Tend − Tstart)/N . We will eventually take the
continuum limit ε → 0 to recover the original system as described by the master equation.
We also sum over all possible transitions between superstates within each window. These
windows are marked by the times (see Fig. 2 (a))

{t0, t1, t2, . . . , tN} ,
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where the n-th window is given by (tn−1, tn) with t0 = Tstart and tN = Tend. Corresponding
to each time window, we have observations

w = {w1, w2, w3, . . . , wN},

where wn = ∅ if no photons are detected and wn = {(T (1)
n , c

(1)
n ), (T

(2)
n , c

(2)
n ), . . .} otherwise,

with the j-th photon in a window being recorded by the channel c(j)n at time T (j)
n . Note here

that observations in a time window, being a continuous quantity, allow for multiple photon
arrivals or none at all.

As mentioned earlier, each of these observations originate from the evolution of the
superstate. Therefore, we define superstates occupied at the beginning of each window as

{a1, a2, a3, . . . , aN−1, aN , aN+1},

where an is the superstate at the beginning of the n-th time window as shown in Fig. 2(a).
The framework described here can be employed to compute the likelihood. However, the
second order structure of the HMM leads to complications in these calculations. In the rest
of this section, we first illustrate the mentioned complication using a simple example and
then describe a solution to this issue.

Example II: Naive Likelihood Computation

Here, we calculate the likelihood for our two state system described earlier. For sim-
plicity alone, we attempt the likelihood calculation for a time period spanning the first
two time windows (N = 2) in Fig. 2(a). Within this period the system-FRET com-
posite evolves from superstate a1 to a3 giving rise to observations w1:2. The likelihood
for such a setup is typically obtained using a recursive strategy by marginalizing over
superstates a1:3 (summing over all possible superstate trajectories)

L = p(w1:2|G,ρstart) =
∑
a1:3

p(w1:2, a1:3|G,ρstart)

=
∑
a1:3

p(w2|a1:3, w1G,ρstart)p(w1, a1:3|G,ρstart)

=
∑
a1:3

p(w2|a2:3,G)p(w1|a1:2,G)p(a1:3|G,ρstart).

Here, we have applied the chain rule of probabilities in each step. Moreover, in the last
step, we have only retained the parameters that are directly connected to the random
variable on the left in each term, as shown by arrows in Fig. 2(a).
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Now, for our two system state example, an can be any of the six superstates φ1:6

(Mφ = 6) given earlier. As such, the sum above contains MN+1
φ = 63 terms for

such a simple example. For a large number of time windows, computing this sum
becomes prohibitively expensive. Therefore, it is common to use a recursive approach
to find the likelihood, only requiring M2

φ(N +1) operations, as we will describe in the
next section. However, due to our HMM’s second order structure, the two first terms
(involving observations) in the above sum are conditioned on a mutual superstate a2
which forbids recursive calculations.

After describing the issue in computing the likelihood due to the second order struc-
ture of our HMM, we now describe a solution to this problem. As such, to simplify the
likelihood calculation, we temporarily introduce superstates bn at the end of n-th window
separated from superstate an+1 at the beginning of (n + 1)-th window by a short time τ
as shown in Fig. 2(b) during which no observations are recorded (inactive detectors). This
procedure allows us to conveniently remove dependency of consecutive observations on a
mutual superstate. That is, consecutive observations wn and wn+1 now do not depend on a
common superstate an+1, but rather on separated (an, bn) pairs; see Fig. 2(b). The sequence
of superstates now looks like (see Fig. 2b)

{a1, b1, a2, b2, a3, b3, . . . , aN−1, bN−1, aN , bN , aN+1}, (9)

which now permits a recursive strategy for likelihood calculation as described in the next
section. Furthermore, we will eventually take the τ → 0 limit to obtain the likelihood of the
original HMM with the second order structure.

2.3.3 Recursion formulas

We now have the means to compute the terminal probability vector ρend = ρ(Tend) by
evolving the initial vector ρstart = ρ(Tstart). This is most conveniently achieved by recursively
marginalizing (summing) over all superstates in Eq. 9 backwards in time, starting from the
last superstate aN+1 as follows

L = p(w1:N |G,ρstart) =
∑
aN+1

p(w1:N , aN+1|G,ρstart)

=
∑
aN+1

AN+1(aN+1) = AN+1 ρ
T
norm, (10)

where AN+1(aN+1) are elements of the vector AN+1 of length Mφ, commonly known as a
filter [57]. Moving backwards in time, the filter at the beginning of the nth time window,
An(an+1), is related to the filter at the end of the nth window, Bn(bn), due to Markovianity,
as follows

An+1(an+1) = p(w1:n, an+1|G,ρstart)

=
∑
bn

p(an+1|bn,G)Bn(bn), (11)
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Figure 2: Graphical models depicting the random variables and parameters in-
volved in the generation of photon arrival data for smFRET experiments. Circles
shaded in blue represent parameters of interest we wish to deduce, namely transition rates
and probabilities. The circles shaded in gray correspond to observations. The unshaded
circles represent the superstates. The arrows reflect conditional dependence among these
variables and colored dots represent photon arrivals. Going from panel (a) to (b), we con-
vert the original HMM with a second order structure to a naive HMM where each observation
only depends on one state.
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or in matrix notation as
An+1 = BnΠ̃n,

where p(an+1|bn) are the elements of the transition probability matrix Π̃n described in the
next section. Again due to Markovianity, the filter at the end of the nth window, Bn(bn), is
related to the filter at the beginning of the same time window, An(an), as

Bn(bn) = p(w1:n−1, bn|G,ρstart)

=
∑
an

p(wn|an, bn,G) p(bn|an,G)An(an), (12)

or in matrix notation as
Bn = AnΠ

(r)
n ,

where the terms p(wn|an, bn,G) p(bn|an,G) populate the transition probability matrix Π(r)
n

described in the next section. Here, we use the superscript (r) to denote that elements of this
matrix include observation probabilities. We note here that the last filter in the recursion
formula, A1, is equal to starting probability vector ρstart itself.

2.3.4 Reduced propagators

To derive the different terms in the recursive filter formulas, we first note that the transition
probabilities p(an|bn−1,G) and p(bn|an,G) do not involve observations. As such, we can use
the full propagator as follows

p(bn|an,G) = (Π)an→bn = (exp((ε− τ)G))an→bn

and
p(an|bn−1,G) = (Π̃)bn−1→an = (exp(τG))bn−1→an

,

respectively. On the other hand, the term p(wn|an, bn,G) includes observations which results
in modification to the propagator by ruling out a subset of transitions. For instance, obser-
vation of a photon momentarily eliminates all nonradiative transitions. The modifications
now required can be structured into a matrix Dn of the same size as the propagator with
elements (Dn)an→bn = p(wn|an, bn,G). We term all such matrices detection matrices. The
product p(wn|an, bn,G) p(bn|an,G) in Eq. 12 can now be written as

(Π(r)
n )an→bn = (Π)an→bn

× (Dn)an→bn
,

relating the modified propagator (termed reduced propagator and distinguished by the su-
perscript (r) hereafter) (Π(r)

n )an→bn in the presence of observations to the full propagator (no
observations). Plugging in the matrices introduced above into the recursive filter formulas
(Eqs. 11-12), we obtain in matrix notation

An+1 = BnΠ̃ = Bn exp((ε− τ)G)

Bn = AnΠ
(r)
n = An (exp(εG)�Dn) , (13)

where the symbol � represents element-by-element product of matrices. Here, however, the
detection matrices cannot yet be computed analytically as the observations wn allow for
an arbitrary number of transitions within the finite time window (tn−1, tn). However, they
become manageable in the limit that the time windows become vanishingly small, as we will
demonstrate later.
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2.3.5 Likelihood for the HMM with second order structure

Now, inserting the matrix expressions for filters of Eq. 13 into the recursive formula likelihood
Eq. 10, we arrive at

L =
∑
aN+1

ρstart Π
(r)
1 Π̃Π

(r)
2 Π̃Π

(r)
3 Π̃ . . . Π

(r)
N−1 Π̃Π

(r)
N

= ρstart Π
(r)
1 Π̃Π

(r)
2 Π̃Π

(r)
3 Π̃ . . . Π

(r)
N−1 Π̃Π

(r)
N ρTnorm = ρ(Tend)ρ

T
norm,

where, in the second step, we added a row vector of ones, ρnorm at the end to sum over all
elements. Here, the superscript T denotes matrix transpose. As we now see, the structure
of the likelihood above amounts to propagation of the initial probability vector ρstart to the
final probability vector ρ(Tend) via multiple propagators corresponding to N time windows.

Now, under the limit τ → 0, we have

Π̃ = lim
τ→0

exp(τG) = I,

Π = lim
τ→0

exp((ε− τ)G) = exp(εG),

where I is the identity matrix. In this limit, we recover the likelihood for the HMM with a
second order structure as

L = ρstart Π
(r)
1 Π

(r)
2 Π

(r)
3 . . . Π

(r)
N−1Π

(r)
N ρTnorm . (14)

We note here that the final probability vector ρ(Tend) is not normalized to one upon prop-
agation due to the presence of reduced propagators corresponding to observations. More
precisely, the reduced propagators restrict the superstates evolution to only a subset of tra-
jectories over a time window ε in agreement with the observation over this window. This, in
turn, results in a probability vector whose elements sum to less than one. That is,

ρstart Π
(r)
1 Π

(r)
2 Π

(r)
3 . . . Π

(r)
N−1Π

(r)
N ρTnorm = ρ(Tend)ρnorm < 1 . (15)

2.3.6 Continuum limit

Up until now, the finite size of the time window ε allowed for an arbitrary number of tran-
sitions per time window (tn−1, tn), which hinders the computation of an exact form for the
detection matrices. Here, we take the continuum limit, as the time windows become vanish-
ingly small (that is, ε→ 0 as N → ∞). Thus, no more than one transition is permitted per
window. This allows us to fully specify the detection matrices Dn.

To derive the detection matrices, we first assume ideal detectors with 100% efficiency
and include detector effects in the subsequent sections (see Sec. 2.4). In such cases, the
absence of photon detections during a time window, while detectors are active, indicates
that only nonradiative transitions took place. Thus, only nonradiative transitions have
nonzero probabilities in the detection matrices. As such, for evolution from superstate an to
bn, the elements of the nonradiative detection matrix, Dnon, are given by

(Dnon)an→bn =

{
1 Nonradiative transitions
0 Radiative transitions

. (16)
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On the other hand, when the k-th photon is recorded in a time window, only elements
corresponding to radiative transitions are nonzero in the detection matrix denoted by Drad

k

as

(Drad
k )an→bn =

{
0 All transitions except for the k-th photon emission
1 k-th photon emission

. (17)

Here, we note that the radiative detection matrices have zeros along their diagonals, since
self-transitions are nonradiative.

We can now define the reduced propagators corresponding to the nonradiative and ra-
diative detection matrices, Dnon and Drad

k , using the Taylor approximation limε→0 Πn =
I+ εG+O(ε2) as

Π(r)non = (I+ εG+O(ε2))�Dnon = exp(εGnon) +O(ε2) , and (18)

Π
(r)rad
k = (I+ εG+O(ε2))�Drad

k = εGrad
k +O(ε2). (19)

In the equations above, Gnon = G � Dnon and Grad
k = G � Drad

k , where the symbol �
represents an element-by-element product of the matrices. Furthermore, the product between
the identity matrix and Drad

k above vanishes in the radiative propagator due to zeros along
the diagonals of Drad

k .

Example III: Detection Matrices

For our example with two system states described earlier, the detection matrices of
Eqs. 16-17 take simple forms. The radiative detection matrix has the same size as
the generator matrix with nonzero elements wherever there is a rate associated to a
radiative transition

Drad
d/a =


0 0 0 0 0 0
1/0 0 0 0 0 0
0/1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1/0 0 0
0 0 0 0/1 0 0

 ,

where the subscripts d and a, respectively, denote photon detection in donor and
acceptor channels. Similarly, the nonradiative detection matrix is obtained by setting
all elements of the generator matrix related to radiative transitions to zero and the
remaining to one as

Dnon =


1 1 1 1 1 1
0 1 1 1 1 1
0 1 1 1 1 1
1 1 1 1 1 1
1 1 1 0 1 1
1 1 1 0 1 1

 .
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2.3.7 Final likelihood

With the asymptotic forms of the reduced propagators in Eq. 14 now defined in the last
subsection, we have all the ingredients needed to arrive at the final form of the likelihood.

To do so, we begin by considering the period right after the detection of the (k−1)th pho-
ton until the detection of the kth photon. For this time period, the nonradiative propagators
in Eq. 14 can now be easily merged into a single propagator Πnon

k = exp((Tk − Tk−1)G
non),

as the commutative arguments of the exponentials can be readily added. Furthermore, at
the end of this interphoton period, the radiative propagator Π(r)rad

k marks the arrival of the
k-th photon. The product of these two propagators

Πnon
k Π

(r)rad
k = εΠnon

k Grad
k +O(ε2) = ε exp((Tk − Tk−1)G

non)Grad
k +O(ε2), (20)

now governs the stochastic evolution of the system-FRET composite during that interphoton
period.

Inserting Eq.20 for each interphoton period into the likelihood for the HMM with second
order structure in Eq. 14, we finally arrive at our desired likelihood
L = εKρstart Π

non
1 Grad

1 Πnon
2 Grad

2 . . . Πnon
K−1G

rad
K−1 Πnon

K Grad
K Πnon

end ρTnorm +O(εK+1). (21)
This likelihood has the same structure as shown by Gopich and Szabo in Ref. [40].

Example IV: Propagator and Likelihood

Here, we consider a simple FRET trace where two photons are detected at times 0.05
ms and 0.15 ms in the donor and acceptor channels, respectively. To demonstrate the
ideas developed so far, we calculate the likelihood of these observations as (see Eq. 21)

L = ε2ρstartΠ
non
1 Grad

1 Πnon
2 Grad

2 ρTnorm.

To do so, we first need to calculate Πnon
1 using the nonradiative detection (Dnon) and

generator (G) matrices found in the previous example boxes

Πnon
1 = exp(0.05 (G�Dnon)) =


0.55 0 0 0.06 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.03 0 0 0.58 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

and similarly

Πnon
2 = exp((0.15− 0.05) (G�Dnon)) =


0.30 0 0 0.06 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0.03 0 0 0.33 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .
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Next, we proceed to calculate Grad
1 and Grad

2 . Remembering that the first photon
was detected in the donor channel, we have (in ms−1 units)

Grad
1 = G�Drad

d =


0 0 0 0 0 0

277000 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 277000 0 0
0 0 0 0 0 0

 .

Similarly, since the second photon was detected in the acceptor channel, we can write
(in ms−1 units)

Grad
2 = G�Drad

a =


0 0 0 0 0 0
0 0 0 0 0 0

285000 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 285000 0 0

 .

We also assume that the system is initially in the superstate φ1 giving ρstart =
[1, 0, 0, 0, 0, 0]. Finally, putting everything together, we can find the likelihood as
L = 3.06ε2 where ε is a constant and does not contribute to parameter estimations as
we will show later.

2.3.8 Effect of binning single photon smFRET data

When considering binned FRET data, the time period of an experiment (Tend − Tstart) is
typically divided into a finite number (= N) of equally sized (= ε) time windows (bins), and
the photon counts (intensities) in each bin are recorded in the detection channels. This is
in constrast to single photon analysis where individual photon arrival times are recorded.
To arrive at the likelihood for such binned data, we start with the single photon likelihood
derived in Eq. 15 where ε is not infinitesimally small, that is,

L = ρstart Π
(r)
1 Π

(r)
2 Π

(r)
3 . . . Π

(r)
N−1Π

(r)
N ρTnorm , (22)

where
(Π(r)

n )an→an+1 = (Π)an→an+1
× (Dn)an→an+1

,

or in the matrix notation

Π(r)
n = Π�Dn = exp(εG)�Dn, (23)

where Dn is the detection matrix introduced in Sec. 2.3.4.
Next, we must sum over all superstate trajectories that may give rise to the recorded

photon counts (observations) in each bin. However, such a sum is challenging to compute
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analytically and has been attempted in [38]. Here, we will only show likelihood computa-
tion under commonly applied approximations/assumptions when analyzing binned smFRET
data, which are: 1) bin size ε is much smaller than typical times spent in a system state or,
in other words, for a system transition rate λσi→σj , we have ελσi→σj � 1; and 2) excitation
rate λex is much slower than dye relaxation and FRET rates, or in other words, interphoton
periods are much larger than the excited state lifetimes.

The first assumption is based on realistic situations where system kinetics (at seconds
timescale) are many orders of magnitude slower than the photophysical transitions (at
nanoseconds timescale). This timescale separation allows us to simplify the propagator
calculation in Eq. 23. To see that, we first separate the system transition rates from photo-
physical transition rates in the generator matrix as

G = Gσ ⊗ I+Gψ, (24)

where ⊗ denotes a tensor product, Gσ is the portion of generator matrix G containing only
system transition rates previously defined in Eq. 3, and Gψ is the portion containing only
photophysical transition rates, that is,

Gσ ⊗ I =



−
∑
j 6=1

λσ1→σjI λσ1→σ2I . . . λσ1→σMσ
I

λσ2→σ1I −
∑
j 6=2

λσ2→σjI . . . λσ2→σMσ
I

... ... . . . ...
λσMσ→σ1I λσMσ→σ2I . . . −

∑
j 6=Mσ

λσMσ→σjI

 , (25)

and

Gψ =


Gψ
σ1

0 . . . 0
0 Gψ

σ2
. . . 0

... ... . . . ...
0 0 . . . Gψ

σMσ

 , (26)

where Gψ
σi

is the photophysical generator matrix corresponding to system state σi given in
Eq. 4.

Now plugging Eq. 24 into the full propagator Π = exp(εG) and applying the famous
Zassenhaus formula for matrix exponentials, we get

Π = exp(ε(Gσ ⊗ I+Gψ))

= exp(ε(Gσ ⊗ I)) exp(εGψ) exp(−
ε2

2
[Gσ ⊗ I,Gψ]) exp(O(ε3)) (27)

where the square brackets represent the commutator of the constituting matrices and the
last term represents the remaining exponentials involving higher order commutators. Fur-
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thermore, the commutator [Gσ ⊗ I,Gψ] results in a very sparse matrix given by

[Gσ ⊗ I,Gψ] =

0 λσ1→σ2(G
ψ
σ2

−Gψ
σ1
) . . . λσ1→σMσ

(Gψ
σMσ

−Gψ
σ1
)

λσ2→σ1(G
ψ
σ1

−Gψ
σ2
) 0 . . . λσ2→σMσ

(Gψ
σMσ

−Gψ
σ2
)

... ... . . . ...

λσMσ→σ1(G
ψ
σ1

−Gψ
σMσ

) λσMσ→σ2(G
ψ
σ2

−Gψ
σMσ

) . . . 0


,

(28)

where

λσi→σj(G
ψ
σj
−Gψ

σi
) = λσi→σj

0 0 0
0 −(λFRETσj

− λFRETσi
) (λFRETσj

− λFRETσi
)

0 0 0

 .
Now, the propagator calculation in Eq. 27 simplifies if the commutator ε2[Gσ ⊗ I,Gψ] → 0,
implying that either the bin size ε is very small such that ελσi→σj � 1 (our first assumption)
or FRET rates/efficiencies are almost indistinguishable (ε(λFRETσj

− λFRETσi
) ≈ 0). Under

such conditions, the system state can be assumed to stay constant during a bin, with system
transitions only occurring at the ends of bin periods. Furthermore, the full propagator Π in
Eq. 27 can now be approximated as

Π = exp(εG) ≈ exp(ε(Gσ ⊗ I)) exp(εGψ) = (Πσ ⊗ I)Πψ, (29)

where the last equality follows from the block diagonal form of Gσ ⊗ I given in Eq. 25 and
Πσ = exp(εGσ) is the system transition probability matrix (propagator) given as

Πσ =


πσ1→σ1 πσ1→σ2 . . . πσ1→σMσ

πσ2→σ1 πσ2→σ2 . . . πσ2→σMσ... ... . . . ...
πσMσ→σ1 πσMσ→σ2 . . . πσMσ→σMσ

 . (30)

Moreover, Πψ = exp(εGψ) is the photophysical transition probability matrix (propagator)
as

Πψ =


Πψ
σ1

0 . . . 0
0 Πψ

σ2
. . . 0

... ... . . . ...
0 0 . . . Πψ

σMσ

 , (31)

where the elements are given as Πψ
σi

= exp(εGψ
σi
). Furthermore, because of the block

diagonal structure of Πψ, the matrix multiplication in Eq. 29 results in
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Π =



πσ1→σ1Π
ψ
σ1

πσ1→σ2Π
ψ
σ1

. . . πσ1→σMσ
Πψ
σ1

πσ2→σ1Π
ψ
σ2

πσ2→σ2Π
ψ
σ2

. . . πσ2→σMσ
Πψ
σ2

... ... . . . ...

πσMσ→σ1Π
ψ
σMσ

πσMσ→σ2Π
ψ
σMσ

. . . πσMσ→σMσ
Πψ
σMσ


. (32)

After deriving the full propagator Π for the time period ε (bin) under our first assumption,
we now proceed to incorporate observations during this period via detection matrices Dn to
compute the reduced propagator of Eq. 23. To do so, we now apply our second assumption
of relatively slower excitation rate λex. This assumption implies that interphoton periods
are dominated by the time spent in the ground state of the FRET pair and are distributed
according to a single exponential distribution, Exponential(λex). Consequently, the total
photon counts per bin follow a Poisson distribution, Poisson(ελex), independent of the
photophysical portion of the photophysical trajectory taken from superstate an to an+1.

Now, the first and the second assumptions imply that the observation during the n-th
bin only depends on the system state sn (or the associated FRET rate λFRETsn ). As such we
can approximate the detection matrix elements as

(Dn)an→an+1
= p(wn|an, an+1) ≈ p(wn|sn). (33)

Using these approximations, the reduced propagator in Eq. 23 can now be written as

Π(r)
n = Π�Dn

≈



πσ1→σ1 p(wn|sn = σ1)Π
ψ
σ1

. . . πσ1→σMσ
p(wn|sn = σ1)Π

ψ
σ1

πσ2→σ1 p(wn|sn = σ2)Π
ψ
σ2

. . . πσ2→σMσ
p(wn|sn = σ2)Π

ψ
σ2

... . . . ...

πσMσ→σ1 p(wn|sn = σMσ)Π
ψ
σMσ

. . . πσMσ→σMσ
p(wn|sn = σMσ)Π

ψ
σMσ


. (34)

Next, to compute the likelihood for the n-th bin, we need to sum over all possible superstate
trajectories within this bin as

Ln = ρn Π(r)
n ρTnorm

≈
Mσ∑
i=1

Mσ∑
j=1

p(wn|sn = σi)πσi→σj

(
ρσi,nΠ

ψ
σi
ρTnorm

)
, (35)

where ρn is a normalized row vector populated by probabilities of finding the system-FRET
composite in the possible superstates at the beginning of the n-th bin. Furthermore, we have
written portions of ρn corresponding to system state σi as ρσi,n. To be more explicit, we
have

ρn =
[
ρσ1,n ρσ2,n . . . ρσMσ ,n

]
,
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following the convention in Sec. 2.3 and using n to now represent time tn.
Moreover, since each row of Πψ

σi
= exp(εGψ

σi
) sums to one, we have Πψ

σi
ρTnorm = ρTnorm,

which simplifies the bin likelihood of Eq. 35 to

Ln ≈
Mσ∑
i=1

Mσ∑
j=1

p(wn|sn = σi) πσi→σj

(
ρσi,nρ

T
norm

)
=

Mσ∑
i=1

Mσ∑
j=1

p(wn|sn = σi) πσi→σj ρσi,n, (36)

where we have defined ρσi,n ≡ ρσi,nρ
T
norm =

∑
j ρσi,ψj as the probability of the system to

occupy system state σi. We can also write the previous equation in the matrix form as

Ln ≈ ρσn (Πσ �Dσ
n)ρ

T
norm, (37)

where ρσn is a row vector of length Mσ (number of system states) populated by ρσi,n for
each system state, and Dσ

n, in the same spirit as Dn, is a detection matrix of dimensions
Mσ ×Mσ populated by observation probability p(wn|sn = σi) in each row corresponding to
system state σi. Furthermore, defining Πσ

n ≡ (Πσ �Dσ
n), we note here that Πσ

n propagates
probabilities during the n-th bin in a similar manner as the reduced propagators Π(r)

n of
Eq. 23.

Therefore, we can now multiply these new propagators for each bin to approximate the
likelihood of Eq. 22 as

L ≈ ρσstartΠ
σ
1 Π

σ
2 Π

σ
3 . . . Π

σ
N ρTnorm. (38)

where ρσstart is a row vector, similar to ρσn, populated by probabilities of being in a given
system state at the beginning of an experiment.

To conclude, our two assumptions regarding system kinetics and excitation rate allow
us to significantly reduce the dimensions of the propagators. This, in turn, leads to much
lowered expense for likelihood computation. However, cheaper computation comes at the ex-
pense of requiring large number of photon detections or excitation rate per bin to accurately
determine FRET efficiencies (identify system states) since we marginalize over photophysics
in each bin. Such high excitation rates lead to faster photobleaching and increased photo-
toxicity, and thereby much shorter experiment durations. As we will see in Sec. 2.5.1, this
problem can be mitigated by using pulsed illumination, where the likelihood takes a simi-
lar form as Eq. 38, but FRET efficiencies can be accurately estimated from the measured
microtimes.

2.4 Detection Effects
In the previous section, we assumed idealized detectors to illustrate basic ideas on detec-
tion matrices. However, realistic FRET experiments must typically account for detector
nonidealities. For instance, many emitted photons may simply go undetected when the de-
tection efficiency of single photon detectors, i.e., the probability of an incident photon being
successfully registered, is less than one due to inherent nonlinearities associated with the

24

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2022. ; https://doi.org/10.1101/2022.07.20.500887doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500887
http://creativecommons.org/licenses/by-nd/4.0/


electronics [22] or the use of filters in cases of polarized fluorescent emission [58, 59]. Ad-
ditionally, donor photons may be detected in the channel reserved for acceptor photons or
vice-versa due to emission spectrum overlap [60]. This phenomenon, commonly known as
crosstalk, crossover, or bleedthrough, can significantly affect the determination of quantities
such as transition rates and FRET efficiencies as we demonstrate later in our results. Other
effects adding noise to fluorescence signal include dark current (false signal in the absence of
incident photons), dead time (the time a detector takes to relax back into its active mode
after a photon detection), and timing jitter or IRF (stochastic delay in the output signal
after a detector receives a photon) [22]. In this section, we describe the incorporation of
all such effects into our model except dark current and background emissions which require
more careful treatment and will be discussed in Sec. 2.6.

2.4.1 Crosstalk and detection efficiency

Noise sources such as crosstalk and detection efficiency necessarily result in photon detection
being treated as a stochastic process. Both crosstalk and detection efficiency can be included
into the propagators in both cases by substituting the zeros and ones, appearing in the ideal
radiative and nonradiative detection matrices (Eqs. 16-17), with probabilities between zero
and one. In such a way, the resulting propagators obtained from these detection matrices,
in turn, incorporate into the likelihood the effects of crosstalk and detection efficiency into
the model.

Here, in the presence of crosstalk, for clarity, we add a superscript to the radiative
detection matrix of Eq. 17 for the k-th photon, Drad−ct

k . The elements of this detection
matrix for the an → bn transition, when a photon intended for channel j is registered in
channel i reads

(Drad−ct
k )an→bn =

{
0 Nonradiative transitions
φji Radiative transitions

where φji is the probability for this event (upon transition from superstate an to bn). Further,
detector efficiencies can also be accounted for in these probabilities in order to represent the
combined effects of crosstalk, arising from spectral overlap, and absence of detection channel
registration. When we do so, we recover

∑
i φji ≤ 1 (for cases where i and j can be both

the same or different), as not all emitted photons can be accounted for by the detection
channels.

This new detection matrix above results in the following modification to the radiative
propagator of Eq. 19 for the k-th photon

Π
(r)rad−ct
k = (I+ εG+O(ε2))�Drad−ct

k = εGrad−ct
k +O(ε2).

The second equality above follows by recognizing that the identity matrix multiplied, element-
wise, by Drad−ct

k is zero. By definition, Grad−ct
k is the remaining nonzero product.

On the other hand, for time periods when no photons are detected, the nonradiative
detection matrices in Eq. 16 become

(Dn)an→bn = (Dnon−ct)an→bn =

{
1 Nonradiative transitions
1−

∑
j φij Radiative transitions

,
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where the sum gives the probability of the photon intended for channel i to be registered in
any channel. The nonradiative propagator of Eq. 18 for an infinitesimal period of size ε in
the presence of crosstalk and inefficient detectors is now

Π(r)non−ct = (I+ εG+O(ε2))�Dnon−ct = exp(εGnon−ct) +O(ε2), (39)

where Gnon−ct = G�Dnon−ct. With the propagators incorporating crosstalk and detection
efficiency now defined, the evolution during an interphoton period between the (k − 1)-th
photon and the k-th photon of size (Tk − Tk−1) is now governed by the product

Πnon−ct
k Π

(r)rad−ct
k = εΠnon−ct

k Grad−ct
k +O(ε2), (40)

where the nonradiative propagators in Eq. 39 have now been merged into a single propagator
Πnon−ct
k = exp((Tk − Tk−1)G

non−ct) following the same procedure as Eq. 20.
Finally, inserting Eq. 40 for each interphoton period into the likelihood of Eq. 14, we

arrive at the final likelihood incorporating crosstalk and detection efficiency as

L = εKρstart Π
non−ct
1 Grad−ct

1 Πnon−ct
2 Grad−ct

2 . . . Πnon−ct
K−1 Grad−ct

K−1

×Πnon−ct
K Grad−ct

K Πnon−ct
end ρTnorm +O(εK+1).

After incorporating crosstalk and detector efficiencies into our model, we briefly explain
the calibration of the crosstalk probabilities/detection efficiencies φij. To calibrate these pa-
rameters, two samples, one containing only donor dyes and another containing only acceptor
dyes, are individually excited with a laser under the same power to determine the number
of donor photons nrawdi and number of acceptor photons nrawai detected in channel i.

From photon counts recorded for the donor only sample, assuming ideal detectores with
100% efficiency, we can compute the crosstalk probabilities for donor photons going to chan-
nel i, φdi, using the photon count ratios as φdi = nrawdi /nemd where nemd is the absolute number
of emitted donor photons. Similarly, crosstalk probabilities for acceptor photons going to
channel i, φai, can be estimated as φai = nrawai /n

em
a where nema is the absolute number of

emitted acceptor photons. In the matrix form, these crosstalk factors for a two-detector
setup can be written as

A =

[
φa1 φd1
φa2 φd2

]
. (41)

Using this matrix, for the donor only sample, we can now write[
nrawd1

nrawd2

]
= A

[
0
nemd

]
=

[
φd1
φd2

]
nemd , (42)

and similarly for the acceptor only sample[
nrawa1

nrawa2

]
= A

[
nema
0

]
=

[
φa1
φa2

]
nema . (43)

However, it is difficult to estimate the absolute number of emitted photons nemd and nema
experimentally, and therefore the crosstalk factors in A can only be determined up to mul-
tiplicative factors of nemd and nema .
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Since scaling the photon counts in an smFRET trace by an overall constant does not
affect the FRET efficiency estimates (determined by photon count ratios) and escape rates
(determined by changes in FRET efficiency), we only require crosstalk factors up to a con-
stant as in the last equation.

For this reason, one possible solution toward determining the matrix elements of A up to
one multiplicative constant is to first tune dye concentrations such that the ratio nemd /nema =
1, which can be accomplished experimentally. This allows us to write the crosstalk factors
in the matrix form up to a constant as follows

A =

[
φa1 φd1
φa2 φd2

]
∝
[
nrawa1 nrawd1

nrawa2 nrawd2

]
. (44)

It is common to set the multiplicative factor in Eq. 44 by the total donor photons counts∑
j n

raw
dj to give

A =

[
φa1 φd1
φa2 φd2

]
≡


nrawa1∑
j n

raw
dj

nrawd1∑
j n

raw
dj

nrawa2∑
j n

raw
dj

nrawd2∑
j n

raw
dj

 . (45)

We note that from the convention adopted here, we have φd1 + φd2 = 1.
Furthermore, in situations where realistic detectors affect the raw counts, the matrix ele-

ments of A as computed above automatically incorporate the effects of detector inefficiencies
including the fact that

∑
j φj ≤ 1.

Additionally, the matrix A can be further generalized to account for more than two
detectors by appropriately expanding the size of the matrix dimensions to coincide with the
number of detectors. Calibration of the matrix elements then follows the same procedure as
above.

Now, in performing single photon FRET analysis, we will use directly the elements of
A in constructing our measurement matrix. However, it is also common, to compute the
matrix elements of A from what is termed the route correction matrix (RCM) [61] typically
used in binned photon analysis. The RCM is defined as the inverse of A to obtain corrected
counts nemd and nema up to a proportionality constant as

RCM ∝
[
φd2 −φd1
−φa2 φa1

]
. (46)

Example V: Detection Matrices with Crosstalk and Detector Efficiencies

For our example with two system states, we had earlier shown detection matrices for
ideal detectors. Here, we incorporate crosstalk and detector efficiencies into these
matrices. Moreover, we assume a realistic RCM [62] given as

RCM ∝
[
1.0 −0.22
0.0 1.02

]
.
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However, following the convention of Eq. 45, we scale the matrix provided by a sum
of absolute values of its first row elements, namely 1.22, leading to effective crosstalk
factors φij given as

φa1 = 0.84, φa2 = 0.0, φd1 = 0.18, and φd2 = 0.82.

As such, these values imply approximately 18% crosstalk from donor to acceptor chan-
nel and 84% detection efficiency for acceptor channel without any crosstalk using the
convention adopted in Eq. 45. Now, we modify the ideal radiative detection matrices
by replacing their nonzero elements with the calibrated φij’s above

Drad−ct
d/a =


0 0 0 0 0 0

φd2/φd1 0 0 0 0 0
φa2/φa1 0 0 0 0 0

0 0 0 0 0 0
0 0 0 φd2/φd1 0 0
0 0 0 φa2/φa1 0 0

 =


0 0 0 0 0 0

0.82/0.18 0 0 0 0 0
0/0.84 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0.82/0.18 0 0
0 0 0 0/0.84 0 0

 .

Similarly, we modify the ideal nonradiative detection matrix by replacing the zero
elements by 1− φa1 − φa2 = 0.16 and 1− φd2 − φd1 = 0 as follows

Dnon−ct =


1 1 1 1 1 1
0 1 1 1 1 1

0.16 1 1 1 1 1
1 1 1 1 1 1
1 1 1 0 1 1
1 1 1 0.16 1 1

 .

2.4.2 Effects of detector dead time

Typically, a detection channel i becomes inactive (dead) after the detection of a photon for
a period δi as specified by the manufacturer. Consequently, radiative transitions associated
with that channel cannot be monitored during that period.

To incorporate this detector dead period into our likelihood model, we break an inter-
photon period between the (k − 1)-th and k-th photon into two intervals: the first interval
with an inactive detector and the second one when the detector is active. Assuming that the
(k − 1)-th photon is detected in the ith channel, the first interval is thus δik long. As such,
we can define the detection matrix for this interval as

(Dik−dead)an→bn =

{
1 All transitions not intended for channel ik
0 All transitions intended for channel ik

.

Next, corresponding to this detection matrix, we have the propagator

Πik−dead
k = exp(δik (G�Dik−dead)) = exp(δik G

ik−dead),
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that evolves the superstate during the detector dead time. This propagator can now be
used to incorporate the detector dead time into Eq. 20 to represent the evolution during the
period between the (k − 1)-th and k-th photons as

Π
ik−1−dead
k−1 Πnon

k Π
(r)rad
k = εΠ

ik−1−dead
k−1 Πnon

k Grad
k +O(ε2), (47)

where Πnon
k Π

(r)rad
k describes the evolution when the detector is active.

Finally, inserting Eq. 47 for each interphoton period into the likelihood for the HMM
with a second order structure in Eq. 14, we arrive at the following likelihood that includes
detector dead time

L ∝ ρstart Π
non
1 Grad

1 Πi1−dead
1 Πnon

2 Grad
2 Πi2−dead

2 . . . Πnon
K Grad

K ΠiK−dead
K Πnon

end ρTnorm. (48)

To provide an explicit example on the effect of the detector dead time on the likelihood,
we take a detour for pedagogical reasons. In this context, we consider a very simple case of
one detection channel (dead time δ) observing a fluorophore with two photophysical states,
ground (ψ1) and excited (ψ2), illuminated by a laser. The data in this case contains only
photon arrival times

{T1, T2, T3, . . . , TK}. (49)

The generator matrix containing the photophysical transition rates for this setup is

G =

[
∗ λψ1→ψ2

λψ2→ψ1 ∗

]
=

[
∗ λex
λd ∗

]
,

where the ∗ along the diagonal represents the negative row-sum of the remaining elements,
λex is the excitation rate, and λd is the donor relaxation rate.

Here, all transitions are possible during detector dead times as there are no observations.
As such, the dead time propagators in the likelihood (Eq. 48) are simply expressed as expo-
nentials of the full generator matrix, that is, Πik−dead

k = exp(δG), leaving the normalization
of the propagated probability vector ρ unchanged, e.g., just as we had seen in Eq. 8.

As we will see, these dead times, similar to detector inefficiencies, simply increase our
uncertainty over parameters we wish to learn, such as kinetics, by virtue of providing less
information. By contrast, background emissions and cross talk, provide false information.
However, the net effect is the same: all noise sources increasing uncertainty.

2.4.3 Adding the detection IRF

Due to various sources of noise impacting the detection timing electronics (also known as
jitter), the time elapsed between photon arrival and detection is itself a hidden (latent)
random variable [22]. Under continuous illumination, we say that this stochastic delay in
time is sampled from a probability density, f(τ), termed the detection instrument response
function (IRF). To incorporate the detection IRF into the likelihood of Eq. 48, we convolute
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the propagators with f(τ) as follows

L ∝ ρstart

(∫ τIRF

0

dτ1Π
non
1 (∆T1 − τ1) G

rad
1 Πi1−dead

1 (τ1) f(τ1)

)
×
(∫ τIRF

0

dτ2Π
non
2 (∆T2 − τ2) G

rad
2 Πi2−dead

2 (τ2) f(τ2)

)
...

×
(∫ τIRF

0

dτKΠ
non
K (∆TK − τK) G

rad
K ΠiK−dead

K (τK) f(τK)

)
Πnon
end ρTnorm, (50)

where we have used dead time propagators Πik−dead
k to incorporate detector inactivity dur-

ing the period between photon reception and detector reactivation. Moreover, we have
Πnon
k (∆Tk − τk) = exp ((∆Tk − τk)G

non) as described in Eq. 18.
To facilitate the computation of this likelihood, we use the fact that typical acquisition de-

vices record at discrete (but very small) time intervals. For instance, a setup with the smallest
acquisition time of 16 ps and a detection IRF distribution that is approximately 100 ps wide
will have the detection IRF spread over, roughly, six acquisition periods. This allows each
convolution integral to be discretized over the six acquisition intervals and computed in par-
allel, thereby avoiding extra real computational time associated to this convolution other
than the overhead associated with parallelization.

2.5 Illumination Features
After discussing detector effects, we continue here by further considering different illumina-
tion features. For simplicity alone, our likelihood computation until now assumed continuous
illumination with a uniform intensity. More precisely, the element λex of the generator matrix
in Eq. 4 was assumed to be time-independent. Here, we generalize our formulation and show
how other illumination setups (such as pulsed illumination and alternating laser excitation,
ALEX [63]) can be incorporated into the likelihood by simply assigning a time dependence
to the excitation rate λex(t).

2.5.1 Pulsed illumination

Here, we consider an smFRET experiment where the FRET pair is illuminated using a laser
for a very short period of time (a pulse), δpulse, at regular intervals of size τ ; see Fig. 3(a).
Now, as in the case of continuous illumination with constant intensity, the likelihood for a set
of observations acquired using pulsed illumination takes a similar form to Eq. 21 involving
products of matrices as follows

L ∝ ρstart Q1 Q2 Q3 . . . QN−1 QN ρTnorm, (51)

where Qn, with n = 1, . . . , N , denotes the propagator evolving the superstate during the
n-th interpulse period between the (n− 1)-th and the n-th pulse.

To derive the structure of Qn during the n-th interpulse period, we break it into two
portions: 1) pulse with nonzero laser intensity where the evolution of the FRET pair is
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Figure 3: Events over a pulsed illumination experiment pulse window. Here, the
beginning of the n-th interpulse window of size τ is marked by time tn. The FRET labels
originally in the state GG (donor and acceptor, respectively, in ground states) are excited
by a high intensity burst (shown by the green) to the state EG (only donor excited) for a
very short time δpulse. If FRET occurs, the donor transfers its energy to the acceptor and
resides in the ground state leaving the FRET labels in the GE state (only acceptor excited).
The acceptor then emits a photon to be registered by the detector at microtime µn. When
using ideal detectors, the microtime is the same as the photon emission time as shown in
panel (a). However, when the timing hardware has jitter (shown in red), a small delay εn is
added to the microtime as shown in panel (b).
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described by the propagator Πpulse
n introduced shortly; 2) dark period with zero illumina-

tion intensity where the evolution of the FRET pair is described by the propagator Πdark
n

introduced shortly. Furthermore, depending on whether a photon is detected or not over the
n-th interpulse period the propagators Πpulse

n and Πdark
n assume different forms.

First, when no photons are detected, we have

Πpulse
n = exp

(∫ δpulse

0

dδGnon(δ)

)
, and (52)

Πdark
n = exp

(
(τ − δpulse)G

dark
)
, (53)

where the integration over the pulse period now involves a time dependent Gnon due to
temporal variations in λex(t). The integral in Eq. 52 is sometimes termed the excitation IRF
though we will not use this convention here. For this reason, when we say IRF, we imply
detection IRF alone. Additionally, Gdark is the same as Gnon except for the excitation rate
that is now set to zero due to lack of illumination. Finally, the propagator for an interpulse
period with no photon detection can now be written as

Qn = Πpulse
n Πdark

n = exp

(∫ δpulse

0

dδGnon(δ)

)
exp

(
(τ − δpulse)G

dark
)
. (54)

On the other hand, if a photon is detected sometime after a pulse (as in Fig. 3(a)), the
pulse propagator remains as in Eq. 52. However, the propagator Πdark

n must now be modified
to include a radiative generator matrix Grad

n similar to Eq. 20

Πdark
n = exp

(
(µn − δpulse)G

dark
)
Grad
n exp

(
(τ − µn)G

dark
)
, (55)

where µn is the photon arrival time measured with respect to the n-th pulse (also termed
microtime) as shown in Fig. 3(a). Here, the two exponential terms describe the evolution of
the superstate before and after the photon detection during the dark period.

Moreover, we can construct the propagator for situations where a photon is detected
during a pulse itself in a similar fashion. Here, the propagator Πdark

n remains the same as in
Eq. 53 but Πpulse

n must now be modified to include the radiative generator matrix Grad
n as

Πpulse
n = exp

(∫ µn

0

dδGnon(δ)

)
Grad
n exp

(∫ δpulse

µn

dδGnon (δ)

)
. (56)

The propagators derived so far in this section assumed ideal detectors. We now describe
a procedure to incorporate the IRF into this formulation. This is specially significant in
accurate estimation of fluorophores’ lifetimes, which is commonly done in pulse illumination
smFRET experiments. To incorporate the IRF, we follow the same procedure as in Sec. 2.4.3
and introduce convolution between the IRF function f(ε) and propagators above involving
photon detections. That is, when there is a photon detected during the dark period, we
modify the propagator Πdark

n as

Πdark
n =

∫ δIRF

0

dεn exp
(
(µn − δpulse − εn)G

dark
)
Grad
n

×exp
(
(τ − µn + εn)G

dark
)
f(εn), (57)

32

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2022. ; https://doi.org/10.1101/2022.07.20.500887doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500887
http://creativecommons.org/licenses/by-nd/4.0/


while the Πpulse
n stays the same as in Eq. 52. Here, εn is the stochastic delay in photon

detection resulting from the IRF as shown in Fig. 3(b).
Moreover, when there is a photon detected during a pulse, the propagator Πpulse

n of Eq. 56
can be modified in a similar fashion to accommodate the IRF, while the propagator Πdark

n

remains the same as in Eq. 53.
The propagators Qn presented in this section involve integrals over large generator matri-

ces that are analytically intractable and computationally expensive when considering large
pulse numbers. Therefore, we follow a strategy similar to Sec. 2.3.8 for binned likelihood to
approximate these propagators.

To reduce the complexity of the calculations, we start by making realistic approximations.
Given the timescale separation between the interpulse period (typically tens of nanoseconds)
and the system kinetics (typically of seconds timescale) in a pulsed illumination experiment,
it is possible to approximate the system state trajectory as being constant during an inter-
pulse period. In essence, rather than treating the system state trajectory as a continuous
time process, we discretize the trajectory such that system transitions only occur at the
beginning of each interpulse period. This allows us to separate the photophysical part of
the generator matrix Gψ in Eq. 4 from the portion describing the evolution of the system
under study Gσ given in Eq. 3. Here, by contrast to the likelihood shown in Sec. 2.5.1 for
pulsed illumination, we can now independently compute photophysical and system likelihood
portions, as described below.

To derive the likelihood, we begin by writing the system state propagator during an
interpulse period as

Πσ = exp (τGσ) , (58)

Furthermore, we must incorporate observations into these propagators by multiplying each
system transition probability in Πσ, πσi→σj , with the observation probability if that transition
had occurred. We organize these observation probabilities using our newly defined detection
matrices Dσ

n similar to Sec. 2.3.6, and write the modified propagators as

Πσ
n = Πσ �Dσ

n, (59)

where � again represents the element-by-element product. Here, the elements of Dσ
n depend

on the photophysical portion of the generator matrix Gψ and their detailed derivations
are shown in the third companion manuscript [64]. We note here that propagator matrix
dimensions are now Mσ × Mσ making them computationally less expensive than in the
continuous illumination case. Finally, the likelihood for the pulsed illuminated smFRET
data with these new propagators reads

L = p(w|ρstart,Πσ,Gψ) ∝ ρstartΠ
σ
1Π

σ
2 . . .Π

σ
Nρ

T
norm, (60)

which, similar to the case of binned likelihood under continuous illumination (see Sec. 2.3.8),
sums over all possible system state trajectories.

We will later use this likelihood to put forward an inverse model to learn transition
probabilities (elements of Πσ) and photophysical transition rates appearing in Gψ.
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2.6 Background Emissions
Here, we consider background photons registered by detectors from sources other than the
labeled system under study [2]. The majority of background photons comprise ambient
photons, photons from the illumination laser entering the detectors, and dark current (false
photons registered by detectors) [22].

Due to the uniform laser intensity in the continuous illumination case, considered in this
section, we may model all background photons using a single distribution from which waiting
times are drawn. Often, such distributions are assumed (or verified) to be Exponential with
fixed rates for each detection channel [65, 66]. Here we model the waiting time distribu-
tion for background photons arising from both origins as a single Exponential as is often
the most common case. However, in the pulsed illumination case, laser source and the two
other sources of background require different treatments due to nonuniform laser intensity.
That is, the ambient photons and dark current are still modeled by an Exponential distribu-
tion though it is often further approximated as a Uniform distribution given that interpulse
period if much shorter than the average background waiting time. The full formulation de-
scribing all background sources under pulsed illumination is provided in the third companion
manuscript [64].

We now proceed to incorporate background into the likelihood under continuous illumi-
nation. We do so, as mentioned earlier, by assuming an Exponential distribution for the
background, which effectively introduces new photophysical transitions into the model. As
such, these transitions may be incorporated by expanding the full generator matrix G (de-
scribed in Sec. 2.3) appearing in the likelihood, thereby leaving the structure of the likelihood
itself intact, c.f., Eq. 21.

To be clear, in constructing the new generator matrix, we treat background in each de-
tection channel as if originating from fictitious independent emitters with constant emission
rates (exponential waiting time). Furthermore, we assume that an emitter corresponding to
channel i is a two state system with photophysical states denoted by

{ψbgi,1, ψ
bg
i,2}.

Here, each transition to the other state coincides with a photon emission with rate λbgi . As
such, the corresponding background generator matrix for channel i can now be written as

Gbg
i =

[
∗ λψbgi,1→ψbgi,2

λψbgi,2→ψbgi,1
∗

]
=

[
∗ λbgi
λbgi ∗

]
.

Since the background emitters for each channel are independent of each other, the expanded
generator matrix G for the combined setup (system-FRET composite plus background)
can now be computed. This can be achieved by combining the system-FRET composite
state space and the background state spaces for all of the total C detection channels using
Kronecker sums [67] as

G = Gno−bg ⊕Gbg
1 ⊕Gbg

2 ⊕ . . .⊕Gbg
C ,

where the symbol ⊕ denotes the matrix Kronecker sum, and Gno−b represents previously
shown generator matrices without any background transition rates.
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The propagators needed to compute the likelihood can now be obtained by exponentiating
the expanded generator matrix above as

exp((Tk − Tk−1)G) = exp((Tk − Tk−1)Gno−bg)⊗ exp((Tk − Tk−1)G
bg
1 )

⊗ exp((Tk − Tk−1)G
bg
2 )⊗ . . .⊗ exp((Tk − Tk−1)G

bg
C ),

where the symbol ⊗ denotes the matrix Kronecker product (tensor product) [67].
Furthermore, the same detection matrices defined earlier to include only nonradiative

transitions or only radiative transitions, and their generalization with crosstalk and detec-
tion efficiency, can be used to obtain nonradiative and radiative propagators, as shown in
Sec. 2.3.6.

Consequently, as mentioned earlier, by contrast to incorporating the effects of dead time
or IRF, addition of background sources do not entail any changes in the basic structure
(arrangement of propagators) of the likelihood appearing in Eq. 21.

Example VI: Background

To provide a concrete example for background, we again return to our FRET pair with
two system states. The background free full generator matrix for this system-FRET
composite was provided in the example box in Sec. 2.3 as (in units of ms−1)

Gno−bg =


−12 10.0 0 2.0 0.0 0.0

277000 −347002 70000 0.0 2.0 0.0
285000 0.0 −285002 0.0 0.0 2.0
1.0 0.0 0.0 −11 10.0 0
0.0 1.0 0.0 277000 −2777001 2500000
0.0 0.0 1.0 285000 0.0 −285001

 .

Here, we expand the above generator matrix to incorporate background photons en-
tering two channels (i = 1, 2) at rates of λbg1 = 1 ms−1 and λbg2 = 0.5 ms−1. We do so
by performing a Kronecker sum of Gno−bg with the following generator matrix for the
background

Gbg = Gbg
1 ⊕Gbg

2 =

[
−1 1
1 −1

]
⊕
[
−0.5 0.5
0.5 0.5

]
=


−1.5 0.5 1 0
0.5 −1.5 0 1
1 0 −1.5 0.5
0 1 0.5 −1.5

 ,
resulting in

G = Gno−bg ⊕Gbg.

Here, G is a 24×24 matrix and we do not include its explicit from.
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2.7 Fluorophore Characteristics: Quantum Yield, Blinking, Pho-
tobleaching, and Direct Acceptor Excitation

As demonstrated for background in the previous section, to incorporate new photophysical
transitions such as fluorophore blinking and photobleaching into the likelihood, we must
modify the full generator matrix G. This can again be accomplished by adding extra pho-
tophysical states, relaxing nonradiatively, to the fluorophore model. These photophysical
states can have long or short lifetimes depending on the specific photophysical phenomenon
at hand. For example, donor photobleaching can be included by introducing a third donor
photophysical state into the matrix of Eq. 4 without any escape transitions as follows

Gψ
σi
=


∗ λψ1→ψ2 0 0

λψ2→ψ1 ∗ λσi,ψ2→ψ3 λψ2→ψ4

λψ3→ψ1 0 ∗ 0
0 0 0 ∗

 =


∗ λex 0 0
λd ∗ λFRETσi

λbleach
λa 0 ∗ 0
0 0 0 ∗

 ,
where ψ1 is the lowest energy combined photophysical state for the FRET labels, ψ2 repre-
sents the excited donor, ψ3 represents the excited acceptor, and ψ4 represents a photobleached
donor, respectively. Additionally, λd and λa denote donor and acceptor relaxation rates, re-
spectively, λbleach represents permanent loss of emission from the donor (photobleaching),
and λFRETσi

represents FRET transitions when the system is in its i-th system state.
Fluorophore blinking can be implemented similarly, except with a nonzero escape rate

out of the new photophysical state, allowing the fluorophore to resume emission after some
time [52, 68]. Here, assuming that the fluorophore cannot transition into the blinking pho-
tophysical state from the donor ground state results in the following generator matrix

Gψ
σi
=


∗ λψ1→ψ2 0 0

λψ2→ψ1 ∗ λσi,ψ2→ψ3 λψ2→ψ4

λψ3→ψ1 0 ∗ 0
λψ4→ψ1 0 0 ∗

 =


∗ λex 0 0
λd ∗ λFRETσi

λblink
λa 0 ∗ 0

λunblink 0 0 ∗

 .
So far, we have ignored direct excitation of acceptor dyes in the likelihood model. This ef-

fect can also be incorporated into the likelihood by assigning a nonzero value to the transition
rate λψ1→ψ3 , that is,

Gψ
σi
=

 ∗ λψ1→ψ2 λψ1→ψ3

λψ2→ψ1 ∗ λσi,ψ2→ψ3

λψ3→ψ1 0 ∗

 =

 ∗ λex λdirect
λd ∗ λFRETσi

λa 0 ∗

 .
Other photophysical phenomena can also be incorporated into our likelihood by following

the same procedure as above. Finally, just as when adding background, the structure of the
likelihood (arrangement of the propagators) when treating photophysics (including adding
the effect of direct acceptor excitation) stays the same as in Eq. 21.

2.8 Synthetic Data Generation
In the previous subsections, we described how to compute the likelihood, which is the sum of
probabilities over all possible superstate trajectories that could give rise to the observations
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made by a detector, as demonstrated in Sec. 2. Here, we demonstrate how one such superstate
trajectory can be simulated to produce synthetic photon arrival data using the Gillespie
algorithm [69], as described in the next section followed by the addition of detector artefacts.
We then use the generated data to test our BNP-FRET sampler.

2.8.1 Gillespie and detector artefacts

The Gillespie algorithm generates two sets of random variables. The times at which super-
states change (indexed 1 through N). These times occur anywhere along a continuous time
grid. The next set of random variables are the states associated to the superstate preceding
the time at which the superstate changes.

We designate the sequence of superstates

{b1, b2, . . . , bN},

where bn ∈ {φ1, φ2, . . . , φMφ
}. Here, unlike earlier in Sec. 2.3, the time index n on superstates

bn is not on a regular temporal grid.
Now, to generate the superstate sequence above, we first randomly draw the first super-

state, b1, from the set of possible superstates given their corresponding probabilities. Next,
we draw the second superstate b2 of the sequence using the set of transition rates out of the
first state with self-transitions excluded by construction. Now, after choosing b2, we gener-
ate the holding time h1 (the time spent in b1) from the Exponential distribution with rate
constant associated with transitions b1 → b2. Finally, we repeat the two previous steps to
sequentially generate the full sequence of superstates along with the corresponding holding
times.

More formally, we generate a trajectory, by first sampling the initial superstate as

b1 ∼ Categoricalφ1:Mφ
(ρstart),

where ρstart is the initial probability vector and the Categorical distribution is the general-
ization of the Bernoulli distribution for more than two possible outcomes. The remaining
superstates can now be sampled as

bn+1|bn,G ∼ Categoricalφ1:Mφ

(
λbn→φ1

λbn
,
λbn→φ2

λbn
, . . . ,

λbn→φMφ

λbn

)
,

where λbn =
∑

i λbn→φi is the escape rate for the superstate bn and rates for self-transitions
are zero. The above equation reads as follows: “the superstate bn+1 is drawn (sampled) from
a Categorical distribution given the superstate bn and the generator matrix G”.

Once the n-th superstate bn is chosen, the holding time hn (the time spent in bn) is
sampled as follows

hn|bn,G ∼ Exponential(λbn).

Finally, with ideal detectors, the detection channel ck is assigned deterministically to the
k-th photon emitted at time T emk , which can be computed by summing all the holding times
preceding the corresponding radiative transition.
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Furthermore, in the presence of detection effects, such as crosstalk, detection efficiency,
and IRF, we must add to the stochastic output of the Gillespie simulation another layer
of stochasticity originating from the measurement model. That is, we stochastically assign
detection channel and detection times to an emitted photon, as described below.

In the presence of crosstalk and inefficient detectors, we choose the detection channel for
the k-th photon emitted upon a radiative transition as

ck ∼ Categorical{∅,1,2}(p
k
∅, p

k
1, p

k
2), (61)

where pk∅, pk1 and pk2, respectively, denote the probability of the photon going undetected,
being detected in channel 1 and channel 2.

Moreover, in the presence of the IRF, we assign a stochastic delay εk, sampled from a
probability distribution f(ε), to the absolute photon emission time T emk . This results in the
detection time, Tk = T emk + εk, as registered by the timing hardware.

Additionally, when photophysical effects (such as blinking and photobleaching) and back-
ground are present, we can generate a superstate trajectory following the same procedure as
above using the generator matrices G incorporating these effects as described in the previous
sections.

Finally, we obtain our desired smFRET trace (see Fig. 4) consisting of photon arrival
times T1:K and detection channels c1:K as

{(T1, c1), (T2, c2), (T3, c3), . . . , (TK , cK)}.

3 Inverse Strategy
Now, armed with the likelihood for different experimental setups and a means by which
to generate synthetic data (or having experimental data at hand), we proceed to learn the
parameters of interest. Assuming precalibrated detector parameters, these include transition
rates that enter the generator matrix G, and elements of ρstart. However, accurate estimation
of the unknowns requires an inverse strategy capable of dealing with all existing sources of
uncertainty in the problem such as photon’s stochasticity and detector noise. This naturally
leads us to adopt a Bayesian inference framework where we employ Monte Carlo methods
to learn distributions over the parameters.

We begin by defining the distribution of interest over the unknown parameters we wish
to learn termed the posterior. The posterior is proportional to the product of the likelihood
and prior distributions using Bayes’ rule as follows

p(G,ρstart|w) ∝ L(w|G,ρstart) p(G,ρstart), (62)

where the last term p(G,ρstart) is the joint prior distribution over G and ρstart defined over
the same domains as the parameters. The prior is often selected on the basis of computational
convenience. The influence of the prior distribution on the posterior diminishes as more
data is incorporated through the likelihood. Furthermore, the constant of proportionality
is the inverse of the absolute probability of the collected data, 1/p(w), and can be safely
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Figure 4: Simulated data. Here, we show a superstate trajectory (in blue) generated using
Gillespie algorithm for a system-FRET composite with two system states σ1:2 and three
photophysical states. Collectively, superstates φ1:3 correspond to photophysical states when
the system resides in σ1 and superstates φ4:6 correspond to photophysical states when system
resides in σ2. The pink vertical lines mark the time points where transitions between the
superstates occur. The variables b1:7 and h1:7 between each set of vertical lines represent
the superstates and associated holding times, respectively. The green and red dots show the
photon detections at times T1 and T2 in the channels 1 and 2 , respectively. The first photon
is detected upon transition b3 → b4 (or φ5 → φ4), while the second photon is detected upon
transition b6 → b7 (or φ6 → φ4). For this plot, we have used very fast system transition
rates of λσ1→σ2 = 0.001ns−1 and λσ1→σ2 = 0.002ns−1 for demonstrative purposes only.

ignored as generation of Monte Carlo samples only involves ratios of posterior distributions
or likelihoods.

Additionally, the εK factor in the likelihood first derived in Eq. 21 can be absorbed into
the proportionality constant as it does not depend on any of the parameters of interest,
resulting in the following expression for the posterior (in the absence of detector dead time
and IRF for simplicity)

p(G,ρstart|w) ∝ ρstart Π
non
1 Grad

1 Πnon
2 Grad

2 . . . Πnon
K−1G

rad
K−1 Πnon

K Grad
K Πnon

end ρTend
× p(G,ρstart). (63)

Next, assuming a priori that different transition rates are independent of each other and
initial probabilities, we can simplify the prior as follows

p(G,ρstart) = p(ρstart)
∏
i,j

p(λφi→φj), (64)

where we select the Dirichlet prior distribution over initial probabilities as this prior is
conveniently defined over a domain where the probability vectors, drawn from it, sum to
unity. That is,

p(ρstart) = Dirichlet(ζ), (65)
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where the Dirichlet distribution is a multivariate generalization of the Beta distribution and
ζ is a vector of the same size as the superstate space. Typically parameters of the prior are
termed hyperparameters and as such ζ collects as many hyperparameters as its size.

Additionally, we select Gamma prior distributions for individual rates. That is,

p(λφi→φj) = Gamma

(
λφi→φj ;α,

λref
α

)
, (66)

guaranteeing positive values. Here, α and λref (a reference rate parameter) are hyperpa-
rameters of the Gamma prior. For simplicity, these hyperparameters are usually chosen
(with appropriate units) such that the prior distributions are very broad, minimizing their
influence on the posterior.

Furthermore, to reduce computational cost, the number of parameters we need to learn
can be reduced by reasonably assuming the system was at steady-state immediately preced-
ing the time at which the experiment began. That is, instead of sampling ρstart from the
posterior, we compute ρstart by solving the time-independent master equation,

ρstartG = 0.

Therefore, the posterior in Eq. 63 now reduces to

p(G|w) ∝ ρstart Π
non
1 Grad

1 Πnon
2 Grad

2 . . . Πnon
K−1G

rad
K−1 Πnon

K Grad
K Πnon

end ρTend
× p(G). (67)

In the following subsections, we first describe a parametric inverse strategy, i.e., assuming
a known number of system states, for sampling parameters from the posterior distribution
in Eq. 67 using Monte Carlo methods. Next, we generalize this inverse strategy to a non-
parametric case where we also deduce the number of system states.

3.1 Parametric Sampler: BNP-FRET with Fixed Number of Sys-
tem States

Now with the posterior, Eq. 67, at hand and assuming steady-state ρstart, here we illustrate
a sampling scheme to deduce the transition rates of the generator matrix G.

As our posterior of Eq. 67 does not assume a standard form amenable to analytical
calculations, we must iteratively draw numerical samples of the transition rates within G
using Markov Chain Monte Carlo (MCMC) techniques. Specifically, we adopt a Gibbs
algorithm to, sequentially and separately, generate samples for individual transition rates at
each MCMC iteration. To do so, we first write the posterior of Eq. 67 using the chain rule
as follows

p(G|w) = p(λφi→φj |G\λφi→φj ,w)p(G\λφi→φj |w), (68)

where the backslash after G indicates exclusion of the following rate parameters and w
denotes the set of observations as introduced in Sec. 2.3.2. Here, the first term on the right
hand side is the conditional posterior for the individual rate λφi→φj . The second term is
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considered a constant in the corresponding Gibbs step as it does not depend on λφi→φj .
Moreover, following the same logic, the priors p(G\λφi→φj) (see Eq. 67) for the remaining
rate parameters in the posterior on the left are also considered constant. Therefore, from
Eqs. 67 & 68, we can write the conditional posterior for λφi→φj above as

p(λφi→φj |G\λφi→φj ,w) ∝ ρstart Π
non
1 Grad

1 Πnon
2 Grad

2 . . . Πnon
K Grad

K Πnon
end ρTend

×Gamma

(
λφi→φj ;α,

λref
α

)
. (69)

Just as with the posterior over all parameters, this conditional posterior shown above
does not take a closed form allowing for direct sampling.

As such, we turn to the Metropolis-Hastings (MH) algorithm [70] to draw samples from
this conditional posterior, where new samples are drawn from a proposal distribution q and
accepted with probability

α(λ∗φi→φj
, λφi→φj) = min

{
1,
p(λ∗φi→φj

|w,G\λφi→φj) q(λφi→φj |λ∗φi→φj
)

p(λφi→φj |w,G\λφi→φj) q(λ
∗
φi→φj

|λφi→φj)

}
, (70)

where the asterisk represents the proposed rate values from the proposal distribution q.
To construct an MCMC chain of samples, we begin by initializing the chain for each

transition rate λφi→φj , by random values drawn from the corresponding prior distributions.
We then iteratively sweep the whole set of transition rates in each MCMC iteration by
drawing new values from the proposal distribution q.

A computationally convenient choice for the proposal is a Normal distribution leading
to a simpler acceptance probability in Eq. 70. This is due to its symmetry resulting in
q(λφi→φj |λ∗φi→φj

) = q(λ∗φi→φj
|λφi→φj). However, a Normal proposal distribution would allow

negative transition rates naturally forbidden leading to rejection in the MH step and thus
inefficient sampling. Therefore, it is convenient to propose new samples either drawn from
a Gamma distribution or, as shown below, from a Normal distribution in logarithmic space
to allow for exploration along the full real line as follows

log(λ∗φi→φj
/κ)

∣∣ log(λφi→φj/κ), σ
2 ∼ Normal

(
log(λφi→φj/κ), σ

2
)
,

where κ = 1 is an auxiliary parameter in the same units as λφi→φj introduced to obtain a
dimensionless quantity within the logarithm.

The variable transformation above now requires introduction of Jacobian factors in the
acceptance probability as follows

α(λ∗φi→φj
, λφi→φj) = min

{
1,
p(λ∗φi→φj

|w,G\λφi→φj)

p(λφi→φj |w,G\λφi→φj)

(∂ log(λφi→φj/κ)/∂λφi→φj)

(∂ log(λφi→φj/κ)/∂λφi→φj)
∗

}
,

where the derivative terms represent the Jacobian and the proposal distributions are canceled
by virtue of using a symmetric Normal distribution.

The acceptance probability above depends on the difference of the current and proposed
values for a given transitions rate. In other words, smaller differences between the current
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and proposed values often lead to larger acceptance probabilities. This difference is deter-
mined by the covariance of the Normal proposal distribution σ2 which needs to be tuned for
each rate individually to achieve optimal performance of the BNP-FRET sampler, or very
approximately, one-fourth acceptance rate for the proposals [71].

This whole algorithm can now be summarized in the following pseudocode

# Initialize Chain of Samples
j = 1
for i = 1 :Mσ ×Mσ

λ
(j)
i ∼ Gamma

(
α,
λref
α

)
end
# Iteratively sample from the posterior using Gibbs algorithm
for j = 2 : Draws
for i = 1 :Mσ ×Mσ

# Propose new sample

log(λ∗i ) ∼ Normal
(
log(λ

(j−1)
i ), σ2

)
,

# Compute acceptance probability

α(λ∗i , λ
(j−1)
i ) = min

{
1,

p(λ∗i |w,G\λi)
p(λ

(j−1)
i |w,G\λi)

(∂ log(λi)/∂λi)
(j−1)

(∂ log(λi)/∂λi)∗

}

if α(λ∗i , λ
(j−1)
i ) > rand()

# Accept proposal
λ
(j)
i = exp(λ∗i )

else

# Reject proposal
λ
(j)
i = λ

(j−1)
i

end

end
end

3.2 Nonparametrics: Predicting the Number of System States
After describing our inverse strategy for a known number of system states (i.e., parametric
inference), we turn to more realistic scenarios where we may not know the number of sys-
tem states which, in turn, leads to an unknown number of superstates (i.e., nonparametric
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inference). In the following subsections, we first describe the BNP framework for continu-
ous illumination and then proceed to illustrate our BNP strategy under pulsed illumination.
Such BNP frameworks introduced herein, eventually, provide us with distributions over the
number of system states simultaneously, and self-consistently, with other model parameters.

3.2.1 Bernoulli process for continuous illumination

The number of system states is often unknown and cannot a priori be set by hand. Therefore,
in order to learn the states warranted by the data, we turn to the Bayesian nonparametric
paradigm. That is, we first define an infinite-dimensional version of the generator matrix
in Eq. 2 and multiply each of its elements by a Bernoulli random variable bi (also termed
loads). These loads, indexed by i, allow us to turn on/off portions of the generator matrix
associated with transitions between specific system states (including self-transitions). We
can write the nonparametric generator matrix as follows

G =


b21G

ψ
σ1

−
∑
j 6=1

b1bjλσ1→σjI b1b2λσ1→σ2I . . .

b2b1λσ2→σ1I b22G
ψ
σ2

−
∑
j 6=2

b2bjλσ2→σjI . . .

... ... . . .



=



∗ b21λψ1→ψ2 b21λψ1→ψ3 b1b2λσ1→σ2 0 0 . . .

b21λψ2→ψ1 ∗ b21λ
(1)
ψ2→ψ3

0 b1b2λσ1→σ2 0 . . .

b21λψ3→ψ1 b21λψ3→ψ2 ∗ 0 0 b1b2λσ1→σ2 . . .
b1b2λσ2→σ1 0 0 ∗ b22λψ1→ψ2 b22λψ1→ψ3 . . .

0 b1b2λσ2→σ1 0 b22λψ2→ψ1 ∗ b22λ
(2)
ψ2→ψ3

. . .

0 0 b1b2λσ2→σ1 b22λψ3→ψ1 b22λψ3→ψ2 ∗ . . .
... ... ... ... ... ... . . .


,

where a load value of 1 represents an “active” system state, while “inactive” system states
(not warranted by the data) get a load value of 0. Here, there are two loads associated to
every transition because there is a pair of states corresponding to each transition. Within
this formalism, the number of active loads is the number of system states estimated by the
BNP-FRET sampler. As before, ∗ represents negative row-sums.

The full set of loads, b = {b1, b2, . . . , b∞}, now become quantities we wish to learn.
In order to leverage Bayesian inference methods to learn the loads, the previously defined
posterior distribution (Eq. 67) now reads as follows

p(b,G|w) ∝ L(w|b,G,ρstart) p(G)p(b), (71)

where the prior p(b) is Bernoulli while the remaining prior, p(G), can be assumed to be the
same as in Eq. 66.

As in the case of the parametric BNP-FRET sampler presented in Sec. 3.1, we generate
samples from this nonparametric posterior employing a similar Gibbs algorithm. To do so,
we first initialize the MCMC chains of loads and rates by taking random values from their
priors. Next, to construct the MCMC chains, we iteratively draw samples from the posterior
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in two steps: 1) sequentially sample all rates using the MH algorithm; then 2) loads by
direct sampling, one-by-one from their corresponding conditional posteriors. Here, step (1)
is identical to the parametric case of Sec. 3.1 and we only focus on the second step in what
follows.

To sample the i-th load, the corresponding conditional posterior reads [72]

p(bi|b\bi,G,w) ∝ L(w|b,G,ρstart) Bernoulli

(
bi;

1

1 + Mmax
σ −1
γ

)
, (72)

where the backslash after b indicates exclusion of the following load and Mmax
σ and γ are

hyperparameters. Here γ sets the a priori expected number of system states.
A note on the interpretation of Mmax

σ is in order. When dealing with nonparametrics, we
nominally must consider an infinite set of loads and priors for these loads called Bernoulli
process priors [73]. Samplers for such process priors are available though inefficient [74, 75].
However, for computational convenience, it is possible to introduce a large albeit finite
number of loads set to Mmax

σ . It can be shown that parameter inference are unaffected by
this choice of cutoff [73, 76, 77] when setting the success probability to 1/(1+ Mmax

σ −1
γ

) as in
the Bernoulli distribution of Eq. 72. This is because such a choice forces the mean (expected
number of system states) of the full prior on loads

∏
i p(bi) to be finite (= γ).

Since the conditional posterior in the equation above must be discrete and describes
probabilities of the load being either active or inactive, it must itself follow a Bernoulli
distribution with updated parameters

p(bi|b\bi,G,w) = Bernoulli(bi; qi),

where
qi =

L(w|bi = 1,b\bi,G,ρstart)
L(w|bi = 1,b\bi,G,ρstart) + L(w|bi = 0,b\bi,G,ρstart)

.

The Bernoulli form of this posterior allows direct sampling of the loads.
We will apply this method for synthetic and experimental data in the second companion

manuscript of this series [78].

3.2.2 iHMM methods for pulsed illumination

Under pulsed illumination, the Bernoulli process prior described earlier for continuous illu-
mination can in principle be used as is to estimate the number of system states and the tran-
sition rates. However, in this section, we will describe a computationally cheaper inference
strategy applicable to the simplified likelihood of Eq. 60 assuming system state transitions
occurring only at the beginning of each pulse. The reduction in computational expense is
achieved by directly learning the elements of the propagator Πσ of Eq. 58, identical for all
interpulse periods. In doing so, we learn transition probabilities for the system states in-
stead of learning rates though we will continue learning rates for photophysical states. This
avoids expensive matrix exponentials for potentially large system state numbers required for
computing the propagators under continuous illumination.
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Now, to infer the transition probabilities in Πσ, the dimensions of which are unknown
owing to an unknown number of system states, as well as transition rates among the pho-
tophysical states (elements of Gψ in Eq. 4), and initial probabilities, we must place suitable
priors on these parameters yielding the following posterior

p(ρstart,Πσ,Gψ|w) ∝ p(w|ρstart,Πσ,Gψ)p(ρstart)p(Gψ)p(Πσ), (73)

where we have immediately written the joint prior as a product prior over ρstart, Gψ, and
Πσ. Next, for ρstart and Gψ we use the same priors as in Eqs. 65-66. However, as the
number of system states is unknown, Πσ requires special treatment. To learn Πσ, it is
convenient to adopt the infinite HMM (iHMM) [41, 48] due to the discrete nature of system
state transitions over time.

As the name suggests, the iHMM leverages infinite system state spaces (Mσ → ∞ in
Eq. 3) similar to the Bernoulli process prior of Sec. 3.2.1. However, unlike the Bernoulli
process, all system states remain permanently active. The primary goal of an iHMM is then
to infer transition probabilities between system states, some of which, not warranted by the
data, remain very small and set by the (nonparametric) prior that we turn to shortly. Thus
the effective number of system states can be enumerated from the most frequently visited
system states over the course of a learned trajectory.

Within this iHMM framework, we place an infinite dimensional version of the Dirichlet
prior, termed the Dirichlet process prior [41, 48, 79], as priors over each row of the propagator
Πσ. That is,

πm ∼ DirichletProcess(αβ), m = 1, 2, . . . , (74)

where πm is the mth row of Πσ. Here, the hyperparameters of the Dirichlet process prior
include the concentration parameter α which determines the sparsity of the πm and the
hyper parameter β which is a probability vector, also known as base distribution. Together
αβ are related to the ζ introduced earlier for the (finite) Dirichlet distribution of Eq. 65.

Next, as the base distribution itself is unknown and all transitions out of each state
should be likely to revisit the same set of states, we must place the same base distribution
on all Dirichlet process priors placed on the rows of the propagator. To sample this unique
base, we again choose a Dirichlet process prior [41, 80–82], that is,

β ∼ DirichletProcess(ξγ),

where we may set ξ = 1 and γ is a vector of hyperparameters of size Mσ.
Now, to deduce the unknown parameters, we need to draw samples from the posterior in

Eq. 73. However, due to the nonanalytical form of the posterior we cannot jointly sample our
posterior. Thus, as before, we adopt a Gibbs sampling strategy to sequentially and separately
draw samples for each parameter. Here, we only illustrate our Gibbs sampling step for the
transition probabilities πm. Our Gibbs steps for the remaining parameters are similar to
Sec. 3.1. The complete procedure is described in the third companion manuscript [64].

Similar to the Bernoulli process prior, there are two common approaches to draw samples
within the iHMM framework: slice sampling using the exact Dirichlet process prior and finite
truncation [41, 48, 83, 84]. Just as before for the case of continuous illumination, we truncate
the Dirichlet process prior to a finite Dirichlet distribution and fix its dimensionality to a
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finite (albeit large) number which we set to Mmax
σ to improve the sampling. It can then be

shown that for large enough Mmax
σ the number of system states visited becomes independent

of Mmax
σ [72].

As before, to numerically sample the transition probabilities πm from our full posterior
in Eq. 73 through MCMC, we choose our initial samples from the priors

β ∼ Dirichlet(ξγ),

πm ∼ Dirichlet(αβ), m = 1, 2, . . . ,Mmax
σ

where we chose elements of γ to be 1/Mmax
σ to ascribe similar weights across the state space

a priori.

3.3 Likelihood Computation in Practice
As shown in Sec. 2.5.1, the likelihood typically takes the following generic form

L ∝ ρstart Q1 Q2 Q3 . . . QK−1 QK ρTnorm, (75)

where Qi are matrices whose exact form depends on which effects we incorporate into our
likelihood. Computing this last expression would typically lead to underflow as likelihood
values quickly drop below floating-point precision.

For this reason, it is convenient to introduce the logarithm of this likelihood. In order
to derive the logarithm of the likelihood of Eq. 75, we rewrite the likelihood as a product of
multiple terms as follows

L ∝ (ρstart ρ
T
norm) (ρ1 Q1 ρTnorm) (ρ2 Q2 ρTnorm) . . . (ρK−1 QK−1 ρTnorm) (ρK QK ρTnorm),

where ρi are the normalized probability vectors given by the following recursive formula

ρ1 = ρstart, and

ρi =
ρi−1 Qi−1

(ρi−1 Qi−1 ρTnorm)
.

Now, using the recursion relation above, the log-likelihood can be written as

log(L) =log(ρstart ρTend) + log(ρ1 Q1 ρTnorm) + log(ρ2 Q2 ρTnorm) + log(ρ3 Q3 ρTnorm) + . . .

log(ρK−1 QK−1 ρTnorm) + log(ρK QK ρTnorm) + const,

where const is a constant.
Note that ρstart ρ

T
norm = 1. The pseudocode to compute the log-likelihood is as follows
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ρ = ρstart
p = sum(ρ) = 1
log(L) = log(p) = 0

for i = 1 : K

Q = . . .

ρ = ρQ

p = sum(ρ)

log(L) = log(L) + log(p)
ρ = ρ/p

end
return log(L)

4 Results
In this section, we present results using our BNP-FRET sampler described above. Specifi-
cally, here we benchmark the parametric (i.e., fixed number of system states) version of our
sampler using synthetic data, while the two subsequent manuscripts [64, 78] focus on the
nonparametric (i.e., unknown number of system states) analysis of experimental data.

For simplicity alone, we begin by analyzing data from an idealized system with two system
states using different photon budgets and excitation rates. Next, we consider more realistic
examples incorporating the following one at a time: 1) crosstalk and detection efficiency;
2) background emission; 3) IRF; and then 4) end with a brief discussion on the unknown
number of system states. We demonstrate when these features become relevant, as well as
the overall robustness and generality of the BNP-FRET sampler.

For now, we assume continuous illumination for all parametric examples and use the
following priors for the analyses. The prior used for the FRET rates are

λFRETσi
∼ Gamma(1, 1 ns−1),

and use the following prior over the system transition rates

λσi→σj ∼ Gamma(1, 10−6 ns−1).

As discussed earlier in Sec. 3.1, it is more convenient to work within logarithmic space where
we use the following proposal distributions to update the parameter values

log(λ∗ex)| log(λex), σex ∼ Normal(log(λex), σ
2
ex),

log(λFRETσi

∗
)| log(λFRETσi

), σFRET ∼ Normal(log(λFRETσi
), σ2

FRET ), and
log(λ∗σi→σj

)| log(λσi→σj), σsys ∼ Normal(log(λσi→σj), σ
2
sys),
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where ∗ denotes proposed rates and where it is understood that all rates appearing in the
logarithm have been divided through by a unit constant in order for the argument of the
logarithm to remain dimensionless.

For efficient exploration of the parameter space by the BNP-FRET sampler and upon
extensive experimentation with acceptance ratios, we found it prudent to alternate between
two sets of variances, {σ2

ex = 10−5, σ2
FRET = 0.01, σ2

sys = 0.1} and {σ2
ex = 10−5, σ2

FRET = 0.5,
σ2
sys = 5.0} to generate an MCMC chain. This ensures that we propose samples of different

orders of magnitude. As an intuitive guide, the more data we have, the sharper we expect
our posterior over our rates to be and thus, the smaller both variances should be in our
proposal distributions.

In the examples presented in the next few subsections, for computational simplicity, we
fix the escape rates for the donor and acceptor excited photophysical states as well as the
background rates for each detection channel in our simulations, as they can be precalibrated
from experiments.

4.1 Parametric Examples
4.1.1 Photon budget and excitation rate

Here, we perform Bayesian analysis on synthetically generated data (as described in Sec. 2.8)
for the simplest case where the number of system states is an input to the BNP-FRET
sampler. To generate data, we use the following generator matrix

G =


∗ 10.0 0 2.0 0.0 0.0

2.77× 105 ∗ 1.11× 105 0.0 2.0 0.0
2.85× 105 0.0 ∗ 0.0 0.0 2.0

1.0 0.0 0.0 ∗ 10.0 0
0.0 1.0 0.0 2.77× 105 ∗ 0.91× 105

0.0 0.0 1.0 2.85× 105 0.0 ∗

ms−1,

where the elements are motivated from real experiments [85]. Using this generator matrix, we
generated a superstate trajectory as described in Sec. 2.8. We analyzed 430000 photons from
the generated data using our BNP-FRET sampler. The resulting posterior distribution for
transitions between system states and FRET efficiencies (computed as εFRETσi

= λFRETσi
/(λd+

λFRETσi
) for the i-th system state) is shown in Fig. 5. As we will see for all examples, the

finiteness of data always leads to some error as evident from the slight offset of the peaks of
the distribution from the ground truth.

The effects of limited photon budget become significant especially when system kinetics
occur across multiple timescales with the most photon starved state characterized by the
largest escape rate. In this case, it is useful to quantify how many photons are typically
required to assess any escape rate (with the fastest setting the lower photon count bound
needed) to obtain below 15% error in parameter estimates.

To quantify the number of photons, ignoring background and detector effects, we define
a dimensionless quantity which we call the “photon budget index” predicting the photon

48

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 23, 2022. ; https://doi.org/10.1101/2022.07.20.500887doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500887
http://creativecommons.org/licenses/by-nd/4.0/


Figure 5: Learned bivariate posterior for the system state escape rates λesc and
FRET efficiencies εFRET given synthetic data. To produce this plot, we analyzed
synthetic data generated using an excitation rate of λex = 10 ms−1, and escape rates λesc = 1
& 2 ms−1 and FRET efficiencies of 0.09 & 0.29 for the two system states, respectively. The
ground truth is shown with red dots. The FRET efficiencies estimated by our sampler
are 0.288+0.007

−0.006 and 0.092+0.003
−0.003. Furthermore, predicted escape rates are 2.03+0.16

−0.17 ms−1 and
0.98+0.10

−0.07 ms−1. The small bias away from the ground truth is due to the finiteness of data.
We have smoothed the distributions, for illustrative purposes only, using kernel density
estimation (KDE) available through the Julia Plots package.

budget needed to accurately estimate the transition rates in the model as

s =
Kλex

λprobeMσ

, (76)

where K is the total number of photons in a single photon smFRET trace (photon budget),
λex is the excitation rate, λprobe represents the escape rate (timescale) that we want to probe,
and Mσ is the number of system states. The parameters in the numerator control the amount
of data available and the temporal resolution. On the other hand, the parameters in the
denominator are the properties of the system under investigation and represent the required
resolution.

From experimentation, we have found a photon budget index of approximately 106 to
be a safe lower threshold for keeping errors below 15% (this error cutoff is a user choice)
in parameter estimates. In the simple parametric example above, we have K = 4.3 × 105,
λex = 10 ms−1, and the fastest transition that we want to probe is λprobe = 2 ms−1, and
Mσ = 2, which corresponds to a photon budget index of 1.08 × 107. In Fig. 6, we also
demonstrate the reduction in errors (confidence interval size) for parameters of the same
system as the photon budget is increased from 12500 photons to 400000 photons. For each
of those cases, we used 9000 MCMC samples to compute statistical metrics such as quantiles.
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Figure 6: System and FRET transition rates as functions of the number of photons
used for analysis. To produce these plots using the same kinetic parameters as in Fig. 5.
Next, we analyzed the data considering only the first 12500 photons and then increased the
photon budget by a factor of two for each subsequent analysis. Furthermore, we generated
9000 MCMC samples for each analysis to compute statistical quantities. In panel (a), we
show two plots corresponding to the two system transition rates (λesc). The blue dots
represent the median values (50% quantile), and the ends of the attached confidence intervals
represent 5% and 95% quantiles. The ground truths are shown with red horizontal lines. We
show similar plots for FRET transition rates (λFRET ) in panel (b). In all of the plots, we see
that as the photon budget is increased, the confidence intervals shrink (the posterior gets
narrower/sharper). With a budget of 400000 photons, the confidence intervals represent less
than 10% error in the estimates and contain the ground truths in all of the plots.

We further investigate the effect of another quantity which appears in the photon budget
index, that is, excitation rate on the parameter estimates. To do so, we generate three
new synthetic datasets, each containing ≈ 670000 photons, using the same excitation rate
of 10 ms−1, and FRET efficiencies of 0.28 and 0.09 for the two system states, respectively,
as before. However, the kinetics differ across these datasets so that they have system state
transition rates well below, equal to, and well above the excitation rate. As such, for the
first dataset, we probe slower kinetics compared to the excitation rate with system state
transition rates set at 0.1 ms−1. In the next two datasets, the molecule changes system
states at a much faster rates of 10 ms−1 and 1000 ms−1, respectively.

The results obtained for these FRET traces using our Bayesian methods are shown in
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Figure 7: Learned bivariate posterior for the system state escape rates λesc (log-
scale in panel (c)) and FRET efficiencies εFRET from synthetic data. For all syn-
thetic smFRET traces, we use an excitation rate of 10 ms−1 and FRET efficiences of 0.29
and 0.09 for the two system states, respectively. The three panels correspond to different
timescales being probed with transitions rates: (a) 0.1 ms−1; (b) 10 ms−1; and (c) 1000
ms−1. The ground truth values are shown with red dots. The bias in the parameter esti-
mates increases as faster kinetics are probed, demonstrating deterioration of the information
content of the collected data resulting in expectedly poor estimation assuming a fixed pho-
ton budget of 670000. This can also be seen quantitatively by calculating the confidence
intervals reported below for each case. The FRET efficiencies estimated by our sampler for
the slowest case in panel (a) are 0.286+0.002

−0.002 and 0.091+0.001
−0.001 ms−1, and the corresponding

escape rates are 0.101+0.004
−0.005 and 0.096+0.004

−0.004 ms−1. For the intermediate case in panel (b),
FRET efficiencies estimated by our sampler are 0.200+0.117

−0.110 and 0.102+0.022
−0.014, and predicted

escape rates are 8.47+2.42
−3.17 ms−1 and 7.67+1.32

−2.66 ms−1. For the fastest case in panel (c), FRET
efficiencies estimated by our sampler are 0.189+0.025

−0.027 and 0.189+0.016
−0.029, and predicted escape

rates are 5.00+26.9
−3.63 ms−1 and 3.49+27.21

−2.49 ms−1. Poorer confidence intervals for larger escape
rates reflect larger uncertainty due to lack of information.

Fig. 7. The bias in the posterior away from the ground truth increases as faster kinetics are
probed in Fig. 7 from left to right. The results for the case with the fastest transition rates
of 1000 ms−1 in Fig. 7(c) show a marked deterioration of the predictions, as the information
content is not sufficient to separate the two FRET efficiencies resulting in estimated values
close to the average of the ground truth values (≈ 0.185). This lack of information is also
reflected in the uncertainties corresponding to each escape rate as shown in Fig. 7. Moreover,
the predicted transition rates are of the same order as the excitation rate itself due to lack
of temporal resolution available to probe such fast kinetics.

To conclude, the excitation rate used to collect smFRET data and the total number of
photons available determine the amount of information needed to resolve transitions among
system states. As such, the ability of Bayesian methods to naturally propagate error from
finiteness of information into parameter estimates make them indispensable tools for quan-
titative smFRET data analysis. This is by contrast to maximum likelihood-based methods
which provide only inaccurate point estimates on account of limited data.
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Figure 8: Learned bivariate posterior for the system state escape rates λesc and
FRET efficiencies εFRET for synthetic data with crosstalk. The ground truth is
shown with red dots. In panel (a), we show the learned posterior using the model that
doesn’t correct for cross talk consistently shows deviation from the ground truth with higher
FRET efficiency estimates on account of more donor photons being detected as acceptor
photons. The FRET efficiencies estimated by our sampler for this case are 0.314+0.007

−0.009 and
0.135+0.002

−0.005, and the predicted escape rates are 1.90+0.17
−0.11 ms−1 and 1.05+0.10

−0.18 ms−1. For the
corrected case shown in panel (b), FRET efficiencies estimated by our sampler are 0.276+0.006

−0.010

and 0.088+0.004
−0.006. Furthermore, predicted escape rates are 1.85+0.15

−0.14 ms−1 and 1.06+0.12
−0.10 ms−1.

The corrected model mitigates this bias as demonstrated by the posterior in panel (b).

4.1.2 An example with crosstalk

Here, we demonstrate how our method handles cases when significant crosstalk is present.
To show this, we use the same dynamical parameters and photon budget as in the previous
subsection for generating synthetic data but allow 5% of the donor photons to be stochasti-
cally detected by the acceptor channel. We then analyze the data with two versions of our
method, one that incorporates crosstalk and one that ignores it altogether. Our results show
that neglecting crosstalk necessarily leads to artefactually higher FRET efficiency estimates.
This is clearly seen in Fig. 8(a). As expected, incorporation of crosstalk into the likelihood as
shown in Sec. 2.4.1 results in a smaller bias. In this case, both ground truths falls within the
range of posteriors for the corrected model; see Fig. 8(b). Furthermore, as shown in Fig. 9
top panels, we note that donor crosstalk again results in overestimation in FRET efficien-
cies. However, when we correct for crosstalk, our BNP-FRET sampler starts learning FRET
efficiencies with ground truths falling within the range of 95% confidence intervals; Fig. 9
bottom panels. As expected, our simulations in Fig. 9 also show that uncertainty increases
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Figure 9: System transition rates λesc and FRET efficiencies εFRET as functions
of increasing donor crosstalk probability φd1. To produce these plots, we generated
synthetic data with excitation and escape rates as Fig. 5. In each plot, the blue dots represent
the median values (50% quantile), and the ends of the attached confidence intervals represent
the 5% and 95% quantiles. Furthermore, the ground truths are shown with red horizontal
lines. In panel (a), our two plots show system transition rates estimated by the BNP-
FRET sampler when corrected and uncorrected for crosstalk. We show similar plots for
FRET efficiencies in panel (b). In all plots, we see that as donor crosstalk is increased,
the confidence intervals grow (the posterior gets wider) and the estimates become unreliable
after φd1 > 0.6. Additionally, as expected, if uncorrected for, the FRET efficiencies start
to merge with increasing crosstalk due to most photons being detected in acceptor channel
(labeled 1).

with increasing crosstalk and parameter estimation fails for crosstalk values beyond 60%.
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Figure 10: Learned bivariate posterior for the system state escape rates λesc and
FRET efficiencies εFRET given synthetic data with background emissions. The
ground truth is shown with red dots. The learned posterior distribution using the model
that doesn’t correct for background emissions (panel (a)) consistently shows bias away from
the ground truth with higher estimates for FRET efficiencies on account of extra background
photons. The FRET efficiencies estimated by our sampler for this uncorrected case are
0.322+0.007

−0.008 and 0.161+0.003
−0.004, and the predicted escape rates are 1.93+0.17

−0.14 ms−1 and 0.95+0.10
−0.10

ms−1. The corrected model mitigates this bias as demonstrated by the posterior in panel (b)
as demonstrated by learned FRET efficiencies of 0.293+0.014

−0.012 and 0.096+0.003
−0.004. Furthermore,

predicted escape rates are 1.99+0.25
−0.25 ms−1 and 0.87+0.08

−0.05 ms−1.

4.1.3 An example with background emissions

In section 2.6, we had shown a way to include background emissions in the forward model.
For the current example, we again choose the same kinetic parameters for the system and
the FRET pair as in Fig. 5 but now some of the photons come from background sources
with rates λbgi = λex/10 = 1 ms−1 for the i-th channel. Addition of a uniform background
would again lead to higher FRET efficiency estimates due to excess photons detected in each
channel, if left uncorrected in the model, as can be seen in Fig 10(a) and Fig. 11 top panels.
By comparison to the uncorrected method, our results migrate toward the ground truth
when analyzed with the full method; see Fig 10(b) and Fig. 11 bottom panels. Furthermore,
as shown in Fig. 11, when background photons account for more than approximately 40%
of detected photons, relative uncertainties in estimated transition rates become larger than
25% indicating unreliable results.
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Figure 11: System transition rates λesc and FRET efficiencies εFRET as functions of
increasing donor and acceptor background fraction λbg/λex. To produce these plots,
we generated synthetic data with an excitation rate of λex = 10 ms−1, and escape rates
λesc = 1 and 2 ms−1 for the two system states, respectively, same as Fig. 5, while increasing
the fraction of background photons (donor and acceptor) from 0 to 50% (λbg/λex = 1). In
each plot, the blue dots represent the median values (50% quantile), and the ends of the
attached confidence intervals represent the 5% and 95% quantiles. Furthermore, ground
truths are shown with red horizontal lines. In panel (a), we show two plots showing system
transition rates estimated by the BNP-FRET sampler when corrected and uncorrected for
crosstalk. We show similar plots for FRET efficiencies in panel (b). In all plots, we see that as
background is increased, the confidence intervals get bigger (the posterior gets wider) and the
estimates become unreliable after λbg/λex > 0.6. Additionally, as expected, if unaccounted
for, FRET efficiencies start to merge with increasing background as photons originating from
FRET events significantly reduce.

4.1.4 An example with IRF

To demonstrate the effect of the IRF as described in Sec. 2.4.3, we generated new synthetic
data for a single fluorophore (with no FRET for simplicity alone) with an escape rate of
λd = 2.0 ns−1 (similar to that of Cy3 dye [86]) being excited by a continuous-wave laser
at a high excitation rate λex = 0.01 ns−1. For simplicity, we approximate the IRF with a
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Figure 12: Effects of IRF. Both histograms show the fluorophore’s inverse lifetime with
ground truth shown by a red line. The bias in the peaks away from the ground truth arises
from the limited amounts of data being used to learn the posterior shown. Corrected model
(orange) reduces the histogram’s breadth as compared with the uncorrected model (blue).
We conclude from the small effects of correcting for the IRF that, predictably, the IRF may
be less important under continuous illumination. By contrast, under pulsed illumination to
be explored in the third companion manuscript [64], the IRF will play a more significant
role.

truncated Gaussian distribution about 96 ps wide with mean at 48 ps. We again analyze the
data with two versions of our method, both incorporating and neglecting the IRF. The results
are depicted in Fig. 12, where the posterior is narrower when incorporating the IRF. This
is especially helpful when accurate lifetime determination is important in discriminating
between different system states. By contrast, accurate determination of lifetimes (which
span ns timescales) do not impact the determination of much slower system kinetics from
one system state to the next.

4.2 A Nonparametric Example
Here, we demonstrate our method in learning the number of system states by analyzing
approximately 600 ms (≈120000 photons) of synthetic smFRET time trace data with three
system states under pulsed illumination with 25 ns interpulse window; see Fig. 13. This
example utilizes the iHMM method described in Sec. 3.2.2 and discussed in greater depth
in the third companion manuscript [64]. Using realistic values from the third companion
manuscript [64], we set the excitation probability per pulse to be 0.005. Furthermore, kinetics
are set at 1.2 ms escape rates for the highest and lowest FRET system states, and an escape
rate of 2.4 ms for an intermediate system state. Our BNP method simultaneously recovered
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the correct system state transition probabilities and thereby the number of system states
along with other parameters, including donor and acceptor relaxation rates and the per-
pulse excitation probability. By comparison, a parametric version of the same method must
assume a fixed number of system states a priori. Assuming, say, two system states results
in both higher-FRET system states being combined together into one system state with a
FRET efficiency of 0.63 and a lifetime of about 0.6 ms; see Fig. 13(c).

Figure 13: Demonstration of nonparametric analysis on synthetic pulsed data. In
(a) we show simulated data for a pulsed illumination experiment. It illustrates a trajectory
with three system states labeled sn in blue and the corresponding photon arrivals with the
vertical length of the red or green line denoting the lifetime observed in nanoseconds. Here
(b) and (c) show the bivariate posterior for the escape rates λesc and FRET efficiencies
εFRET . The ground truth is again shown with red dots. The learned posterior using the two
system state parametric model (panel (c)) combines high FRET states into one averaged
system state with a long lifetime. The nonparametric model correctly infers three system
states, as shown in (b).
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5 Discussion
In this paper, we have presented a complete framework to analyze single photon smFRET
data which includes a photon-by-photon likelihood, detector effects, fluorophore character-
istics, and different illumination methods. We demonstrated how modern Bayesian methods
can be used to obtain full distributions over the parameters, and discussed limitations posed
by the photon budget and excitation rate. Additionally, we have shown how to implement a
nonparametric inverse strategy to learn an unknown number of system states.

Our method readily accommodates details relevant to specialized smFRET applications.
For instance, we can analyze spatial and temporal dependence of excitation by simple mod-
ification of generator matrices included in Eq. 21. This is useful in experiments employing
pulsed illumination, (Sec. 2.5), as well as alternating-laser excitation (ALEX). In particu-
lar, ALEX is used to directly excite the acceptor label, either as a way to gain qualitative
information about the sample [63, 87], to reduce photobleaching [63, 87], or to study inter-
molecular interactions [16]. Similarly, the generator matrix in Eq. 21 can easily be expanded
to include any number of labels, extending our method beyond two colors. Three color
smFRET experiments have revealed simultaneous interactions between three proteins [88],
monitored conformational subpopulations of molecules [89], and improved our understanding
of protein folding and interactions [2, 16, 90–92].

As the likelihood (Eq. 21) involves as many matrix exponentials as detected photons, the
computational cost of our method scales approximately linearly with the number of photons
and quadratically with the number of system states. For instance, it took 5 hours to analyze
the data used to generate Fig. 5 on a regular desktop computer. Additions to our model
which increase computational cost include: 1) IRF; 2) pulsed illumination; and 3) BNPs.
The computational cost associated to the IRF is attributed to the integral required (see
Sec. 2.4.3). The cost of the likelihood computation in the pulsed illumination case depends
linearly with pulse number, rather than with photon number (see Eq. 51). This greatly
increases the computational cost in cases where photon detections are infrequent. Finally,
BNPs necessarily expand the dimensions of the generator matrix whose exponentiation is
required (Eq. 21) resulting in longer burn-in time for our MCMC chains.

As a result, we have optimized the computational cost with respect to the physical condi-
tions of the system being studied. First, inclusion of the IRF can be parallelized, potentially
reducing the time-cost to a calculation over a single data acquisition period. In our third
companion manuscript [64], dealing with pulsed illumination, we improve computational cost
by making the assumption that fluorophore relaxation occurs within the window between
consecutive pulses, thereby reducing our second order structure herein to a first order HMM,
and allowing for faster computation of the likelihood in pulses where no photon is detected.
In [64], we mitigate the computational cost of (3) by assuming physically motivated timescale
separation.

As it stands, our framework applies to smFRET experiments on immobilized molecules.
However, it is often the case that molecules labeled with FRET pairs are allowed to diffuse
freely through a confocal volume, such as in the study of binding and unbinding events [17],
protein-protein interactions [17, 63], and unhindered conformational dynamics of freely dif-
fusing proteins [63, 93]. Photon-by-photon analysis of such data is often based on correlation
methods which suffer from bulk averaging [40, 42, 43]. We believe our framework has the
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potential to extend Refs. [50, 73, 94] to learn both the kinetics and diffusion coefficients of
single molecules.

Additionally, our current framework is restricted to models with discrete system states.
However, smFRET can also be used to study systems that are better modeled as continuous,
such as intrinsically disordered proteins which include continuous changes not always well
approximated by discrete system states [17, 95]. Adopting an adaptation of Ref. [54] should
allow us to generalize this framework and instead infer energy landscapes, perhaps relevant
to protein folding [96, 97], continuum ratchets as applied to motor protein kinetics [98], and
the stress modified potential landscapes of mechano-sensitive molecules [99].

To conclude, we have presented a general framework and demonstrated the importance
of incorporating various features into the likelihood while learning full distributions over all
unknowns including system states. In the following two companion manuscripts [64, 78], we
specialize our method, and computational scheme, to continuous and pulsed illumination.
We then apply our method to interactions of the intrinsically disordered proteins NCBD and
ACTR [78] under continuous illumination, and the kinetics of the Holliday junction under
pulsed illumination [64].

6 Code availability
The BNP-FRET software package is available on Github at
https://github.com/LabPresse/BNP-FRET
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