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Abstract

Förster resonance energy transfer (FRET) using pulsed illumination has been piv-
otal in probing complex single molecule dynamics within subcellular environments.
However, there are still major challenges in quantitative single photon, single molecule
FRET (smFRET) data analysis under pulsed illumination including: 1) simultane-
ously deducing kinetics and number of system states; 2) providing uncertainties over
estimates, particularly uncertainty over state numbers; 3) taking into account all ex-
perimental details such as crosstalk and instrument response function contributing to
uncertainty; in addition to 4) background. Here, we implement the Bayesian non-
parametric framework described in the first companion paper that addresses all the
aforementioned issues in smFRET data analysis specialized for the case of pulsed illu-
mination. Furthermore, we apply our method to both synthetic as well as experimental
data acquired using Holliday junction.

1 Terminology Convention

To be consistent throughout our three part manuscript, we precisely define some terms as
follows:

1. a molecular complex labeled with a FRET dye pair is always referred to as a system,

2. the configurations through which a system transitions are termed system states,

3. FRET dyes undergo quantum mechanical transitions between photophysical states,

4. a system-FRET combination is always referred to as a composite, and

5. a composite undergoes transitions among its superstates.

2 Introduction

Among the many fluorescence methods available [1–7], single molecule Förster resonance
energy transfer (smFRET) has been useful in probing interactions and conformational vari-
ations within complex cellular environments at the single molecule scale [8–12].

In such smFRET experiments, the data collected typically involves a set of photon arrivals
from donor and acceptor fluorophores excited using either pulsed or continuous illumination
techniques [8]. Here, we focus on pulsed illumination where the sample is illuminated at
regularly-spaced short pulses and the photon arrival times are recorded with respect to
the previous pulse. The set of acquired arrival times contains information on fluorophore
lifetimes, FRET rates associated with system states, and system transition rates. This
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information is often decoded using FRET data analysis methods by: histogram methods
[13–15]; bulk correlative methods [16–18]; and single photon methods [15, 19]. However,
these methods are limited in learning the system kinetics rather than deducing the number
of system states and its uncertainty by taking experimental details such as the IRF into
account. In particular, the uncertainty over the number of states is ignored when using
model selection methods methods such as the Bayesian information criterion (BIC) [20, 21].

In this paper, we adapt the general smFRET analysis framework presented in the first
companion paper [22] for the case of pulsed illumination to learn full distributions over the
system kinetics and photophysical rates, i.e., donor and acceptor relaxation and FRET rates,
while 1) inferring full distributions over the number of system states; and while 2) taking into
account experimental factors such as IRF and crosstalk. As our main concern is deducing
system state numbers using single photon arrivals while incorporating detector effects, we
leverage the formalism of infinite hidden Markov models (iHMM) [23–28] within the Bayesian
nonparametric (BNP) paradigm [23, 24, 29–36]. The iHMM framework assumes an a priori
infinite number of system states with associated probabilities where the number of system
states warranted by input data is enumerated by non-zero probabilities.

In what follows, we first briefly describe our adaptation of the mathematical framework
presented in the first companion manuscript leveraging BNPs. Next, we demonstrate that our
BNP analysis framework and its software implementation BNP-FRET [37] can robustly learn
the system state numbers, associated system transitions and FRET rates while providing
full distributions over all estimated quantities.

The synthetic and experimental smFRET data analyzed are acquired using a single confo-
cal microscope with pulsed illumination. The excited donor then relaxes back to the ground
state either radiatively by emitting a photon or non-radiatively via FRET leading, in turn, to
an acceptor photon emission. As there are two detection channels, photons can be detected
in the incorrect channel through crosstalk or not detected at all due to imperfect detector
efficiency. Furthermore, recorded photon arrival times are corrupted by the IRF as well as
from background photon sources [8, 38, 39]. Through our BNP paradigm, we rigorously
propagate uncertainties by accounting for all such sources of errors.

To do so, we employ a broad range of synthetic data as well as empirical data acquired
using Holliday junctions (HJ) with an array of different kinetic rates due to varying buffer
concentration of MgCl2 [40–43].

3 Forward Model and Inverse Strategy

In this section, we first briefly illustrate the adaptation of the general formalism described
in our first companion paper [22] to the pulsed illumination case. Next, we present an
specialized inference procedure for pulsed illumination. The details of the framework not
provided herein can be found in the Supplementary Information.

We begin by considering a molecular complex labeled with a donor-acceptor FRET pair.
As the molecular complex transitions through its Mσ system states indexed by σ1:Mσ , laser
pulses separated by time τ may excite either the donor or acceptor to drive transitions
among the photophysical states, ψ1:Mψ

, as defined in the first companion manuscript. Such
photophysical transitions lead to photon emissions that may be detected in the donor or
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+ + +

Figure 1: Events over a pulsed illumination experiment pulse window. Here, the
beginning of the n-th interpulse window of size τ is marked by time tn. The sample is
then excited by a high intensity burst (shown by the yellow Gaussian) for a very short time
∆IRF1 . If excited, the fluorophore then emits a photon at µe. However, detection, highlighted
with a red star, occurs at time µn dictated by the IRF (shown by the red Gaussian). The
acronyms GG, EG and GE denote the photophysical states of a FRET pair where G and E,
respectively, stand for ground and excited states. The first letter indicates the photophysical
state of the donor.

acceptor channel. The arrival times of the detected photons are recorded as

w1:N = {w1, w2, . . . , wN}. (1)

Here, each individual measurement is a pair wn = (µdn, µ
a
n), where µdn and µan are the recorded

arrival times (also known as microtimes) after the n-th pulse in both donor and acceptor
channels, respectively. In cases where there is no photon detection, we denote the absent
microtimes with µdn = ∅ and µan = ∅ for donor and acceptor channels, respectively.

As is clear from Fig. 1, smFRET traces are inherently stochastic due to the nature of
photon emission and noise introduced by detector electronics. To analyze such stochastic
systems, we begin with the most generic likelihood derived in the first companion manuscript
Eq. (20)

L ∝ ρstart Q1 . . . Qn . . .QN ρTnorm, (2)

where ρstart is the initial probability vector for the system-FRET composite to be in one of the
M (= Mψ×Mσ) superstates, and ρnorm is a vector that sums the elements of the propagated
probability vector. Here, Qn is the transition probability matrix between pulses n and
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n+1, characterizing system-FRET composite transitions among superstates. This transition
probability matrix adopts different forms depending on whether a photon is detected or not
during the associated period. In the case of photon detection, it is given by Eq. (22) in the
first companion manuscript as

Qn = exp

(∫ ∆IRF1

0

dδnG
non(δn)

) ∫ ∆IRF2

0

dεn exp
(
(µn −∆IRF1 − εn) Gdark

)
Grad

× exp
(
(τ − µn) Gdark

)
, (3)

where Gnon is the generator matrix in cases where only nonradiative superstate transi-
tions are allowed, and is computed from the full generator G given in the first companion
manuscript Sec. 2.7. Similarly, Gdark is the generator matrix when no excitation occurs and
Grad corresponds to when only radiative transitions take place. As shown in Fig. 1, ∆IRF1

and ∆IRF2 correspond to the width of the pulse and the IRF distribution, respectively, and
the variables of integration, δn and εn, correspond to the times of excitation and emission, re-
spectively. The explicit form of Qn for no photon detection is derived in the first companion
manuscript Eq. (21).

So far, we have summarized the results already discussed in the first companion manuscript.
However, now, we go beyond the first companion paper [22] by introducing a few realistic
approximations and developing a specialized sampling scheme for these physically motivated
approximations. These approximations include: 1) since the typical system kinetic timescales
(≈ 1 ms) are much longer than interpulse periods (≈ 100 ns), we assume that the system
state remains the same over an interpuls period; 2) the interpulse period (≈ 100 ns) is longer
than the donor and acceptor lifetimes (≈ a few ns) so that they relax to the ground state
before the next pulse.

The immediate implications of assumption (1) are that the system transitions may now to
a good approximation only occur at the beginning of each pulse. Consequently, the evolution
of the FRET pair between two consecutive pulses is now exclusively photophysical as the
system state remains the same during interpulses. As such, the system now evolves in equally
spaced discrete time steps of size τ where the system state trajectory can be written as

s1:N = {s1, s2, . . . , sn, . . . , sN−1, sN}.

where sn is the system state between pulses n and n + 1. The stochastic evolution of
the system states in such discrete steps is determined by the transition probability matrix
designated by Π. For example, in the simplest case of a molecular complex with two system
states σ1:2, this matrix is computed as

Π = exp

(
τ

[
∗ λσ1→σ2

λσ2→σ2 ∗

])
=

[
πσ1→σ1 πσ1→σ2
πσ2→σ1 πσ2→σ2

]
, (4)

where the matrix in the exponential contains the transition rates among the system states
and the ∗ represents the negative row sum.

Before proceeding to derive the transition probability matrix for a pulse, we repeat that,
in general, the evolution of a system-FRET composite is described by the evolution of its
system and photophysical states. This evolution is governed by the generator matrix G
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collecting both photophysical and system tramsition rates. However, for the pulse illumina-
tion case, the system state is fixed during interpulses by assumption (2) and is given by sn
for the nth interpulse period. As such the evolution of the system-FRET composite during
this interpulse window is completely described by the evolution of the photophysical state
governed by the photophysical portion of the generator matrix. Therefore, the generic Qn

given by Eq. 3 reduces to Qψ
n , denoting the transition probability matrix between only pho-

tophysical states, by restricting the generators to the photophysical portion associated with
a fixed system state sn.

We can now further simplify the problem by supposing that the fluorophores always
start in the ground state at the beginning of every pulse by assumption (2). As a result, we
can treat the pulses independently and write the likelihood as a product of individual pulse
likelihoods:

L(w1:N |ϑ) =
N∏
n=1

Ln(wn|ϑ) =
N∏
n=1

(
ρgroundQ

ψ
n(sn)ρTnorm

)
, (5)

where ρground denotes the probability vector when the FRET pair is in the ground state
at the beginning of each pulse. The explicit form of the likelihood for individual pulses is
derived in Supplementary Information Sec. S2. Here, ϑ is the set of parameters we wish
to estimate including: the number of system states, Mσ, FRET rates, λ1:Mσ

FRET , donor and
acceptor relaxation rates, λd and λa, donor excitation probability, πex, the system state
trajectory, s1:N , and the system transition probabilities πσi→σj . This form of the likelihood
is advantageous in that it allows empty pulses to be computed together with themselves,
greatly decreasing computational cost.

In the following, we first illustrate a parametric inference procedure assuming a given
number of system states. We next generalize the developed procedure to a nonparametric
case to deduce the number of system states along the rest of parameters.

3.1 Inference Procedure: Parametric Sampler

Now, with the likelihood at hand, we proceed to construct the object of prime interest in
Bayesian inference, the posterior. Essentially, the posterior is the probability distribution
obtained by updating a preliminary distribution over parameters, termed prior, as more data
is incorporated through the likelihood function. More formally, updating is performed using
Bayes’ rule as

p(ϑ|w1:N) ∝ L(w1:N |ϑ)p(ϑ). (6)

where p(ϑ) is the prior.
Here, the first most notable prior is the categorical prior on the system states, sn,

sn ∼ Categorical1:M(π1:M), (7)

which is an extension of the Bernoulli distribution for more that two system states. The
second important prior is the Dirichlet prior on the system transition probabilities assuming
a given number of system states Mσ

π1:Mσ ∼ Dirichlet(α), (8)
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where α is a vector of Mσ elements called the concentration parameter. For the remain-
ing parameters, we opt for priors that are either physically or computationally motivated
provided in Supplementary Information Sec. S3.

After constructing the posterior, we can make inferences on the parameters by drawing
samples from the posterior. However, as the resulting posterior has a non-analytical form,
it cannot be directly sampled. Therefore, we develop a Markov chain Monte Carlo sampling
(MCMC) procedure [36, 44–48] to draw samples from the posterior.

Our MCMC scheme follows a Gibbs sampling technique that sweeps through updates of
the set of parameters in the following order: 1) donor and acceptor relaxation rates, λd and
λa, using the Metropolis Hasting (MH) procedure; 2) FRET rates, λ1:M

FRET , for each system
state using MH; 3) per-pulse donor excitation probability, πex by directly sampling from
the posterior; 4) transition probabilities between system states, π1:M by directly drawing
samples from the posterior; 5) the system states trajectory, s1:N , using forward backward
sampling procedure [49]. In the end, the chains of samples drawn can be used for subsequent
numerical analysis.

3.1.1 Inference Procedure: Nonparametrics Sampler

The smFRET data analysis method illustrated above assumes a given number of system
states, Mσ. However, in many applications the number of system states is not specified a
priori. Here, we describe a generalization of our parametric method to address this shortcom-
ing and estimate the number of system states simultaneously along with the other unknown
parameters.

We accomplish this by modifying our previously introduced parametric posterior as fol-
lows.

First, we suppose an infinite number of system states (Mσ → ∞) for the likelihood
introduced previously and learn the transition matrix Π. The number of system states is
then enumerated as those with nonzero transition probabilities.

To incorporate this infinite system state space into our inference strategy, we leverage the
iHMM [23, 24, 26–28] from the BNP repertoire, placing a hierarchical Dirichlet process prior
over the infinite set of system states instead of simply using a Dirichlet prior as described
in the first companion manuscript. However, as dealing with an infinite number of random
variables is not computationally feasible, we approximate this infinite value with a large
number Mmax

σ , reducing our hierarchical Dirichlet process prior to

β ∼ Dirichlet

(
γ

Mmax
σ

, . . . ,
γ

Mmax
σ

)
,

πm ∼ Dirichlet(αβ) , m = 1, ...,Mmax
σ .

Here β denotes the Mmax
σ long base probability vector serving itself as a prior on the prob-

ability transition matrix Π to reduce overfitting, and πm is the m-th row of Π. Moreover,
γ is the parameter of the Dirichlet process prior [26, 27].

Now, equipped with the nonparametric posterior, we proceed to simultaneously make
inferences on the number of system states as well all remaining parameters. To do so, we
employ the aforementioned Gibbs sampling scheme, except that we must now also sample
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the base distribution β. More details on the overall sampling scheme are found in the SI in
section S4.

4 Results

The main objective of our method is to learn full distributions over the: 1) number of system
states Mσ; 2) FRET rates, λFRET1:M ; 3)fluorophores’ relaxation rates (inverse of lifetimes), λa
and λd; and 4) transition probabilities; πσi→σj . To sample over distributions over these pa-
rameters, our method requires input data comprised of photon arrival time traces from both
donor and acceptor channels as well as a set of input parameters that can be precalibrated
including: elements of the crosstalk matrix; background emission; detection efficiency; and
IRF.

Here, we first show that our method samples posteriors over set of parameters employing
realistic synthetic data generated using Gillespie’s algorithm [50] to simulate system and
photophysical state dynamics. The list of parameters used in data generation for all the
figures is provided in Supplementary Information Table S2. Furthermore, the parameters
used in the analysis of synthetic and experimental data are listed in the Supplementary
Information Sec. S3.

We first show that our method works for the simplest case of slow transitions with two
system states using synthetic data, see Fig. 2. Next, we proceed to tackle more challenging
synthetic data with three system states and higher transition rates and temporal resolution.
We show that our nonparametric algorithm correctly infers the number of system states and
the corresponding transition rates; see Fig. 3.

After demonstrating the performance of our method using synthetic data, we use ex-
perimental data to investigate the dynamics of the HJ under different concentrations of
magnesium chloride (MgCl2) in the buffer; see Fig. 4. As expected, decreasing concentra-
tions of Mg2+ decrease screening between the negatively charged arms of the HJ resulting in
longer low FRET dwells where arms are further apart [42, 51].

4.1 Simulated Data Analysis

To help validate BNPs on smFRET single photon data, we start with a simple case of a two
state system and select kinetics similar to those of the experimental data sets, cf. the HJ
in 10 mm MgCl2, which has escape rates, i.e., the rate of transitions pointing out of system
states, at 40 s−1 [52]. The generated system state trajectory and photon traces over a period
of 500 ms from both channels are shown in Fig. 2 (a).

Fig. 2 (b) shows the posterior distribution over FRET efficiencies (FRET efficiency is
defined as εFRET = λFRET/(λFRET + λd)) and system state escape rates with two peaks
corresponding to the two system states. If this were to be the HJ, the escape rates would
coincide with escape from low FRET to high FRET states and vice versa.

Furthermore, the ground truth, designated by red dots, falls well within the high posterior
region. The results for the remaining parameters, including donor and acceptor transition
rates, FRET transition rates and system transition probabilities, are presented in Supple-
mentary Information Section S7.
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Figure 2: Analysis on synthetic data for a system with two system states. In panel
(a), we show a section of synthetic data produced with the values in Table S2, which can
be found in the SI. Furthermore, the system state trajectory is shown in blue. Below this,
the arrival times of donor and acceptor photons µdn and µan are shown in green and red,
respectively. In panel (b), we show the bivariate posterior for the system transition rates
λesc and FRET efficiencies εFRET . The ground truth is shown with red dots. We see that we
are able to clearly distinguish two system states and locate the ground truth values for the
associated escape rates and FRET efficiencies, which are near the peaks of the learned pos-
terior distribution. We have smoothed the distributions using Julia’s Distribution.jl kernel
density estimation (KDE).

9

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.20.500892doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500892
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: Analysis on synthetic data for three system states. In panel (a) we have a
section of synthetic data produced with the values from Supplementary Information Table S3.
The system state trajectory is seen in blue. Below this, the arrival times of donor and
acceptor photons µdn and µan are shown in green and red, respectively. In panel (b), we have
the bivariate posterior for the system transition rates λesc and FRET efficiencies εFRET . The
ground truth values remain within two standard deviations of each posterior peak.

To showcase the critical role played by BNPs, we also consider the more difficult case of
a system with three system states and faster system state dynamics ranging over 1200-2500
s−1. To do so, we simulate traces of photons in both donor and acceptor channels over a
period of ∼150 ms. An example of the synthetic data over 50 ms is depicted in Fig 3a.

Using direct photon arrivals from the generated trace of photons, our method predicts the
correct number of system states, as shown in Fig 3b, while inferring all other parameters.
Furthermore, our method learns the system transition rates where the ground truth fall
within one standard deviation of the resulting distributions. Our method does so while
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rigorously propagating uncertainty from all existing noise sources, such as background, rather
than eliminating noise in the preprocessing steps [15, 19, 53]. The results for remaining
parameters are provided in the Supplementary Information Section S7.

4.2 Experimental Data Analysis: Holliday Junction

In this section, we benchmark our method over a wide range of kinetic rates employing
experimental data acquired using HJ with different kinetic rates arising from varying the
concentration of MgCl2 in buffer [52, 54]. The HJ kinetic rates have been extensively studied
using both fluorescence lifetime correlation spectroscopy (FLCS) [54] and HMM analysis
[55] on diffusing HJs assuming a priori a pair of high and low FRET system states. These
previous studies show kinetic rates decreasing with increasing concentrations of MgCl2 [42,
51]. This occurs due to the inability of the compact stacked X-structure to transition through
the fully extended form of HJ at higher Mg2+ concentration [42].

The observed rapid kinetics at low concentrations of Mg2+ necessitates methods free of
averaging and binning that can resolve such short timescales as well as transient confor-
mations of HJs. As such, our nonparametric method and its implementation BNP-FRET
eliminates all averaging and binning by contrast to FLCS or HMM analysis.

Here, we apply the BNP-FRET to data acquired from HJs at 1, 3, 5, and 10 mm MgCl2
concentrations, and sample the distribution over the number of system states and rates. The
acquired posterior distributions over the FRET efficiencies and escape rates are presented
in Fig. 4. Moreover, estimates for the other parameters can be found in the SI Section S7.
We note that our results are obtained on a single molecule basis with a photon budget of
104 − 105 photons.

Our nonparametric sampler estimates the number of system states to be two, while this
was given as an input to the other analysis methods [54, 55]. Moreover, the escape rates
found for all predicted system states are of the orders 1400 s−1, 140 s−1, 72 s−1, and 41 s−1 for
the four concentrations (see Fig. 4), respectively. These escape rates are in close agreement
with values reported by FLCS and H2MM methods [54, 55] which lie well within the bounds
of our posteriors shown in Fig. 4 while simultaneously, and self-consistently, learning state
numbers.

4.3 Experimental Data Acquisition

In this section, we describe the protocol to prepare the surface immobilized HJ sample labeled
with a FRET pair and the experimental procedure to record smFRET traces from individual
immobilized molecules. The sample preparation method and the recording of experimental
data follow previous work [56].

Sample preparation: The HJ used in this work consists of four DNA strands whose
sequences are as follows:

R-strand: 5’-CGA TGA GCA CCG CTC GGC TCA ACT GGC AGT CG-3’
H-strand: 5’-CAT CTT AGT AGC AGC GCG AGC GGT GCT CAT CG-3’
X-strand: 5’-biotin-TCTTT CGA CTG CCA GTT GAG CGC TTG CTA GGA GGA

GC-3’
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d

Figure 4: The bivariate posterior for the conformational transition rates λesc
and FRET efficiencies εFRET . The MAP estimates are shown with red dots. In
panel (a), we show the posterior for a sample with 1 mm MgCl2. We report escape
rates of 1533.3± 432.4 s−1 and 1239.7± 353.5 s−1 in this case. The posterior for a sam-
ple with 3 mmMgCl2 is shown in panel (b). We report escape rates of 139.4± 22.2 s−1

and 141.7± 22.9 s−1 for this case. In panel (c), we show our posterior for a sample with
5 mmMgCl2. Here, we report escape rates of 64.1± 9.9 s−1 and 80.1± 6.4 s−1. The posterior
in panel (d) is for a sample with 10 mmMgCl2. We report escape rates of 41.5± 15.6 s−1 and
39.5± 9.4 s−1.

B-strand: 5’-GCT CCT CCT AGC AAG CCG CTG CTA CTA AGA TG-3’.

For surface immobilization, the X-strand was labeled with biotin at the 5’-end. For FRET
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measurements, the donor (ATTO-532) and acceptor (ATTO-647N) dyes were introduced
into the H- and B-strands, respectively. In both cases, the dyes were labeled to thymine
nucleotide at the 6th position from the 5’-ends of respective strands (shown as T). All DNA
samples (labeled or unlabeled) were purchased from JBioS (Japan) in the HPLC purified
form and were used without any further purification.

The HJ complex was prepared by mixing 1 mm solutions of R-, H-, B-, and X-strands
in TN buffer (10 mm Tris-HCl with 50 mm NaCl, pH 8.0) at 3:2:3:3 molar ratio, annealing
the mixture at 94 °C for 4 minutes, and gradually cooling it down (2-3 °C min−1) to room
temperature (25 °C).

For smFRET measurements, we used a sample chamber (Grace Bio-Labs SecureSeal,
GBL621502) with biotin-PEG-SVA (biotin-poly(ethylene glycol)-succinimidyl valerate) coated
coverslip. The chamber was first incubated with streptavidin (0.1 mg mL−1 in TN buffer) for
20 min. This was followed by washing the chamber with TN buffer (3 times) and injection
of 1 nm HJ solution (with respect to its H-strand) for 3-10 seconds. After this incubation
period, the chamber was rinsed with TN buffer (3 times) to remove unbound DNA and it
was filled with TN buffer containing 1 mm (or 5 mm) MgCl2 and 2 mm Trolox for smFRET
measurements.

smFRET measurements: The smFRET traces from individual HJs were recorded
using a custom built confocal microscope (Nikon Eclipse Ti) equipped with the Perfect
Focus System (PFS), a sample scanning piezo stage (Nano control B16-055), and a time
correlated single photon counting (TCSPC) module (Becker and Hickl SPC-130EM).

The broadband light generated by a supercontinuum laser operating at 40 MHz (Fianium
SC-400-4) was filtered with a bandpass filter (Semrock FF01-525/30) for exciting the donor
dye, ATTO-532. This excitation light was introduced to the microscope using a single-mode
optical fiber (Thorlabs P5-460B-PCAPC-1), and directed onto the sample using a dichroic
mirror (Chroma ZT532/640rpc) and a water immersion objective lens (Nikon Plan Apo IR
60x, numerical aperture = 1.27).

The excitation light was focused onto the top surface of the coverslip and, during mea-
surements, the focusing condition was maintained using the PFS. The fluorescence signals
were collected by the same objective, passed through the dichroic mirror, and guided to the
detection assembly (Thorlabs DFM1/M) using a multimode fiber (Thorlabs M50L02S-A).
Note that this multimode fiber (core diameter: 50 µm) also acts as the confocal pinhole. In
the detection assembly, the fluorescence signals from the donor and acceptor dyes were sepa-
rated using a dichroic mirror (Chroma Technology ZT633rdc), filtered using bandpass filters
(Chroma ET585/65m for donor, and Semrock FF02-685/40 for acceptor), and detected using
separate hybrid detectors (Becker & Hickl HPM-100-40-C).

For each detected photon, its macrotime (absolute arrival time from the start of the
measurement) was recorded with 25.2 ns resolution and its microtime (relative delay from
the excitation pulse) was recorded with 6.1 ps resolution using the TCSPC module operating
in time-tagging mode. A router (Becker and Hickl HRT-41) was used to process the signals
from the donor and acceptor detectors.

For recording smFRET traces from individual HJs, we first imaged a 10 µm×3 µm area
of the sample using the piezo stage by scanning it linearly at a speed of 1 µm s−1 in the
X-direction and with an increment of 0.1 µm in the Y-direction. Individual HJs appeared as
isolated bright spots in the image.
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Next, we fitted the obtained donor and acceptor intensity images with multiple 2D Gaus-
sian functions to determine the precise locations of individual HJs. Note that, during this
image acquisition, the laser excitation power was kept to a minimum (∼1 µW at the back
aperture of the objective lens) to avoid photobleaching of the dyes. In addition, we also
employed an electronic shutter (Suruga Seiki, Japan) in the laser excitation path to control
the sample excitation as required.

Using the obtained precise locations of individual HJs, we recorded 30 s long smFRET
traces for each molecule by moving them to the center of the excitation beam using the
piezo stage. For each trace, the laser excitation was blocked (using the shutter) for the first
5 seconds and was allowed to excite the sample for the remaining 25 seconds. Note that
the smFRET traces were recorded using 40 µW laser excitation (at the back aperture of the
objective lens) to maximize the fluorescence photons emitted from the dyes. We automated
the process of acquiring smFRET traces from different molecules sequentially and executed
it using a program written in-house on Igor Pro (Wavemetrics).

5 Discussion

The sensitivity of smFRET has been exploited to investigate many different molecular in-
teractions and geometries [8–11, 57]. However, quantitative interpretation of smFRET data
faces serious challenges including unknown number of system states and robust propagation
of uncertainty from noise sources such as detectors and background. These challenges ulti-
mately mitigate our ability to determine full distributions over all relevant unknowns and,
traditionally, have resulted in data pre- or post-processing compromising the information
that is otherwise encoded in the rawest form of data: single photon arrivals.

Here, we provide a general BNP framework for smFRET data analysis starting from
single photon arrivals under a pulsed illumination setting. We simultaneously enumerate
the number of system states as well as determine rates by incorporating existing sources of
uncertainty such as background and crosstalk.

We benchmark our method using both experimental and simulated data. That is, we
first show that our method correctly learns parameters for the simplest case with two system
states and slow system transition rates. Moreover, we test our method on more challenging
cases with more than two states using synthetic data and obtain correct estimations for
the number of states along with the remaining parameters of interest. To further assess
our method’s performance, we analyzed experimental data from HJs suspended in solutions
with a range of MgCl2 concentrations. These data were previously processed using other
techniques assuming a fixed number of system states by binning photon arrival times [54].

Despite multiple advantages mentioned above for BNP-FRET, BNPs always come with
an added computational cost as they take full advantage of information from single photon ar-
rival times and all existing sources of uncertainty. For this version of our general BNP-FRET
method simplified for pulsed illumination, we further reduced the computational complexity
by grouping empty pulses together. Therefore, the computational complexity increased only
linearly with the number of input photons as the photons are treated independently.

The method described in this paper assumes a Gaussian IRF. However, the developed
framework is not limited to a specific form for the IRF and can be used for data collected
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using any type of IRF by modifying Eq. 3. Furthermore, the framework is flexible in accom-
modating different illumination techniques such as alternating color pulses, typically used
to directly excite the acceptor fluorophores. This can be achieved by simple modification
of the generator matrix Gnon in Eq. 3. A future extension of this method could relax the
assumption of a static sample by adding spatial dependence to the excitation rate as we
explored in previous work [33, 48, 58]. This would allow our method to learn the dynamics
of diffusing molecules, as well as their photophysical and system state transition rates.
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cluster quantification with Bayesian nonparametrics. Nature Computational Science,
2(2):102–111, February 2022. Number: 2 Publisher: Nature Publishing Group.

[36] Mohamadreza Fazel, Sina Jazani, Lorenzo Scipioni, Alexander Vallmitjana, Enrico
Gratton, Michelle A. Digman, and Steve Pressé. High resolution fluorescence lifetime
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