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Abstract

Here we adapt the Bayesian nonparametrics (BNP) framework presented in the first
companion manuscript to analyze kinetics from single photon, single molecule Förster
Resonance Energy Transfer (smFRET) traces generated under continuous illumina-
tion. Using our sampler, BNP-FRET, we learn the escape rates and the number of
system states given a photon trace. We benchmark our method by analyzing a range
of synthetic and experimental data. Particularly, we apply our method to simultane-
ously learn the number of system states and the corresponding kinetics for intrinsically
disordered proteins (IDPs) using two-color FRET under varying chemical conditions.
Moreover, using synthetic data, we show that our method can deduce the number of
system states even when kinetics occur at timescales of interphoton intervals.

Why It Matters

In the first companion manuscript of this series, we developed new methods to analyze
noisy smFRET data. These methods eliminate the requirement of a priori specifying the
dimensionality of the physical model describing a molecular complex’s kinetics. Here, we
apply these methods to experimentally obtained datasets with samples illuminated by time-
invariant laser intensities. In particular, we study interactions of IDPs.

1 Terminology Convention

To be consistent throughout our three part manuscript, we precisely define some terms as
follows

1. a macromolecular complex under study is always referred to as a system,

2. the configurations through which a system transitions are termed system states, typi-
cally labeled using σ,

3. FRET dyes undergo quantum mechanical transitions between photophysical states,
typically labeled using ψ,

4. a system-FRET combination is always referred to as a composite,

5. a composite undergoes transitions among its superstates, typically labeled using ϕ,

6. all transition rates are typically labeled using λ,
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7. the symbol N is generally used to represent the total number of discretized time win-
dows, typically labeled with n, and

8. the symbol wn is generally used to represent the observations in the n-th time window.

2 Introduction

Single molecule Förster Resonance Energy Transfer (smFRET) experiments are widely used
[1] to study molecular kinetics across timescales on both stationary [2–5] and freely diffus-
ing molecules [6]. These timescales include faster events, below the micro- to millisecond
timescales, including domain rotations, configurational kinetics of disordered proteins, pro-
tein folding, protein-protein interactions, all the way to slower events, such as misfolding
and refolding events, occurring on minute and even hour long timescales [7].

In a typical experiment we consider herein, a continuous wave (CW) laser illuminates a
sample with a beam of constant intensity and power over a period of time. CW sources are
common as they are both cheaper and technically simpler to implement in an experimental
setup than their pulsed counterparts [8, 9] that we explore in our third companion manuscript
[10]. However, as compared to pulsed sources, a disadvantage lies in the increased photon
flux through the sample which can accelerate photodamage [11].

While pulsed illumination can significantly reduce sample photobleaching and phototox-
icity [12] and more readily reveals excited state lifetimes of fluorophores, in practice it is
restricted to analyzing one (time-stamped) photon per interpulse period. This in turn limits
the data acquisition rate and sets a bound on the temporal resolution of the kinetics we may
deduce from pulsed single photon arrival.

By contrast, continuous illumination avoids this problem, by allowing a larger number of
photons to be detected in the time that would normally be considered an interpulse period
in pulsed illumination [13]. The cost then comes at the loss of direct knowledge of excited
state lifetime which can, with difficulty and high uncertainty, then be decoded from photon-
antibunching statistics if required [14] as shown in the first companion manuscript [15].

It is common practice to analyze photon arrival data to extract kinetics under continuous
illumination by binning the data and subsequently using hidden Markov models (HMMs)
[16–19]. As noise distributions are better characterized in unprocessed data, it remains con-
ceptually preferred, though more computationally costly, to use photon-by-photon methods
[13, 14, 20–24]. Indeed, photon-by-photon methods can be used to learn both photophysical
and system transition rates directly from the detected photon colors and interphoton arrival
times. Additionally, this has the benefit of avoiding averaging kinetics that may occur when
binning data [17].

Currently available methods to analyze smFRET data in a photon-by-photon manner
[13, 20] rely on the foundational works of Gopich and Szabo [13, 14, 25], where the likelihood
is taken as the product of as many generator matrix exponentials as there are photons in a
FRET trace. Such a generator matrix constitutes transition rates encoding the kinetics of
the system-FRET composite [15].

When analyzing smFRET data, of particular interest is the dimensionality of this gen-
erator matrix determined by the number of system states. In all existing analyses, the
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dimensionality is fixed by hand a priori and the transition rates are then learned as point
estimates using maximum likelihood methods.

Yet point estimates can be biased. In fact, limited data, lack of temporal resolution to
estimate very fast kinetics [15], and noise, all contribute to bias [26] in addition to a flattening
of possibly multimodal likelihoods [27, 28]. This motivates why we wish to operate in a
Bayesian setting to learn distributions over the number of system states and transition rates,
while incorporating unavoidable noise sources such as detector electronics and background.

For this reason, we developed a complete Bayesian nonparametric (BNP) framework in
the first companion manuscript [15]. This framework incorporates many key complexities
of a typical smFRET experimental setup, including background emissions, fluorophore pho-
tophysics (blinking, photobleaching, and direct acceptor excitation), instrument response
function (IRF), detector dead time, and crosstalk.

Here, we delve deeper into this framework for the case of continuous illumination by
exploring its utility in cases where the number of system states is unknown.

We first test the robustness of our nonparametric method and its software implementa-
tion BNP-FRET by analyzing synthetically generated data for kinetics varying from very
slow to timescales as fast as the interphoton arrival times. We then apply our method to
experimental smFRET data capturing interactions between intrinsically disordered protein
(IDP) fragments [29, 30] relevant to signaling and regulation.

IDPs are of particular interest to nonparametric analyses as IDP’s lack of order and sta-
bility results in broader spectra of dominant FRET pair distances sensitive to their chemical
environment. In particular, we study interactions between the nuclear-coactivator binding
domain (NCBD) of a CBP/p300, i.e., transcription coactivator and the activation domain
of SRC -3 (ACTR) under varying chemical conditions affecting their coupled folding and
binding reaction rates [29–31]. We use a single FRET pair under continuous illumination to
observe the possible physical configurations (system states) of the NCBD-ACTR complex.
Further, we report new bound/transient system states for the NCBD P20A mutation, not
observed using previous point estimation techniques [30].

3 Forward Model and Inference Strategy

For the sake of completeness, we begin with relevant aspects of the methods presented in
the first companion manuscript [15], including the likelihood needed in Bayesian inference,
and our parametric and nonparametric Markov Chain Monte Carlo (MCMC) samplers.

An smFRET experiment involves at least two single photon detectors collecting informa-
tion on stochastic arrival times. We denote these arrival times with

{Tstart, T1, T2, T3, . . . , TK , Tend},

in detection channels
{c1, c2, c3, . . . , cK},

for a total number of K photons. In this representation above, Tstart and Tend are the
experiment’s start and end times, respectively.

Using this dataset, we would like to infer parameters governing a system’s kinetics. That
is, the number of system states Mσ and the associated transition rates λσi→σj , as well as
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Mψ photophysical transition rates λσi,ψl→ψm corresponding to each system state σi. Here,
σi ∈ {σ1, . . . , σMσ} and ψl ∈ {ψ1, . . . , ψMψ

} are the system states and photophysical states,
respectively. These rates populate a generator matrix G of dimension Mϕ =Mσ ×Mψ now
representing transitions among composite superstates, ϕi ≡ (σj, ψk) where i = (j−1)Mψ+k
(see the first companion manuscript for details [15] on the structure of such a matrix). This
matrix governs the evolution of the system-FRET composite via the master equation

dρ(t)

dt
= ρ(t)G, (1)

as described in Sec. 2.3 of the first companion manuscript [15]. Here, ρ(t) is a row vector
populated by probabilities for finding the composite in a given superstate at time t.

In estimating these parameters, we must account for all sources of uncertainty present
in the experiment, such as shot noise and detector electronics. Therefore, we naturally work
within the Bayesian paradigm where the parameters are learned by sampling from probability
distributions over these parameters termed posteriors. Such posteriors are proportional to
the product of the likelihood, which is the probability of the collected data w given the
physical model, and prior distributions over the parameters as follows

p(G|w) ∝ L(w|G)p(G), (2)

where w constitutes the set of all observations, including photon arrival times and detection
channels.

To construct the posterior, we begin with the likelihood

L(w|G) ∝ ρstart Π
non
1 Grad

1 Πnon
2 Grad

2 . . . Πnon
K−1G

rad
K−1 Πnon

K Grad
K Πnon

end ρTnorm, (3)

derived in Sec. 2.3 of the first companion manuscript. Here, Πnon
k and Grad

k are the non-
radiative and radiative propagators, respectively. Furthermore, ρstart is computed by solving
the master equation assuming the system was at steady-state immediately preceding the time
at which the experiment began. That is, we solve

ρstartG = 0.

Next, assuming that the transition rates are independent of each other, we can write the
associated prior as

p(G) =
∏
i,j

p(λϕi→ϕj),

where we choose Gamma prior distributions over individual rates. That is,

p(λϕi→ϕj) = Gamma

(
λϕi→ϕj ;α,

λref
α

)
,

to guarantee positive values. Here, ϕi represents one of the Mϕ superstates of the system-
FRET composite collecting both the system and photophysical states as described in Sec. 2.2.
Furthermore, α and λref are parameters of the Gamma prior.

In what follows, we first assume that the number of system states are known and will
describe an inverse strategy that uses the posterior above to learn only transition rates. Next,
we generalize our model to a nonparametric case accommodating more practical situations
with unknown system state numbers. We do so by assuming an infinite dimensional system
state space and making the existence of each system state itself a random variable.
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3.1 Inference Procedure: Parametric Sampler

Now, with the posterior defined, we prescribe a sampling scheme to learn distributions over
all parameters of interest, namely, transitions rates populating G and the number of system
states. However, our posterior in Eq. 2 does not assume a form amenable to analytical
calculations. Therefore, we employ Markov Chain Monte Carlo (MCMC) techniques to
draw numerical samples.

Particularly convenient here is the Gibbs algorithm that sequentially and separately
generates samples for individual transition rates in each MCMC iteration. This requires us
to first write the posterior in Eq. 2 using the chain rule as follows

p(G|w) = p(λϕi→ϕj |G\λϕi→ϕj ,w)p(G\λϕi→ϕj |w), (4)

where the backslash after G indicates exclusion of the subsequent rate parameter. Further-
more, the first term on the right hand side is the conditional posterior for the individual rate
λϕi→ϕj . The second term in the product is a constant in the corresponding Gibbs step as it is
independent of λϕi→ϕj . Similarly, the priors p(G\λϕi→ϕj) for the rest of the rate parameters
on the right hand side of Eq. 2 are also considered constant. Equating the right hand sides
of Eqs. 2 & 4 then allows us to write the following conditional posterior for λϕi→ϕj as

p(λϕi→ϕj |G\λϕi→ϕj ,w) ∝ L(w|G) Gamma

(
λϕi→ϕj ;α,

λref
α

)
. (5)

Since the conditional posterior above does not take a closed form that allows for direct
sampling, we use the Metropolis-Hastings (MH) step [32–34] where new samples are drawn
from a proposal distribution q and accepted with probability

α(λ∗ϕi→ϕj
, λϕi→ϕj) = min

{
1,
p(λ∗ϕi→ϕj

|w,G\λϕi→ϕj) q(λϕi→ϕj |λ∗ϕi→ϕj
)

p(λϕi→ϕj |w,G\λϕi→ϕj) q(λ
∗
ϕi→ϕj

|λϕi→ϕj)

}
, (6)

where the asterisk denotes proposed rate values from the proposal distribution q.
Now, to generate an MCMC chain of samples, we first initialize the chains for all transition

rates λϕi→ϕj , by randomly drawing values from their corresponding prior distributions. We
then successively iterate across each transition rate in each new MCMC step and draw new
samples from the corresponding conditional posterior using the MH criterion.

In the MH step, a convenient choice for the proposal is a Normal distribution leading
to a simpler formula for the acceptance probability in Eq. 6. This is due to its symmetry
resulting in q(λϕi→ϕj |λ∗ϕi→ϕj

) = q(λ∗ϕi→ϕj
|λϕi→ϕj). However, a Normal proposal distribution

would allow forbidden negative transition rates, leading to automatic rejection in the MH
step and thus inefficient sampling. Therefore, it is more convenient to propose new samples
using a Normal distribution in logarithmic space to allow exploration along the full real line
as follows

log(λ∗ϕi→ϕj
/κ)

∣∣ log(λϕi→ϕj/κ), σ
2 ∼ Normal

(
log(λϕi→ϕj/κ), σ

2
)
,

where κ = 1 is an auxiliary parameter in the same units as λϕi→ϕj introduced to obtain a
dimensionless quantity within the logarithm.

6

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.07.20.500888doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500888
http://creativecommons.org/licenses/by-nd/4.0/


The transformation above requires introduction of Jacobian factors in the acceptance
probability as follows

α(λ∗ϕi→ϕj
, λϕi→ϕj) = min

{
1,
p(λ∗ϕi→ϕj

|w,G\λϕi→ϕj)

p(λϕi→ϕj |w,G\λϕi→ϕj)

(∂ log(λϕi→ϕj/κ)/∂λϕi→ϕj)

(∂ log(λϕi→ϕj/κ)/∂λϕi→ϕj)
∗

}
,

where the derivatives represent the Jacobian and the proposal distributions are canceled by
virtue of using a Normal distribution.

The acceptance probability above depends on the difference of the current and proposed
values for a given transition rate. This difference is determined by the covariance of the
Normal proposal distribution σ2 which needs to be tuned for each rate individually to achieve
an optimum performance of the BNP-FRET sampler, or equivalently approximately one-
third acceptance rate for the proposals [35].

In our case, where the smFRET traces analyzed contain about 105 photons, we found
it prudent to make the sampler alternate between two sets of variances at every MCMC
iteration, {σ2

ex = 10−5, σ2
FRET = 0.01, σ2

sys = 0.1} and {σ2
ex = 10−5, σ2

FRET = 0.5, σ2
sys = 5.0},

for the excitation rates, FRET rates, and system transition rates. This ensure that the
sampler is quickly able to explore values at different orders of magnitude.

Intuitively, these covariance values in the proposal distributions above would ideally scale
with the relative widths of the conditional posteriors for these parameters (in log-space) if
the approximate width could be estimated. Since posterior widths depend on the amount
of data used, an increase in the number of photons available in the analysis would require a
correspondingly smaller variance.

3.2 Inference Procedure: Nonparametric BNP-FRET Sampler

Here, we first, briefly summarize our inference procedure described in Sec. 3.1 & 3.2.1 of the
first companion manuscript [15] for ease of reference.

In realistic situations, the system state space’s dimensionality is usually unknown as
molecules under study may exhibit complex and unexpected behaviors across conditions and
timescales. Consequently, the dimensionalityMϕ of the generator matrix G is also unknown,
and must be determined by adopting a BNP framework.

In such a framework, we assume an infinite set of system states and place a binary
weight, termed load, on each system state such that if it is warranted by the data, the
value of the load is realized to one. Put differently, we must place a Bernoulli prior on
each candidate state (of which there are formally an infinite number) [36, 37]. In practice,
we learn distributions over Bernoulli random variables bi that activate/deactivate different
portions of the full generator matrix as (see Sec. 3.2.1 of the first companion manuscript
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[15])

G =



∗ b21λψ1→ψ2 b21λψ1→ψ3 b1b2λσ1→σ2 0 0 . . .
b21λψ2→ψ1 ∗ b21λσ1,ψ2→ψ3 0 b1b2λσ1→σ2 0 . . .
b21λψ3→ψ1 b21λψ3→ψ2 ∗ 0 0 b1b2λσ1→σ2 . . .
b1b2λσ2→σ1 0 0 ∗ b22λψ1→ψ2 b22λψ1→ψ3 . . .

0 b1b2λσ2→σ1 0 b22λψ2→ψ1 ∗ b22λσ2,ψ2→ψ3 . . .
0 0 b1b2λσ2→σ1 b22λψ3→ψ1 b22λψ3→ψ2 ∗ . . .
...

...
...

...
...

...
. . .


,

where active loads are set to 1, while inactive loads are set to 0. Furthermore, ∗ represents
negative row-sums. Finally, the number of active loads provides an estimate of the number
of system states warranted by a given dataset.

As we have introduced new variables we wish to learn, we upgrade the posterior of Eq. 2
to incorporate the full set of loads, b = {b1, b2, . . . , b∞}, as follows

p(b,G|w) ∝ L(w|b,G) p(b)p(G),

where we assume that all parameters of interest are independent of each other.
As in the parametric sampler presented in the previous subsection, we generate samples

from the nonparametric posterior above using Gibbs sampling. That is, we first initialize
the MCMC chains for loads and rates by drawing random samples from their priors. Next,
to construct the chains, we iteratively draw samples from the posterior in two steps: 1)
sequentially sample all rates using the MH procedure; then 2) loads by direct sampling, from
their corresponding conditional posteriors (as described in Sec. 3.2.1 of the first companion
manuscript [15]). Since step (1) is similar to the parametric case, we only focus on the second
step in what follows.

To generates samples for load bi, the corresponding conditional posterior is given by [38]

p(bi|b\bi,G,w) ∝ L(w|b,G) Bernoulli

(
bi;

1

1 + Mmax
σ −1
γ

)
,

where the backslash after b indicates exclusion of the following load. We may set the hyper-
parametersMmax

σ , the maximum allowed number of system states used in computations, and
γ, the expected number of system states based on simple visual inspection of the smFRET
traces.

Now, the conditional posterior in the equation above is discrete and describes the prob-
ability for the load to be either active or inactive, that is, it is itself a Bernoulli distribution
as follows

p(bi|b\bi,G,w) = Bernoulli(bi; qi),

where

qi =
L(w|bi = 1,b\bi,G,ρstart)

L(w|bi = 1,b\bi,G) + L(w|bi = 0,b\bi,G)
.

The simple form of this posterior is amenable to direct sampling. In the end, the chain of
generated samples can be used for subsequent statistical analysis.
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4 Results

In this section, we first demonstrate the robustness of our BNP-FRET sampler by investigat-
ing the effects of excitation rate on the distributions over transitions rates and system state
numbers. Once we have illustrated the BNP-FRET sampler’s performance on synthetic data,
we apply it to estimate the number of system states along with associated escape rates from
publicly available experimental data for a complex involving instrinsically disorder proteins
(ACTR-NCBD). We compare our results with reported literature values [29, 30].

Figure 1: MCMC chains generated by the BNP-FRET sampler for the number
of system states. The synthetic smFRET datasets used to generate these chains assume
uniform excitation rate of 10 ms−1 and FRET efficiencies of 0.09, 0.5, and 0.9, for a three
state system. However, the system’s escape rates for all three states become faster by a factor
of 10 as we move from panel (a) to (d). That is, in the slowest case, we use escape rates of
0.01, 0.02, and 0.03 ms−1 for the three system states, while in the fastest case kinetics are
as fast as the excitation rate itself. Our method converges to the correct number of system
states for each dataset. As we will see later, the rates become more difficult to estimate for
panel (d) which we consider to be the point at which the method breaks down.
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4.1 Resolution of Timescales Given Excitation Rate: Nonpara-
metrics

To demonstrate the performance of our BNP-FRET sampler over a range of timescales
given a fixed excitation rate, we follow the same approach as presented in the first companion
manuscript (see Sec. 4.1) [15]. That is, we generate four synthetic smFRET traces containing
K = 2 million photons each for a biomolecular complex with three system states, {σ1, σ2, σ3}.
The kinetic scheme for this system is a generalization of the example presented in the first
companion manuscript [15] (brown boxes) with two system states.

Now, to synthesize smFRET traces, we fix the excitation rate to λex = 10 ms−1 and FRET
efficiencies εFRET to 0.09, 0.5, and 0.9 for the three system states, respectively, motivated by
experiments in [30]. The remaining parameters are the system transition rates λσi→σj , varied
across datasets to test our BNP-FRET sampler over a wide range of timescales ranging from
a thousand times longer than the average interphoton arrival time (1/λex) to as short as
the average interphoton arrival time itself (representing an extreme case). We do not probe
kinetics any faster because the excitation rate does not provide enough temporal resolution
for resolving system transitions in this regime, as demonstrated in the first manuscript (see
Sec. 4.1).

We start the analysis by applying our BNP-FRET sampler to learn the number of system
states for the case with slowest escape rates, i.e., the sum of all transition rates out of a
given system state. These escape rates are λesc = 0.01, 0.02, and 0.03ms−1. We show that
our BNP-FRET sampler can correctly learn the number of system states and the associated
escape rates and FRET efficiencies; see Fig. 1(a) and Fig. 2(a).

Next we analyze, one-by-one, datasets generated using escape rates that are 10 times
faster in each subsequent dataset. BNP-FRET deduces the correct number of system states
in all cases (see Fig. 2a-c), however the determination of the rates begins to fail in panel (d)
of Fig. 2.

The failure to estimate escape rates approximating the excitation rate can also be pre-
dicted using a “photon budget index” defined in the first companion manuscript [15] Sec. 4.1
as

s =
Kλex

λprobeMσ

(7)

where K and λprobe are, respectively, the photon counts and the escape rate to be probed.
Plugging the parameter values associated to the dataset shown in both Fig. 1(d) and 2(d)
with three escape rates, i.e., K = 2 × 106, Mσ = 3, λex = 10ms−1 and λprobe = λesc =
10 − 30ms−1, into the above equation, we obtain s = 2/3 × 106, 2/6 × 106 and 2/9 × 106.
The index obtained for λprobe = 10ms−1 is on par with the threshold of sthresh = 106 derived
in the first companion manuscript in [15] Sec. 4.1 where the sampler had available sufficient
information to drawn an accurate inference. By contrast, moving to the larger escape rates of
λesc = 20, 30ms−1 the photon budget indices obtained are much smaller than the threshold
and the sampler starts failing due to lack of information. To be more precise, our sampler is
capable of learning any escape rates, even those larger than excitation rate, given sufficient
photons. As this is counter intuitive, we note that the excitation rate is an average value
and there are often photons detected with interphoton intervals much smaller than 1/λex.
As such, given long photon traces, there are always enough photons with small interphoton
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Figure 2: Learned bivariate posterior for the escape rates λesc and FRET efficien-
cies εFRET from synthetic data also used in Fig. 1. Going from panels (a) to (d), we
speed up the kinetics (escape rates) by a factor of 10 each time leading to a gradual loss of
temporal resolution needed to identify system transitions. The ground truth is shown with
the red dots. The estimates for escape rates and FRET rates in panels (a) to (c), have less
than 10% errors. However, as seen in panel (d), the excitation rate does not provide enough
temporal resolution to resolve system transitions occurring at interphoton arrival time-scales,
resulting in large errors in the parameter estimates. The estimated escape rates in panel
(d) are 0.8+0.1

−0.4 s
−1, 1.4+1.0

−0.2 s
−1, and, 2.0+1.8

−0.3 s
−1with very large uncertainties (95% confidence

intervals). We have smoothed the posterior distributions here using KDE for visualization
purposes only.

intervals to learn faster escape rates (and indeed to learn excited state lifetimes as we show
in the first companion manuscript [15]) that would otherwise evade binned photon analysis
methods [39].
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4.2 Analysis of Experimental Data: NCBD-ACTR Interactions

Here, we apply our BNP-FRET sampler to two datasets probing the interactions between
partner IDPs, NCBD and ACTR, under different conditions [29, 30]. Precise knowledge
of binding and unbinding reactions of such proteins is of fundamental importance toward
understanding how they regulate expression of their target genes.

Methods that have been used in the past [29, 30] to analyze smFRET traces from ex-
periments on NCBD-ACTR interaction assumed a fixed number of system states to obtain
maximum likelihood point estimates for transition rates. In addition, these methods bin
photons to mitigate computational expense. However, given the inherently unstructured
and flexible nature of IDPs, fixing the dimensionality of the model a priori can be limiting
and, as we will see, may bias analysis. Therefore, our nonparametric method which places
no constraints on the number of system states while incorporating all major noise sources,
is naturally suited.

In the following subsections, we first analyze data for a system where an immobilized
ACTR labeled with a Cy3B donor interacts with an NCBD labeled with a CF680R acceptor
in the presence of ethylene glycol (EG), 36% by volume, in order to more closely mimic
cellular viscosity [29]. Here, the binding of NCBD to ACTR is monitored in smFRET
experiments using a confocal microscope setup. Next, we analyze data for a system in a
buffer without EG, and therefore with faster kinetics. Here an immobilized ACTR interacts
with a freely-diffusing mutated NCBD (P20A) [30].

To acquire both experimental FRET datasets containing about 200000 photons each,
laser powers of 0.5 µW and 0.3 µW were used leading to excitation rates varying from 3000
to 11000 s−1 in the confocal region depending on where the immobilized sample lies with
respect to the center of the excitation laser beam.

Moreover, we are provided a calibrated route correction matrix (RCM) by the authors
of [29, 30] to account for spectral crosstalk, and relative detection efficiencies of donor and
acceptor channels. We defined such an RCM in Sec. 2.4.1 of the first companion manuscript
[15] and specify it for each dataset separately in the following subsections.

Finally, by contrast to the first companion manuscript [15] we ignore the IRF. The latter
typically acts over a period of hundreds of picoseconds. As such, it is immaterial on the
seconds timescale over which system transitions occur. Moreover, the background values
vary for each dataset, and are therefore precalibrated, independently, for each dataset in the
corresponding sections.

Now, with all experimental details at hand, we proceed to analyze the experimental data
using our BNP-FRET sampler.

4.2.1 Immobilized ACTR in 36% EG

Binding of NCBD to ACTR leads to the formation of a stable and ordered complex in the
presence of EG. In addition, when two fluorescent dyes labeling the IDPs come in close
proximity, we expect FRET interactions. Therefore, bound and unbound system states of
the NCBD-ACTR complex correspond to high and low FRET efficiency signals, respectively.

For the analysis of the collected smFRET data from such a complex, we must take
into account all sources of noise such as crosstalk and background. The crosstalk/detection
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(c)

Figure 3: Results for NCBD-ACTR interactions in the presence of ethylene glycol
(EG). Panel (a) shows the raw photon counts (bin width of 0.01s) recorded by the two
detection channels during the experiment. In panel (b), we show a probability distribution
for the number of system states estimated by the BNP-FRET sampler. The sampler spends
a majority of its time in two system states with only a small relative probability ascribed to
more states. In the posterior distribution for the escape rates and FRET efficiencies in panel
(c), two distinct FRET efficiencies are evident with values of about 0.003+0.020

−0.002 (unbound)
and 0.70+0.02

−0.02 (bound), and corresponding escape rates of about 2.9+0.3
−0.3 s−1and 4.1+0.5

−0.4 s−1.
The red dots show results reported by [29] using maximum likelihood method. We have
smoothed the distribution for demonstrative purposes only.

efficiency values are computed from the RCM given by the authors of [29] as

RCM ∝
[
ϕd2 −ϕd1
−ϕa2 ϕa1

]
∝
[
1.0 −0.22
0.0 1.02

]
,

where channels 1 & 2 are, respectively, designed to receive acceptor and donor photons.
Furthermore, ϕai and ϕdi, respectively, denote probabilities of acceptor and donor photons
being registered by channel i. Adopting the same normalization convention for the RCM as
in the first companion manuscript [15] (see Example V) gives the following values for the
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effective crosstalk factors as

ϕa1 = 0.84, ϕa2 = 0.0, ϕd1 = 0.18, and ϕd2 = 0.82.

As such, these values imply that approximately 18% of the emitted donor photons are de-
tected in the acceptor channel due to crosstalk. Furthermore, only 84% of emitted accep-
tor photons are detected in the acceptor channel, and acceptor photons do not suffer any
crosstalk.

We must also incorporate precalibrated background rates for donor and acceptor channels
given as 0.283 s−1 and 0.467 s−1, respectively [29].

With all such corrections applied, our BNP-FRET sampler now predicts two system
states; see Fig. 3. The system state with the lowest FRET efficiency of 0.0 corresponds
to the unbound NCBD. The remaining system state with higher FRET efficiency of ≈ 0.7
coincides with the bound NCBD-ACTR complex configuration. The associated escape rates
we obtain from our method for both of the system states are approximately 2.9 s−1 and 4.1 s−1

as seen in Fig. 3b. These results are consistent with results reported in supplementary table
S1 of [29] with an average relative difference of ≈ 15%.

4.2.2 Immobilized ACTR in buffer

Here, in the absence of EG, the viscosity of the solution is lowered [29], leading to faster
system transitions representing a unique analysis challenge.

As in the previous subsection, from the RCM provided by the authors of [30] for the
current dataset, we found crosstalk factors of ϕa1 = 0.72, ϕa2 = 0.0, ϕd1 = 0.10, and
ϕd2 = 0.90. After correcting for these crosstalk/detection efficiency values and background
rates of 0.312 s−1 and 1.561 s−1 for the donor and acceptor channels, respectively, our BNP-
FRET sampler now predicts five system states (see Fig. 4(a)&(b)) with FRET efficiencies
of 0.0, 0.72, 0.03, 0.28, and 0.92 approximately. Here, the first two system states with
vanishingly small estimated FRET efficiencies, namely 0.0 and 0.03, most likely represent
the same configuration where NCBD is diffusing freely away from the immobilized ACTR,
leading to no FRET interactions. Various sources of noise in the dataset may have resulted
in this splitting of the unbound system state. Furthermore, the system state with the FRET
efficiency and escape rate of approximately 0.72 and 25.0 s−1, respectively, coincides with the
previously predicted bound configuration found using a maximum likelihood method with a
fixed number of system states [30]. We have compiled the learned transition rates (median
values) in the generator matrix below (in s−1 units)

Gσ =
∗ λσ1→σ2 λσ1→σ3 λσ1→σ4 λσ1→σ5

λσ2→σ1 ∗ λσ2→σ3 λσ2→σ4 λσ2→σ5

λσ3→σ1 λσ3→σ2 ∗ λσ3→σ4 λσ3→σ5

λσ4→σ1 λσ4→σ2 λσ4→σ3 ∗ λσ4→σ5

λσ5→σ1 λσ5→σ2 λσ5→σ3 λσ5→σ4 ∗

 =


−4.31 3.44 0.70 0.15 0.02
18.0 −24.97 3.48 0.99 2.5
0.21 3.98 −5.10 0.91 0.003
1.85 0.013 7.0 −8.87 0.007
0.08 6.23 0.12 0.71 −6.6

 ,
(8)

14

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2022. ; https://doi.org/10.1101/2022.07.20.500888doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500888
http://creativecommons.org/licenses/by-nd/4.0/


(c)

Figure 4: Results for NCBD-ACTR interactions in buffer, without EG. Panel (a)
shows the raw photon counts (bin width of 0.01s) recorded by the two detection channels
during the experiment. In panel (b), we show a probability distribution produced by the
BNP-FRET sampler for the number of system states. Models with less than four system
states in the histogram are not shown as we ascribe to them zero probability. Indeed, the
most probable model contains five system states. Next, in panel (c) depicting the posterior
distribution for the escape rates and FRET efficiencies, five distinct FRET efficiencies are
evident with values of 0.002+0.03

−0.001, 0.72
+0.02
−0.02, 0.03

+0.02
−0.02, 0.28

+0.02
−0.02, and 0.92+0.02

−0.01 with corre-
sponding escape rates of about 4.3+1.9

−1.8, 25.0
+2.1
−2.9, 5.1

+1.8
−1.9, 8.9

+3.5
−0.8, and 6.6+4.0

−1.0 s−1. The first
two system states with almost vanishing FRET efficiencies may represent the same unbound
configuration with the small splitting likely arising from various sources of noise present
in the dataset. The red dots show the results reported in [30] using maximum likelihood
method.

where the diagonal elements correspond to negative of the escape rate values. Furthermore,
the steady-state populations/probabilities for these system states can be computed by solving
ρsteadyGσ = 0, resulting in

ρsteady =
[
0.55 0.12 0.23 0.05 0.05

]
. (9)
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Here, the two newly observed system states, with FRET efficiencies of 0.28 and 0.92 and
corresponding escape rates of approximately 8.87 s−1 and 6.6 s−1, are bound configurations
not previously detected [30] and deserve further attention. For instance, lower viscosity buffer
(as compared to cases in the presence of EG) may allow the system to visit transient system
states more readily under observation timescales [40, 41]. Additionally, steady-state proba-
bilities for these new transient system states that we recover are indeed expectedly low (0.05
and 0.05) as compared to other system states of the NCBD-ACTR complex. Furthermore,
IDPs interact in a complex manner with high possibility for residual secondary structures
[42]. Competing parametric methods would need to posit a high number of system states a
priori in order for their kinetics to be quantifiable. Finally, despite a difference in the esti-
mate of the number of system states, our slower kinetics in the presence of EG are consistent
with those of Ref. [29]. Direct comparison of escape rates across system states recovered
by BNP-FRET versus Ref. [29] however is questionable on account of having recovered a
different number of system states.

One way by which we may assure ourselves that these system states are not artefactually
added by our computational algorithm (overfitting), is to analyze synthetic data generated
under the same conditions (excitation rate, crosstalk, and background) as the experiment
but with a ground truth of two system states. We can then ask whether the noise properties
force our method to introduce artefactual states. Thus, we simulate a two system state model
with the previously reported escape rates [30]) of 4.3 s−1 and 23.0 s−1 with corresponding
FRET efficiencies of 0.0 and 0.8, and the same photon budget of 200000 photons. The results
for the analysis of this synthetic dataset in Fig. 5(a)&(b) show no additional system states
introduced by our method under this parameter regime suggesting the robustness of our
findings for the experimental data.

Another way by which we may assure ourselves is by analyzing synthetically generated
data for the four most distinct system states (on the basis of FRET efficiency) predicted by
the BNP-FRET sampler for the experimental dataset. These system states correspond to
FRET efficiencies of approximately 0.0, 0.72, 0.28, and 0.92 with associated escape rates of
4.31, 24.97, 8.87, and 6.6 s−1 as computed from the matrix in Eq. 8. We tested whether our
sampler BNP-FRET underfits or overfits with regards to the estimated number of system
states. As shown in Fig. 6, the most probable model predicted by the sampler has four
system states, again verifying the robustness of our method.

5 Discussion

FRET techniques have been essential in investigating molecular interactions on nanometer
scales, for instance, most recently in directly monitoring interaction of the SARS-COV2
virus spike protein with host receptors [43, 44]. Yet, the quantitative interpretation of
smFRET data suffers from several issues including difficulties in estimating the number of
system states, dealing with fast transition rates and providing uncertainties over estimates,
particularly uncertainties over the number of system states [45, 46] originating from multiple
noise sources.

Here, we implemented a general nonparametric smFRET data analysis framework pre-
sented in the first companion manuscript [15] to address the issues associated with smFRET
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Figure 5: Robustness test using synthetic data with realistic noise parameters.
The synthetic data here is generated under the same conditions (excitation rate, crosstalk,
background, and photon budget) as the experiment whose results are shown in Fig. 4 with
only two states as ground truth to see whether the multiple noise sources are likely to
result in our method introducing spurious states (such as five states as seen in Fig. 4 using
previously reported transitions rates [30]). In panel (a), we show the posterior produced by
the BNP-FRET sampler for the number of system states. Fortunately, the most sampled
model contains two system states, showing that noise sources do not introduce spurious
states in this case. Small relative probability is ascribed to higher dimensional models. In
the joint posterior distribution over the escape rates and FRET efficiencies in panel (b), two
distinct FRET efficiencies are evident with values of 0.003+0.010

−0.002, 0.8
+0.013
−0.012 with corresponding

escape rates of about 4.4+0.9
−0.8 and 17.6+2.0

−1.9 s−1. The red dots show the ground truth. The
slight bias away from the ground truth results from high noise (background) in the data. The
absence of additional system states suggests that the additional system states encountered
in the experimental results are not artefactual.

data analysis acquired under continuous illumination. The framework developed can learn
posterior distributions over the number of system states as well as the corresponding ki-
netics ranging from slow values all the way up to kinetic of events occurring on timescales
approaching excitation rates. That is, our method propagates uncertainty over not only ki-
netic parameters but their associated models as well. This is especially significant in avoiding
over-commitment to any one model when multiple models are almost equally probable given
the data.

We benchmarked our method starting from synthetic data with three system states with
a range of different timescales. We challenged our method by simulating data with kinetics
as fast as the interphoton arrival times and correctly deduced the system state numbers
even under such extreme conditions. We further assessed our method using experimental
data acquired observing NCBD interacting with ACTR under different ethylene glycol (EG)
concentrations that may impact the timescales at which the binding/unbinding reactions
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Figure 6: Second robustness test using synthetic data with realistic noise param-
eters. The synthetic data here is generated under the same conditions (excitation rate,
crosstalk, background, and photon budget) as the experiment whose results are shown in
Fig. 4 with four distinct system states (on the basis of FRET efficiency) as ground truth to
see whether our sampler overfits or underfits with regards to the number of system states.
These system states correspond to FRET efficiencies of 0.0, 0.72, 0.28, and 0.92 with asso-
ciated escape rates of 4.31, 24.97, 8.87, and 6.6 s−1 as computed from the matrix in Eq. 8.
In panel (a), we show the posterior produced by the BNP-FRET sampler for the number of
system states. Fortunately, the most sampled model contains four system states, verifying
the robustness of our method. Small probabilities are also ascribed to models with different
numbers of system states. In the posterior distribution over the escape rates and FRET ef-
ficiencies in panel (b), four distinct FRET efficiencies are evident with values of 0.002+0.03

−0.001,
0.72+0.03

−0.03, 0.28
+0.04
−0.03, and 0.92+0.03

−0.03 and corresponding escape rates of 3.9+2.0
−1.5, 23.8

+2.2
−1.5, 7.1

+1.9
−1.5,

and 5.9+1.7
−1.5 s

−1. Here, the ground truth is shown with red dots. High noise from background
results in the underestimates seen here.

occur. In the previous point estimate methods [29, 30], two system states were assumed a
priori for 0 and 36% EG concentrations. However, our nonparametric method predicts the
number of system states and obtains two additional system states in the absence of EG (fast
kinetics). This observation may be tied to the inherently unstable nature of the two IDPs
under investigation [40].

A careful treatment of how experimental noise propagates into uncertainties over the
number of system states and rates does come with associated computational cost. Other
methods have managed to mitigate these costs by making approximations including: 1)
assuming kinetics much slower than fluorophore excitation and relaxation rates [13, 14]; 2)
assuming fast dye photophysics is completely irrelevant to the system transition rate and
that FRET efficiency sufficiently identifies transitions between system states [14]; 3) ignoring
detector effects and relegating other noise sources, such as background, to post-processing
steps [13]; and, most popularly, 4) binning data [45, 47, 48]. For the general case without
such approximations, however, the primary computation—the likelihood—remains expensive
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due to the required evaluation of many matrix exponentials. This cost can be mitigated in
a number of ways by, for instance, computing likelihoods for several data traces in parallel.
The scaling of the method is provided in the first companion manuscript [15].

The method described in this paper was developed for cases with discrete system state
spaces. For continuous state spaces, both the likelihood and priors would require major
modification in the spirit of Refs. [49, 50].

Our framework can accommodate different illumination modalities such as alternating
laser excitation (ALEX) [51] to directly excited both donor and acceptor dyes by assuming
nonzero direct excitation rates in the generator matrix. Indeed, direct excitation of the
acceptor would further help in the simultaneous determination of crosstalk factors, detection
efficiencies, and quantum yield of the dyes alongside kinetics.

6 Code availability

The BNP-FRET software package is available on Github at
https://github.com/LabPresse/BNP-FRET
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[38] Ioannis Sgouralis and Steve Pressé. An introduction to infinite HMMs for single-molecule
data analysis. Biophysical Journal, 112(10):2021, 2017.
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