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Abstract

Artificial intelligence has the potential to open

insight into the structure of proteins at the scale of

evolution. It has only recently been possible to ex-

tend protein structure prediction to two hundred

million cataloged proteins. Characterizing the

structures of the exponentially growing billions of

protein sequences revealed by large scale gene se-

quencing experiments would necessitate a break-

through in the speed of folding. Here we show

that direct inference of structure from primary

sequence using a large language model enables

an order of magnitude speed-up in high resolu-

tion structure prediction. Leveraging the insight

that language models learn evolutionary patterns

across millions of sequences, we train models up

to 15B parameters, the largest language model

of proteins to date. As the language models are

scaled they learn information that enables predic-

tion of the three-dimensional structure of a protein

at the resolution of individual atoms. This results

in prediction that is up to 60x faster than state-of-

the-art while maintaining resolution and accuracy.

Building on this, we present the ESM Metage-

nomic Atlas. This is the first large-scale structural

characterization of metagenomic proteins, with

more than 617 million structures. The atlas re-

veals more than 225 million high confidence pre-

dictions, including millions whose structures are

novel in comparison with experimentally deter-

mined structures, giving an unprecedented view

into the vast breadth and diversity of the structures

of some of the least understood proteins on earth.

*Equal contribution 1Meta AI, FAIR Team. 2New York Univer-
sity. Work performed as a visiting researcher at Meta AI. 3Stanford
University. Work performed as a visiting researcher at Meta AI.
4Massachusetts Institute of Technology. Work performed dur-
ing internship at Meta AI. ²Research and engineering leadership.
³Correspondence to <arives@meta.com>.

Preprint. Copyright 2022 by the authors.

1. Introduction

The sequences of proteins at the scale of evolution contain

an image of biological structure and function. This is be-

cause the biological properties of a protein act as constraints

on the mutations to its sequence that are selected through

evolution, recording structure and function into evolutionary

patterns (1±3). Within a protein family, structure and func-

tion can be inferred from the patterns in sequences (4, 5).

This insight has been central to progress in computational

structure prediction starting from classical methods (6, 7),

through the introduction of deep learning (8±11), up to the

present state-of-the-art (12, 13).

The idea that biological structure and function are reflected

in the patterns of protein sequences has also motivated a new

line of research on evolutionary scale language models (14).

Beginning with Shannon’s model for the entropy of text

(15), language models of increasing complexity have been

developed to fit the statistics of text, culminating in modern

large-scale attention based architectures (16±18). Language

models trained on the amino acid sequences of millions of

diverse proteins have the potential to learn patterns across

all of them. This idea contrasts with the standard basis

for inference from protein sequences, which begins from a

multiple sequence alignment summarizing the evolutionary

patterns in related proteins.

In artificial intelligence, language models of text, despite

the simplicity of their training objectives, such as filling

in missing words or predicting the next word, are shown

to develop emergent capabilities that are connected to the

underlying meaning of the text. These capabilities develop

as a function of scale, with greater capabilities emerging

as computation, data, and number of parameters increase.

Modern language models containing tens to hundreds of

billions of parameters develop abilities such as few-shot

language translation, commonsense reasoning, and math-

ematical problem solving, all without explicit supervision

(19±22). These observations raise the possibility that a par-

allel form of emergence might be exhibited by language

models trained on protein sequences.
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We posit that the task of filling in missing amino acids in

protein sequences across evolution will require a language

model to learn something about the underlying structure

that creates the patterns in the sequences. As the representa-

tional capacity of the language model and the diversity of

protein sequences seen in its training increase, we expect

that deep information about the biological properties of the

protein sequences could emerge, since those properties give

rise to the patterns that are observed in the sequences. To

study this kind of emergence we scale language models

from 8 million parameters up to 15 billion parameters. We

discover that atomic resolution structure prediction emerges

and continues to improve in language models over the four

orders of magnitude in parameter scale. Strong correlations

between the language model’s understanding of the protein

sequence (perplexity) and the accuracy of the structure pre-

diction reveal a close link between language modeling and

the learning of structure.

We show that language models enable fast end-to-end

atomic resolution structure prediction directly from se-

quence. Our new approach leverages the evolutionary pat-

terns captured by the language model, to produce accurate

atomic level predictions. This removes costly aspects of

current state-of-the-art structure prediction pipelines, elim-

inating the need for a multiple sequence alignment, while

at the same time greatly simplifying the neural architecture

used for inference. This results in an improvement in speed

of up to 60x on the inference forward pass alone, while also

removing the search process for related proteins entirely,

which can take over 10 minutes with the high-sensitivity

pipelines used by AlphaFold (12) and RosettaFold (13), and

which is a significant part of the computational cost even

with new lower sensitivity fast pipelines (23). In practice

this means the speedup over the state-of-the-art prediction

pipelines that are in use is up to one to two orders of magni-

tude.

This makes it possible to expand structure prediction to

metagenomic proteins. The last decade has seen efforts to

expand knowledge of protein sequences to the immense mi-

crobial natural diversity of the earth through metagenomic

sampling. These efforts have contributed to an exponential

growth in the size of protein sequence databases, which now

contain billions of proteins (24±26). While computational

structural characterizations have recently been completed

for ∼20K proteins in the human proteome (27), and the

∼200M cataloged proteins of Uniprot (28), the vast scale

of metagenomic proteins represents a far greater challenge

for structural characterization. The extent and diversity of

metagenomic structures is unknown and is a frontier for bio-

logical knowledge, and a potential source of new discoveries

for medicine and biotechnology (29±31).

We present the first evolutionary scale structural charac-

terization of a metagenomic resource, folding practically

all sequences in MGnify90 (25), over 617M proteins. We

are able to complete this characterization in 2 weeks on a

heterogeneous cluster of 2,000 GPUs, demonstrating scala-

bility to far larger databases. High confidence predictions

are made for over 225M structures, revealing and character-

izing regions of metagenomic space distant from existing

knowledge with the vast majority (76.8%) of high confi-

dence predictions being separate from UniRef90 (32) by at

least 90% sequence identity, and tens of millions of predic-

tions (12.6%) without a match to experimentally determined

structures. These results give the first large-scale view into

the vast extent and diversity of metagenomic protein struc-

tures.

All predictions can be accessed in the ESM Metage-

nomic Atlas (https://esmatlas.com) open science

resource.

2. Atomic resolution structure emerges in

language models trained on protein

sequences

We begin with a study of the emergence of high resolution

protein structure. We train a new family of transformer

protein language models, ESM-2, at scales from 8 mil-

lion parameters up to 15 billion parameters. Relative to

our previous generation model ESM-1b, ESM-2 introduces

improvements in architecture, training parameters, and in-

creases computational resources and data (Appendices A.1.1

and A.2). The resulting ESM-2 model family significantly

outperforms previously state-of-the-art ESM-1b (a ∼650

million parameter model) at a comparable number of param-

eters, and on structure prediction benchmarks it also outper-

forms other recent protein language models (Table S3).

The ESM-2 language models are trained with the masked

language modeling objective (18), which trains the model

to predict the identity of randomly selected amino acids in

a protein sequence by observing their context in the rest of

the sequence. This causes the model to learn dependencies

between the amino acids. Although the training objective it-

self is simple and unsupervised, performing well on this task

over millions of evolutionarily diverse protein sequences

requires the model to internalize sequence patterns across

evolution. We expect that this training will also cause struc-

ture to materialize since it is linked to the sequence patterns.

ESM-2 is trained over sequences in the UniRef (32) protein

sequence database. During training sequences are sampled

with even weighting across ∼43 million UniRef50 training

clusters from∼138 million UniRef90 sequences so that over

the course of training the model sees ∼65 million unique

sequences.

As we increase the scale of ESM-2 from 8 million to 15
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Figure 1. Emergence of structure when scaling language models to 15 billion parameters. (A) Predicted contact probabilities (bottom

right) and actual contact precision (top left) for 3LYW. A contact is a positive prediction if it is within the top-L most likely contacts for

a sequence of length L. (B, C, D) Unsupervised contact prediction (long range precision at L) for all scales of the ESM-2 model. (B)

Performance binned by the number of MMseqs hits when searching the training set. Larger ESM-2 models perform better at all levels; the

150M parameter ESM-2 model is comparable to the 650M parameter ESM-1b model. (C) Trajectory of improvement as model scale

increases for sequences with different numbers of MMseqs hits. (D) Left-to-right shows models from 8M to 15B parameters, comparing

the smaller model (x-axis) against the next larger model (y-axis) via unsupervised contact precision. Points are PDB proteins colored by

change in pseudo-perplexity for the sequence between the smaller and larger model. Sequences with large changes in contact prediction

performance also exhibit large changes in language model understanding measured by pseudo-perplexity. (E) TM-score on combined

CASP14 and CAMEO test sets. Predictions are made using structure module-only head on top of language models. Points are colored by

the change in pseudo-perplexity between the models. (F) Structure predictions on CAMEO structure 7QQA and CASP target 1056 at all

ESM-2 model scales, colored by pLDDT (pink = low, teal = high). For 7QQA, prediction accuracy improves at the 150M parameter

threshold. For T1056, prediction accuracy improves at the 15B parameter threshold.
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billion parameters, we observe large improvements in the

fidelity of its modeling of protein sequences. This fidelity

can be measured using perplexity, which ranges from 1 for

a perfect model to 20 for a model that makes predictions

at random. Intuitively, the perplexity describes the number

of amino acids the model is choosing between for each pre-

diction. Fig. S1 shows perplexity for the ESM-2 family as

a function of the number of training updates, evaluated on

a set of ∼500K UniRef50 clusters that have been held out

from training. The fidelity continues to improve as the pa-

rameters increase up to the largest model. At 270K training

steps the 8M parameter model has a perplexity of 10.45,

and the 15B model reaches a perplexity of 6.37, indicat-

ing a large improvement in the understanding of protein

sequences with scale.

This training also results in the emergence of structure in

the models. Since ESM-2’s training is only on sequences,

any information about structure that develops must be the

result of representing the patterns in sequences. Transformer

models trained with masked language modeling, are known

to develop attention patterns that correspond to the residue-

residue contact map of the protein (33, 34). We examine

how this low resolution picture of protein structure emerges

as a function of scale. We use a linear projection to extract

the contact map from the attention patterns of the language

model (Appendix A.2.1). The precision of the top L (length

of the protein) predicted contacts (long range contact preci-

sion) measures the correspondence of the attention pattern

with the structure of the protein. Attention patterns develop

in ESM-2 that correspond to tertiary structure (Fig. 1A), and

scaling leads to large improvements in the understanding of

structure (Fig. 1B). The accuracy of the predicted contacts

varies as a function of the number of evolutionarily related

sequences in the training set. Proteins with more related

sequences in the training set have steeper learning trajecto-

ries with respect to model scale (Fig. 1C). This means that

improvement on sequences with high evolutionary depth

saturates at lower model scales, and improvement on se-

quences with low evolutionary depth continues as models

increase in size.

For individual proteins, we often observe non-linear im-

provements in the accuracy of the contact prediction as a

function of scale. Fig. 1D plots the change in the distri-

bution of long range contact precision at each transition

to a higher level of scale. At each step there is an overall

shift in the distribution toward better performance. Also at

each transition, there is a subset of proteins that undergo

significant improvement. In Fig. 1D these are in the upper

left of each plot, far from the diagonal. The accuracy of

the contact map prediction and perplexity are linked, with

proteins undergoing large changes in contact map accuracy

also undergoing large changes in perplexity (NDCG = 0.87,

Appendix A.2.6). This link indicates that the language mod-

eling objective is directly correlated with the materialization

of the folded structure in the attention maps.

We investigate whether high resolution structure at an

atomic level also develops. To identify atomic resolution

information in the model, we project out spatial coordinates

for each of the atoms from the internal representations of

the language model using an equivariant transformer (Ap-

pendix A.3.3). This projection is fit using experimentally

determined protein structures from PDB (35), and evalu-

ated on 194 CAMEO proteins (36) and 51 CASP14 proteins

(37). TM-score, which ranges from 0 to 1, measures the

accuracy of the projection in comparison to the ground truth

structure, with a value of 0.5 corresponding to the threshold

for correctly predicting the fold (38). The evaluation uses a

temporal cutoff, ensuring that the proteins used for testing

are held out from those used in fitting the projection. This

makes it possible to measure how atomic level information

emerges in the representations as a function of the parameter

scale.

We discover that an atomic resolution structure prediction

can be projected from the representations of the ESM-2

language models. The accuracy of this projection improves

with the scale of the language model. The 15 billion param-

eter model reaches a TM-score of 0.71 on the CAMEO test

set and 0.54 on the CASP14 test set, 0.064 points higher than

the 150 million parameter ESM-2 model on both (Fig. 1E).

At each increase in scale a subset of proteins undergo large

changes in accuracy. For example, the protein 7QQA im-

proves in RMSD from 7.0 to 3.2 when scale is increased

from 35M to 150M parameters, and the CASP target T1056

improves in RMSD from 4.0 to 2.6 when scale is increased

from 3B to 15B parameters (Fig. 1F). Before and after these

jumps, changes in RMSD are much smaller. Across all

models (Table S3) there is a correlation of -0.99 between

validation perplexity and CASP14 TM-score, and -1.00

between validation perplexity and CAMEO TM-score indi-

cating a strong connection between the understanding of the

sequence measured by perplexity and the atomic resolution

structure prediction. Additionally there are strong correla-

tions between the low resolution picture of the structure that

can be extracted from the attention maps and the atomic

resolution prediction (0.96 between long range contact pre-

cision and CASP14 TM-score, and 0.99 between long range

contact precision and CAMEO TM-score). These findings

connect improvements in language modeling with the in-

creases in low resolution (contact map) and high resolution

(atomic level) structural information.

3. Accelerating accurate atomic resolution

structure prediction with a language model

Language models greatly accelerate state-of-the-art high

resolution structure prediction. The language model inter-
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Figure 2. Single sequence structure prediction with ESMFold. (A) ESMFold model architecture. Arrows show the information flow in

the network from the language model to the folding trunk to the structure module which outputs 3D coordinates and confidences. (B)

ESMFold produces accurate atomic resolution predictions, with similar accuracy to RosettaFold on CAMEO. When MSAs are ablated for

AlphaFold and RosettaFold, performance of the models degrades. Scatter-plots compare ESMFold (x-axis) predictions with AlphaFold2

(y-axis), colored by language model perplexity. Proteins with low perplexity score similarly to AlphaFold2. (C) Model pLDDT vs.

true LDDT (left) and relative performance against AlphaFold (right) on CAMEO. pLDDT is a well calibrated estimate of prediction

accuracy. (D) Top shows test-set predictions of ESMFold in teal, ground truth in gray, and AlphaFold2 predictions in green. Pink shows

low predicted LDDT for both ESMFold and AlphaFold2. Bottom shows complex predictions on a dimer (7LQM) and a tetramer (7QYM);

ESMFold predictions are colored by chain ID and overlaid on ground truth (gray). DockQ (39) scores are reported for the interactions; in

the case of the tetramer 7QYM, the score is the average of scores over interacting chain-pairs.

5

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.07.20.500902doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500902
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evolutionary-scale prediction of atomic level protein structure with a language model

nalizes evolutionary patterns linked to structure, eliminating

the need for external evolutionary databases, multiple se-

quence alignments, and templates. We find that the ESM-2

language model generates state-of-the-art three-dimensional

structure predictions directly from the primary protein se-

quence. This results in a speed improvement for structure

prediction of more than an order of magnitude while main-

taining high resolution accuracy.

We develop ESMFold, a fully end-to-end single sequence

structure predictor, by training a folding head for ESM-2

(Fig. 2A). At prediction time the sequence of a protein is

input to ESM-2. The sequence is processed through the

feedforward layers of the language model, and the model’s

internal states (representations) are passed to the folding

head. The head begins with a series of folding blocks. Each

folding block alternates between updating a sequence rep-

resentation and a pairwise representation. The output of

these blocks is passed to an equivariant transformer struc-

ture module, and three steps of recycling are performed be-

fore outputting a final atomic-level structure and predicted

confidences (Appendix A.3.1). This architecture represents

a major simplification in comparison to current state-of-the-

art structure prediction models which deeply integrate the

multiple sequence alignment into the neural network archi-

tecture through an attention mechanism operating across the

rows and columns of the MSA (12, 40).

Our approach results in a significant improvement in pre-

diction speed. On a single NVIDIA V100 GPU, ESMFold

makes a prediction on a protein with 384 residues in 14.2

seconds, 6x faster than a single AlphaFold2 model. On

shorter sequences the improvement increases up to ∼60x

(Fig. S4). The search process for related sequences, required

to construct the MSA, can take over 10 minutes with the

high sensitivity protocols used by the published versions of

AlphaFold and RosettaFold; this can be reduced to less than

1 minute, although with reduced sensitivity (23).

We train the folding head on ∼25K clusters covering a to-

tal of ∼325K experimentally determined structures from

the PDB, further augmented with a dataset of ∼12M struc-

tures we predicted with AlphaFold2 (Appendix A.1.2). The

model is trained with the same losses that are used for Al-

phaFold (41). To evaluate the accuracy of structure predic-

tions we use test sets that are held out from the training data

by a May 2020 cutoff date; as a result all structures that are

used in evaluation are held out from the training, and the

evaluation is representative of the performance that would

be expected in regular usage as a predictive model on the

kinds of structures that are selected by experimentalists for

characterization. This also makes it possible to compare

with AlphaFold and RosettaFold since these models also

have not been trained on structures deposited after May

2020. We use two test sets: the CAMEO test set consists

of 194 structures used in the ongoing CAMEO assessment

(between April 2022 to June 2022); the CASP14 test set

consists of 51 publicly released structures that have been

selected for their difficulty for the biannual structure predic-

tion competition.

We compare results on these evaluation sets to AlphaFold2

and RosettaFold (Fig. 2B). ESMFold achieves an average

TM-score of 0.83 on CAMEO and 0.68 on CASP14. Using

the search protocols released with AlphaFold2, including

MSAs and templates, AlphaFold2 achieves 0.88 and 0.85

on CAMEO and CASP14 respectively. ESMFold achieves

competitive accuracy with RosettaFold on CAMEO, which

averages a TM-score of 0.82. When evaluating AlphaFold

and RosettaFold on single sequences by ablating the multi-

ple sequence alignment, performance degrades substantially,

and falls well below that of ESMFold. Note that this is an

artificial setting as AlphaFold has not been explicitly trained

for single sequences, however it has recently emerged as

important in protein design, where these models have been

used with single sequence inputs for de novo protein design

(42±44).

Because the language model is the critical component of

ESMFold, we test how well differences in the language

model’s understanding of a sequence correspond to changes

in the accuracy of structure prediction. The performance

of ESMFold on both test sets is well correlated with the

perplexity of the language model. On the CAMEO test

set, language model perplexity has a Pearson correlation

of -0.55 with the TM-score between the predicted and ex-

perimental structures; on CASP14, the correlation is -0.67

(Fig. 2B). The relationship between perplexity and structure

prediction suggests that improving the language model is

key to improving single-sequence structure prediction accu-

racy, consistent with observations from the scaling analysis

(Figs. 1D and 1E). Additionally, this makes it possible to

predict how well ESMFold will perform from the language

model’s understanding of the input sequence as quantified

by perplexity.

Ablation studies indicate that the language model repre-

sentations are critical to ESMFold performance (Fig. S2).

With a much smaller folding trunk of 8 blocks, performance

degrades to 0.74 LDDT (baseline). Without the language

model, the single sequence performance on the CAMEO

test set degrades substantially, to 0.58 LDDT. When remov-

ing the folding trunk entirely (i.e. only using the language

model and the structure module), performance degrades

to 0.66 LDDT. Other ablations: only 1 block of a struc-

ture module, turning off recycling, not using AlphaFold2

predicted structures as distillation targets, or not using tri-

angular updates, result in small performance degradations

(change in LDDT of -0.01 to -0.04).

ESMFold provides state-of-the-art structure prediction ac-
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curacy, matching AlphaFold2 performance (< 0.05 LDDT

difference) on more than half the proteins (Fig. 2B). We find

that this is true even on some large proteinsÐT1076 is an ex-

ample with 0.98 TM-score and 540 residues (Fig. 2D). Parts

of structure with low accuracy do not differ significantly

between ESMFold and AlphaFold, suggesting that language

models are learning information similar to the contents of

MSAs. We also observe that ESMFold is able to make good

predictions for components of homo- and heterodimeric

protein-protein complexes (Fig. 2D). In a comparison with

AlphaFold-Multimer (45) on a dataset of 2,978 recent multi-

meric complexes deposited in the PDB, ESMFold achieves

the same qualitative DockQ (39) categorization for 53.2% of

chain pairs, despite not being trained on protein complexes

(Fig. S6).

Confidence is well calibrated with accuracy. ESMFold re-

ports confidence in the form of predicted-LDDT. This con-

fidence correlates well with the accuracy of the prediction,

and for high-confidence predictions (pLDDT > 0.7) accu-

racy is comparable to AlphaFold2 (ESMFold LDDT=0.83,

AlphaFold2 LDDT=0.85 on CAMEO) (Figs. 2C and S3).

High-confidence predictions approach experimental-level

accuracy. On the CAMEO test set, ESMFold predictions

have a median all-atom RMSD95 (root-mean-squared de-

viation at 95% residue coverage) of 1.91Å and backbone

RMSD95 of 1.33Å. When confidence is very high (pLDDT

> 0.9), predictions have median all-atom RMSD95 of 1.42Å

and backbone RMSD95 of 0.94Å. This means the confi-

dence can be used to predict how likely it is that a given

structure prediction will match the true structure if it were

to be experimentally determined.

4. Evolutionary-scale structural

characterization of metagenomics

This fast and high resolution structure prediction capability

enables the first full-scale structural characterization of a

large metagenomic sequence resource. We fold over 617

million sequences from the MGnify90 database (25). This is

the entirety of the sequences of length 20 to 1024, and covers

99% of all the sequences in MGnify90. Overall, this large-

scale characterization produces ∼365 million predictions

with good confidence (mean pLDDT > 0.5 and pTM >

0.5) corresponding to ∼59% of the database, and ∼225

million predictions with high confidence (mean pLDDT

> 0.7 and pTM > 0.7) corresponding to ∼36% of total

structures folded (Fig. 3). We were able to complete the

predictions in 2 weeks on a cluster of approximately 2,000

GPUs (Appendix A.4.1).

When scaling to very large sequence databases, it will be

critical to distinguish well predicted proteins from those that

are poorly predicted. In the previous section, we studied

calibration against experimentally determined structures on

held out test sets, finding that the model confidence is pre-

dictive of the agreement with experimentally determined

structures. We also assess calibration against AlphaFold

predictions on metagenomic proteins. On a random subset

of ∼4K metagenomic sequences, there is a high correla-

tion (Pearson r = 0.79) between ESMFold pLDDT and the

LDDT to AlphaFold2 predictions (Fig. 3A). Combined with

results on CAMEO showing that when confidence is very

high (pLDDT > 0.9), ESMFold predictions approach ex-

perimental accuracy, these findings mean that ESMFold’s

confidence scores provide a good indication of the agree-

ment with experimental structures and with the predictions

that can be obtained from AlphaFold2. Across the ∼617

million predicted structures, ∼113 million structures meet

the very high confidence threshold.

Many of our metagenomic structure predictions have high

confidence (Fig. 3B) as well as a high degree of novelty

(Figs. 3C to 3E). On a random sample of 1 million high

confidence structures, 76.8% (767,580) of the proteins

have a sequence identity below 90% to any sequence in

UniRef90, indicating that these proteins are distinct from

existing UniRef90 clusters (Fig. 3D). For 3.4% (33,521

proteins), no significant match is found in UniRef90 at all

(Appendix A.4.2). Many structures are novel in comparison

with experimentally determined structures. For 12.6% of

the structures (125,765 proteins), no structure is found with

TM-score over 0.5 in the PDB database (Figs. 3C and 3E),

indicating that no experimentally determined structure with

a similar fold could be identified. Relaxing this threshold to

a TM-score of 0.7, reveals 25.4% (253,905 proteins) without

similar structures in the PDB. For 10.4% (104,319 proteins)

there is both low structural similarity (TM-score ≤ 0.5)

and no close sequence homolog (< 30% identity) (Fig. 4A

and Table S4). These results indicate that ESMFold effec-

tively characterizes regions of the protein landscape that are

distant from existing knowledge.

Large scale structural characterization also makes it pos-

sible to identify structural similarities in the absence of

sequence similarity. Many high-confidence structures with

low similarity to UniRef90 sequences do have similar struc-

tures in the PDB. This remote homology often extends

beyond the limit detectable by sequence similarity. For

example, MGnify sequence MGYP000936678158 has no

significant sequence matches to any entry in UniRef90, nor

any significant matches via a jackhmmer (47) reference

proteome search, but has a predicted structure conserved

across many nucleases (PDB 5YET B, TM-score 0.68; PDB

3HR4 A, TM-score 0.67) (Fig. 4B and Table S4); similarly,

MGnify sequence MGYP004000959047 has no significant

UniRef90 or jackhmmer reference proteome matches but

its predicted structure has high similarity to experimental

structures of lipid binding domains (PDB 6BYM A, TM-

score 0.80; PDB 5YQP B, TM-score 0.78) (Fig. 4C and
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Figure 3. Mapping metagenomic structural space. (A) ESMFold calibration with AlphaFold2 for metagenomic sequences. Mean pLDDT

is shown on the x-axis, and LDDT to the corresponding AlphaFold2 prediction is shown on the y-axis. Distribution is shown as a density

estimate across a subsample of ∼4K sequences from the MGnify database. (B) The distribution of mean pLDDT values computed for

each of ∼617 million ESMFold-predicted structures from the MGnify database. (C) The distribution of the TM-score to the most similar

PDB structure for each of 1 million randomly sampled high confidence (mean pLDDT > 0.7 and pTM > 0.7) structures. Values were

obtained by a Foldseek search (46). (D) This sample of 1 million high-confidence protein structures is visualized in two dimensions

using the UMAP algorithm and colored according to distance from nearest PDB structure, where regions with low similarity to known

structures are colored in dark blue. Example protein structures and their locations within the sequence landscape are provided; see also

Fig. 4 and Table S4. (E) Additional UMAP plot in which the 1 million sequences are plotted according to the same coordinates as in (D)

but colored by the sequence identity to the most similar entry in UniRef90 according to a blastp search.

Table S4). The ability to detect remote similarities in struc-

ture enables insight into function that cannot be obtained

from the sequence.

All predicted structures are available in the ESM Metage-

nomic Atlas (https://esmatlas.com) as an open sci-

ence resource. Structures are available for bulk download,

via a programmatic API, and through a web resource which

provides search by sequence and by structure (46, 48).

These tools facilitate both large scale and focused analy-

sis of the full scope of the hundreds of millions of predicted

structures.

5. Background

In this section, we provide a brief review of evolutionary

scale language models. In Rives et al. (14) we found evi-

dence that biological structure and function emerge in lan-

guage models trained on protein sequences at the scale of

evolution. Concurrently Bepler and Berger (49), Alley et al.

(50), Heinzinger et al. (51) investigated LSTMs at a smaller

scale and also found some evidence of biological properties

in representations. Early models did not match performance

of even simple evolutionary features on many tasks (52).

Analysis of state-of-the-art evolutionary scale models such

as ESM-1b and ProtTrans showed that low resolution struc-

ture, i.e., secondary structure (14, 53), and contact maps

(14, 33, 34) could be recovered from representations.

Evolutionary scale models are also shown to perform un-
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Figure 4. Example ESMFold structure predictions of metagenomic sequences. (A) Example predicted structures from six different

metagenomic sequences; also see Table S4. Left of each subfigure: The prediction is displayed with the AlphaFold2 prediction (light

green). Right of each subfigure: The prediction is displayed with the Foldseek-determined nearest PDB structure according to TM-score.

(B, C) Examples of two ESMFold-predicted structures that have good agreement with experimental structures in the PDB but that have

low sequence identity to any sequence in UniRef90. (B) The predicted structure of MGYP000936678158 aligns to an experimental

structure from a bacterial nuclease (light brown, PDB: 3H4R), while (C) the predicted structure of MGYP004000959047 aligns to an

experimental structure from a bacterial sterol binding domain (light brown, PDB: 6BYM).

supervised prediction of mutational effects (54, 55), and

have recently been used in state-of-the-art applications, for

example to predict the path of viral evolution (56, 57), and

the clinical significance of gene variants (58). Several large

scale models are now available as open source (14, 53, 59).

Language models have been studied for end-to-end single

sequence prediction of backbone structure (60).

6. Conclusions

Fast and accurate computational structure prediction has the

potential to accelerate progress toward an era where it is pos-

sible to understand the structure of all proteins discovered in

gene sequencing experiments. This promises new insights

into the vast natural diversity of proteins, most of which is

being newly discovered in metagenomic sequencing. To this

end we have completed the first large-scale structural char-

acterization of metagenomic proteins. This characterization

reveals the structures of hundreds of millions proteins that

have been previously unknown, millions of which are novel

in comparison to experimentally determined structures.

As structure prediction continues to scale to larger numbers

of proteins, calibration will become a critical factor, since

when throughput of prediction is limiting, the accuracy and

speed of the prediction form a joint frontier in the number

of accurate predictions that can be generated. Very high con-

fidence predictions in the metagenomic atlas are expected

to often be reliable at a resolution sufficient for insight sim-

ilar to experimentally determined structures, such as into

the biochemistry of active sites (61); and for many more

proteins where the topology is predicted reliably insight can

be obtained into function via remote structural relationships

that could not be otherwise detected with sequence.

The emergence of atomic level structure in language models

reveals a high resolution picture of protein structure that is

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.07.20.500902doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500902
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evolutionary-scale prediction of atomic level protein structure with a language model

encoded by evolution into sequence patterns across millions

of proteins, adding to the evidence that the unsupervised

training objective materializes deep information about the

biology of proteins. ESM-2 is the result of our work over

several years focusing on emergence of biological proper-

ties, and is the first time a language model has been shown

to capture a high resolution picture of structure. Our current

models are very far from the limit of scale in parameters,

sequence data, and compute that can in principle be applied.

We are optimistic that as we continue to scale there will be

further emergence. Our results showing the improvement in

the modeling of low depth proteins point in this direction.

ESM-2 results in an advance in speed that in practical

terms is up to one to two orders of magnitude, which puts

the structural characterization of far larger numbers of se-

quences within reach of accurate atomic level structure

prediction. Obtaining hundreds of millions of predicted

structures within practical timescales can help to reveal new

insights into the breadth and diversity of natural proteins,

and to accelerate discovery of new protein structures and

functions.
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A. Materials and Methods

A.1. Data

A.1.1. SEQUENCE DATASET USED TO TRAIN ESM-2

UniRef50, September 2021 version, is used for the training

of ESM models. The training dataset was partitioned by

randomly selecting 0.5% (≈ 250,000) sequences to form

the validation set. The training set has sequences removed

via the procedure described in Meier et al. (54). MMseqs

search (-min-seq-id 0.5 -alignment-mode 3

-max-seqs 300 -s 7 -c 0.8 -cov-mode 0) is

run using the train set as query database and the valida-

tion set as target database. All train sequences which match

a validation sequence with 50% sequence identity under this

search are removed from the train set.

De-novo designed proteins are filtered out from the pretrain-

ing dataset via two filters. First, any sequence in UniRef50

and UniRef90 that was annotated as ªartificial sequenceº by

a taxonomy search on the UniProt website, when 2021 04

was the most recent release (1,027 proteins), was removed.

Second, jackhmmer was used to remove all hits around

a manually curated set of 81 de-novo proteins. jackhm-

mer was run with --num-iter 1 -max flags, with each

of the 81 de-novo proteins as a query and UniRef100 as

a search database. All proteins returned by jackhmmer

were removed from both UniRef50 and UniRef90 via their

UniRef IDs (58,462 proteins). This filtering is performed to

enable future work evaluating the generalization of language

models to de-novo sequences.

To increase the amount of data and its diversity, a minibatch

of UniRef50 sequences is sampled for each training update.

Each sequence is then replaced with a sequence sampled

uniformly from the corresponding UniRef90 cluster. This

allowed ESM-2 models to train on over 60M protein se-

quences.

A.1.2. STRUCTURE TRAINING SETS FOR ESMFOLD

For training ESMFold, we follow the training procedure

outlined in Jumper et al. (12). We find all PDB chains

until 2020-05-01 with resolution greater than or equal to

9Å and length greater than 20. All proteins where over

20% of the sequence is the same residue is not considered.

MMseqs easy-cluster with default parameters is used to

cluster resulting sequences at 40% sequence identity. Only

individual chains are used during training, even when the

chain is part of a protein complex. This results in 25,450

clusters covering a total of 325,498 chains.

At training time, each cluster is sampled evenly, and then

a random protein is sampled from each cluster. Rejection

sampling is applied to train on longer proteins more fre-

quently, where protein chains are accepted with probability

1

512
max(min(Nres, 512), 256).

For Hsu et al. (62) we generated a set of 13,477,259 structure

predictions with AlphaFold2 using MSAs generated via the

process in Rao et al. (40). The dataset is then filtered to

select only sequences with mean pLDDT > 70. Because

of the way the dataset is constructed, only 1.5% of the

dataset is removed with this filter. Additionally, loss is

not calculated for residues with pLDDT < 70. We found

that this is necessary to obtain increased performance using

predicted structures. Predicted structures are sampled from

75% of the time, and real structures 25% of the time during

training. Data processing is done with Biotite (63).

A.1.3. STRUCTURE VALIDATION AND TEST SETS

During method development (e.g. hyperparameter selec-

tion), we used a temporally held out validation set ob-

tained from the Continuous Automated Model EvaluatiOn

(CAMEO) server (36) by filtering from August 2021 to

January 2022.

We report results by testing 3D structure prediction mod-

els on two test sets, both chosen to be temporally held

out from our supervised training set. The first test is from

CAMEO, consisting of all 194 test proteins from April 01,

2022 through June 25, 2022. Our second test set consists of

51 targets from the CASP14 competition (37). For both test

sets, metrics are computed on all modeled residues in the

PDB file. The full CASP14 target list is:

T1024, T1025, T1026, T1027, T1028, T1029, T1030,

T1031, T1032, T1033, T1034, T1035, T1036s1, T1037,

T1038, T1039, T1040, T1041, T1042, T1043, T1044,

T1045s1, T1045s2, T1046s1, T1046s2, T1047s1, T1047s2,

T1049, T1050, T1053, T1054, T1055, T1056, T1057,

T1058, T1064, T1065s1, T1065s2, T1067, T1070, T1073,

T1074, T1076, T1078, T1079, T1080, T1082, T1089,

T1090, T1091, T1099.

These are all publicly available CASP14 targets as of July

2022.

No filtering is performed on these test sets, as ESMFold

is able to make predictions on all sequences, including the

length-2166 target T1044.

A.1.4. CAMEO DATASET DIFFICULTY CATEGORIES

The CAMEO evaluation places each target into three cat-

egories: easy, medium, and hard. This placement is done

based on the average performance of all public structure

prediction servers. Targets are classified as ªeasyº if the

average LDDT is > 0.75, ªhardº if the average LDDT is

< 0.5, and ªmediumº otherwise. In the main text, we re-

port average performance across all targets in CAMEO. In

Table S5 we provide statistics for each difficulty category.
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A.1.5. RECENT-PDB-MULTIMERS

To evaluate ESMFold on protein complexes, we adopt an

evaluation construction approach based on the one described

in (45). This dataset consists of targets deposited in the

Protein Data Bank between 2020-05-01 and 2022-06-01.

The following filtering steps are performed:

• Complexes must contain more than 1 chain and less

than 9 chains.

• Chains with length < 20 residues, or where one residue

makes up > 20% of the chain are excluded.

• Complexes must contain fewer than 1536 residues,

excluding chains which fail the previous step.

• Each chain is assigned to a 40% overlap cluster using

clusters provided by the PDB

• Each complex is assigned a cluster which is the union

of chain cluster ids

• From each cluster complex, the example with highest

resolution is selected as the representative

These steps result in a total of 2978 clusters. Predictions

are made on the full complex, but metrics are computed

on a per chain-pair basis using the DockQ program (39).

Chain pairs are greedily selected for evaluation if their pair

cluster id has not been previously evaluated. Chain pairs

which DockQ identifies as having no contacting residues in

the ground truth are not evaluated. This results in a total of

3505 unique chain pairs.

A.2. Language Models

A.2.1. COMPUTING UNSUPERVISED CONTACT

PREDICTION FROM LANGUAGE MODELS

We use the methodology of Rao et al. (34) to measure unsu-

pervised learning of tertiary structure in the form of contact

maps. A logistic regression is used to identify contacts. The

probability of a contact is defined as:

Let cij be a boolean random variable which is true if amino

acids i, j are in contact. Suppose our transformer has L

layers and K attention heads per layer. Let Akl be the

symmetrized and APC-corrected (64) attention map for the

k-th attention head in the l-th layer of the transformer, and

aklij be the value of that attention map at position i, j. Then

p(cij) =

(

1 + exp(−β0 −
L
∑

l=1

K
∑

k=1

βkla
kl
ij )

)−1

(1)

The parameters are fit in scikit-learn (65) using L1-

regularized logistic regression with = 0.15. The regression

is fit using the 20 protein training set from Rao et al. (34),

which was simply a random selection from the trRosetta

(11) training set. We performed a variability analysis us-

ing 20 bootstrapped samples of 20 training proteins from

the total set of 14862 proteins. The average long range

P@L was 0.4287 with a standard deviation of 0.0028. We

also performed experiments using larger training sets, but

observed no significant performance change. Given these re-

sults, we are confident that selecting a subset of 20 proteins

for training provides a good estimate of contact precision

performance.

Unsupervised contact prediction results are reported for the

14842 protein test set used in Rao et al. (34), which is also

derived from the trRosetta training set. For both training

and test a contact is defined as two amino acids with C-α

distance < 8Å.

A.2.2. LANGUAGE MODEL PERPLEXITY CALCULATIONS

Perplexity is a measure of a language model’s uncertainty

of a sequence and is defined as the exponential of the neg-

ative log-likelihood of the sequence. Unfortunately, there

is no efficient method of computing the log-likelihood of a

sequence under a masked language model. Instead, there

are two methods we can use for estimating perplexity.

First, let the mask M be a random variable denoting a set

of tokens from input sequence x. Each token has a 15%

probability of inclusion. If included the tokens have an 80%

probability of being replaced with a mask token, a 10%

probability of being replaced with a random token, and a

10% probability of being replaced with an unmasked token.

Let x̂i∈M denote the set of modified input tokens. The

perplexity is then defined as

PERPLEXITY(x) =

exp

{

− log p(xi∈M | xj /∈M ∪ x̂i∈M )

}

(2)

As the set M is a random variable, this expression is non-

deterministic. This makes it a poor estimate of the perplexity

of a single sequence. However, it requires only a single for-

ward pass of the model to compute, so it is possible to

efficiently obtain an estimate of the expectation of this ex-

pression over a large dataset. When reporting the perplexity

over a large dataset (such as our UniRef validation set), this

estimate is used.

The second perplexity calculation is the pseudo-perplexity,

which is the exponential of the negative pseudo-log-

likelihood of a sequence. This estimate provides a determin-

istic value for each sequence, but requires L forward passes

to compute, where L is the length of the input sequence. It
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is defined as

PSEUDOPERPLEXITY(x) =

exp

{

−
1

L

L
∑

i=1

log p(xi | xj ̸=i)

}

(3)

When reporting the perplexity for an individual sequence

(e.g. on CASP14 or CAMEO), this estimate is used. For

brevity, we refer to both of these estimates as the ªperplex-

ity,º as they can be interpreted in a similar manner.

A.2.3. ESM-2 MODEL ARCHITECTURE

We use a BERT (18) style encoder only transformer archi-

tecture (16) with modifications. We change the number

of layers, number of attention heads, hidden size and feed

forward hidden size as we scale the ESM model (Table S1).

The original transformer paper uses absolute sinusoidal po-

sitional encoding to inform the model about token positions.

These positional encodings are added to the input embed-

dings at the bottom of the encoder stack. In ESM-1b (14),

we replaced this static sinusoidal encoding with a learned

one. Both static and learned absolute encodings provide

the model a very cheap way of adding positional infor-

mation. However, absolute positional encoding methods

don’t extrapolate well beyond the context window they are

trained on. In ESM-2, we used Rotary Position Embedding

(RoPE) (66) to allow the model extrapolate beyond the con-

text window it is trained on. RoPE slightly increases the

computational cost of the model, since it multiplies every

query and key vector inside the self attention with a sinu-

soidal embedding. In our experiments, we observed that

this improves model quality for small models. However,

we observed that the performance improvements start to

disappear as the model size and training duration get bigger.

A.2.4. TRAINING ESM-2

In ESM-2, we have made multiple small modifications to

ESM-1b with the goal of increasing the effective capacity.

ESM-1b had dropout both in hidden layers and attention

which we removed completely to free up more capacity. In

our experiments, we did not observe any significant perfor-

mance regressions with this change.

We trained most of our models on a network with multiple

nodes connected via a network interface. As the models

get bigger, the amount of communication becomes the fun-

damental bottleneck for the training speed. Since BERT

style models have been shown to be amenable to very large

batch sizes (67), we increased our effective batch size to 2M

tokens.

For model training optimization, we used Adam with β1 =
0.9, β2 = 0.98, ϵ = 10−8 and L2 weight decay of 0.01 for

all models except the 15 billion parameter model, where we

used a weight decay of 0.1. The learning rate is warmed up

over the first 2,000 steps to a peak value of 4e-4 (1.6e-4 for

the 15B parameter model), and then linearly decayed to one

tenth of its peak value over the 90% of training duration.

We trained all models for 500K updates except the 15B

model which we trained for 270K steps. All models used

2 million tokens as batch size except the 15B model where

we used 3.2 million tokens batch size. In order to efficiently

process large proteins, we cropped long proteins to random

1024 tokens. We used BOS and EOS tokens to signal the

beginning and end of a real protein, to allow the model to

separate a full sized protein from a cropped one.

We used standard distributed data parallelism for models

up to 650M parameters and used sharded data parallelism

(FSDP) (68) for the 2.8B and 15B parameter models. FSDP

shards model weights and optimization parameters across

multiple GPUs, allowing us to train models that can’t fit into

a single GPU memory.

A.2.5. ESM-2 ABLATION EXPERIMENTS

We ran ablation experiments using 150M parameter models

trained for 100K steps. Ablations were performed for RoPE,

new data version, and UniRef90 sampling (Table S2).

Unsupervised contact prediction results show that both

RoPE and newer data significantly improve the results.

We do observe a slight regression when sampling from

UniRef90 clusters, however we believe this difference is

small and the UniRef90 cluster sampling is likely to help

for the larger models.

A.2.6. RELATIONSHIP BETWEEN CHANGE IN

PERPLEXITY AND CONTACT ACCURACY

The relationship between improvements in perplexity and

improvements in contact accuracy can be measured via nor-

malized discounted cumulative gain (NDCG). In particular,

we hypothesize that large improvements in perplexity cor-

respond with large improvements in contact accuracy. We

define the change in perplexity as the difference in language

model perplexity for a particular protein sequence between

adjacent model sizes. Similarly, we define the change in

contact accuracy as the difference in unsupervised contact

precision for a particular protein sequence between adjacent

model sizes. By ranking proteins according to the change in

perplexity, we then compute the NDCG with respect to the

change in contact accuracy. The average NDCG across the

five model classes is 0.87.
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A.3. ESMFold

A.3.1. ESMFOLD MODEL ARCHITECTURE

The AlphaFold2 architecture is split into two major sections,

the Evoformer and the structure module. The structure

module processes the final representations into 3D coor-

dinates for atomic-level structure predictions and requires

no changes to be used with ESM-2. The Evoformer, how-

ever, builds separate MSA and residue-pairwise embedding

spaces.

The major change that needs to be made in order to adapt the

Evoformer block to language model features is to remove

its dependence on MSAs. Since MSAs are two dimensional,

the Evoformer employs axial attention (69) over the columns

and rows of the MSA. The language model features are one

dimensional, so we can replace the axial attention with a

standard attention over this feature space. All other opera-

tions in the Evoformer block are kept the same. We call this

simplified architecture the Folding block.

The second change involves the removal of templates. Tem-

plate information is passed to the model as pairwise dis-

tances, input to the residue-pairwise embedding. We simply

omit this information, passing instead the attention maps

from the language model, as these have been shown to cap-

ture structural information well (34).

Our final architecture, which we call ESMFold, has 48 fold-

ing blocks. It was trained for an initial 125K steps on protein

crops of size 256, and then fine-tuned with the structural

violation loss for 25K steps, on crop sizes of 384. We

use the Frame Aligned Point Error (FAPE) and distogram

losses introduced in AlphaFold2, as well as heads for pre-

dicting LDDT and the pTM score. We omit the masked

language modeling loss. Language model parameters are

frozen for training ESMFold. We use the 3B parameter lan-

guage model, the largest model that permits inference on a

single GPU. The folding block is described in Algorithm 1,

and shown in Fig. 2A.

Because we do not have an MSA, the modules responsible

for processing the MSA are no longer necessary and can

be replaced with self attention over the sequence. The self-

attention here still uses a bias derived from the pairwise

representations. Secondly, the sequence representations

communicate with pairwise representation via both an outer

product and outer difference. ESMFold is described in

Algorithm 2.

We use a learned weighted sum of ESM embeddings to

produce the initial hidden state into the model. This is then

fed through an MLP. The initial pairwise state is simply the

pairwise relative positional encoding described in Jumper

et al. (12). We found that using the attention maps initially

gives a boost in performance, but this disappears during

training. For experiments that do not use any folding blocks,

we use an MLP applied to the ESM attention maps as input,

and add the pairwise relative positional encoding to the

attention map scores. Finally, the STRUCTUREMODULE

projects these representations into coordinates.

The predicted LDDT head is output from the hidden repre-

sentation of the STRUCTUREMODULE. The predicted TM

head uses the pairwise representation z. Finally, we also

predict the distogram, from the same representation.

To predict complexes shown in Fig. 2D, we give a residue

index break of 1000 to ESMFold and link chains with a

25-residue poly-glycine linker, which we remove before dis-

playing. Note that this is using ESMFold out of distribution

since single chains are used during training.

A.3.2. MASKED PREDICTION

It is possible to sample alternate predictions from ESMFold

by masking inputs to the language model. We test this

procedure with the following protocol: Input 1000 different

sequences into ESMFold with different masking patterns in

the language model. The masking patterns are uniformly

sampled, where 0 to 15% of the sequence is masked out.

A prediction is made for each masked sequence, and the

sequence with highest pLDDT is chosen as the final model

prediction. On average, applying this procedure only results

in a 0.021 LDDT increase on CAMEO, but on some PDBs

can substantially improve the accuracy (e.g. for PDB 6s44,

TM-score improves from 0.82 to 0.93).

A.3.3. EXTRACTING COORDINATES FROM ESM-2

In order to evaluate the effect of model scale on the emer-

gence of structure in the language model, we use the struc-

ture training set used to train ESMFold, and train the Al-

phaFold2 structure module directly on top of ESM repre-

sentations. Because no folding blocks are used to process

the pairwise information, we found it necessary to initialize

the pairwise representation with the output of an MLP that

processes the attention maps of the language model. We

also do not use the predicted structures dataset as data aug-

mentation in these experiments. We call these the structure

module-only experiments (Fig. 1, Table S3).

As language models grow in size, we find a large increase in

LDDT, from 0.48 on the 8M parameter LM to 0.72 on the

15B parameter LM. This demonstrates that a simple head on

top of a powerful language model already gives reasonably

accurate structure predictions.
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Algorithm 1 Folding block.

procedure FOLDINGBLOCK(s ∈ R
Cs×L, z ∈ R

Cz×L×L, Cs = 1024, Cz = 128)

b← Linear(z)
s← s+MultiHeadSelfAttention(s, bias = b)
s← s+MLP(s)
z ← z + Linear(Concat([OuterProduct(s),OuterDifference(s)]))
z ← z +TriangularMultiplicativeUpdateOutgoing(z)
z ← z +TriangularMultiplicativeUpdateIncoming(z)
z ← z +TriangularSelfAttentionOutgoing(z)
z ← z +TriangularSelfAttentionIncoming(z)
z ← z = MLP(z)
return s, z

end procedure

Algorithm 2 ESMFold with N folding blocks.

ESM hiddens returns all hidden representations from an

ESM language model. layer weights contains a trainable

weight for each layer of ESM.

procedure ESMFOLD(sequence, Cesm = 1280, Cs =
1024, Cz = 128, N = 48, L = Length)

ESMFold(sequence)
s← ESM hiddens(sequence)
s←(softmax(layer weights) * s).sum(0)

s← MLP(s)
z ← PairwiseRelativePositionalEncoding(L)
for i← 1, . . . , N do

s, z ← FoldingBlocki(s, z)
end for

return StructureModule(s, z)
end procedure

A.4. Metagenomics experiments

A.4.1. FOLDING 620 MILLION SEQUENCES FROM

MGNIFY

We obtained MGnify (25) version 2022 at 90% sequence

similarity (MGnify90). We built a fault tolerant distributed

system with a main node which, via TCP, communicates

sequences to many workers and receives results as folded

protein structures. We were able to leverage the resources

of a heterogeneous GPU cluster consisting of P100s, V100s,

and A100s of various configurations. We estimate that on a

homogeneous network GPU cluster of V100s, the entire 620

million sequences would take approximately 28,000 GPU

days to fold, which we were able to do in 2 weeks time. We

obtained structure predictions and corresponding pLDDT

values for each of these sequences.

A.4.2. ANALYSIS OF FOLDED METAGENOMICS

STRUCTURES

For the sample of 1M high confidence structures, we used

Foldseek search (version 3.915ef7d) (46) to perform an all-

by-all structural similarity search against the PDB (as of

April 12, 2022) based on TM-score. We use foldseek with

default parameters, except increasing the E-value to 1.0

from the default 1e-3 (foldseek search -e 1.0), to increase

recall. We also used MMseqs2 search (version 13.45111)

to perform an all-by-all sequence similarity search against

UniRef90. We use MMseqs2 with default parameters, ex-

cept that we re-ran MMseqs2 with the most sensitive setting

(-s 7.0) for any sequences that returned an empty result, to

increase the recall.

For our visualizations and case studies, we further

subsetted to 1 million folded structures, and analyzed

the high-confidence subset with mean pLDDT greater

than 0.9, corresponding to ∼59K structures. For each

high-confidence structure, we used Foldseek easy-search

(--alignment-type 1) to identify similar structures

in the PDB. For high-confidence structures that also have no

structures with TM-score greater than 0.5 returned by Fold-

seek, we used full AlphaFold2 with MSAs to also obtain

structure predictions (we picked the top of five relaxed mod-

els ranked by mean pLDDT). We then computed RMSD

values of aligned backbone coordinates and all-atom TM-

score between the ESMFold- and AlphaFold2-predicted

structures. For each sequence corresponding to a high-

confidence structure, we also used blastp version 2.10.0+

to search for similar sequences in UniRef90 to compute

sequence identity. For case-study sequences with no sig-

nificant matches in UniRef90, we also used the jackhm-

mer web server (https://www.ebi.ac.uk/Tools/

hmmer/search/jackhmmer) (47) to manually query

four reference proteomes for similar sequences. To con-

struct the landscape of MGnify sequences, we first used

ESM-1b to embed each sequence as a 1280-dimensional

21

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.07.20.500902doi: bioRxiv preprint 

https://www.ebi.ac.uk/Tools/hmmer/search/jackhmmer
https://www.ebi.ac.uk/Tools/hmmer/search/jackhmmer
https://doi.org/10.1101/2022.07.20.500902
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evolutionary-scale prediction of atomic level protein structure with a language model

vector. These embeddings were then visualized using

the umap version 0.5.3, scanpy version 1.9.1, and ann-

data 0.8.0 Python packages (70±72), where dimensionality

reduction was applied directly to the embedding vectors

(use rep=‘X’ in scanpy.tl.umap) with default parameters

(15-nearest-neighbors graph via approximate Euclidean dis-

tance, UMAP min dist=0.5). Highlighted structure predic-

tions with low similarity to known structures were man-

ually selected and are summarized in Fig. 4. For these

structures, we performed an additional structural similarity

search using the Foldseek webserver (https://search.

foldseek.com/search) with default parameters to

identify the closest structures in PDB100 211201 beyond

the TM-score cutoff of 0.5.

A.5. Orphan Proteins

Orphan proteins are sequences with few to no evolutionary

homologs in either structure or sequence databases. Due

to a lack of evolutionary information, these sequences can

be very challenging for current structure prediction models.

To evaluate ESMFold on orphan proteins, we construct an

orphan protein dataset using the following procedure:

• Select structures deposited in the PDB from 2020-05-

01 to 2022-05-01 with resolution greater than 9Å and

at least 20 modeled residues.

• Cluster at a 70% sequence identity threshold with mm-

seqs, and select the cluster representatives.

• Run hhblits for 1 iteration (all other parameters default)

against UniRef (2020 06), select sequences with no

hits.

• Run the standard AlphaFold2 MSA generation pipeline

against UniRef, MGnify, and BFD, selecting sequences

with < 100 total sequence hits and no template hits

with TM-score > 0.5.

Fig. S7 shows results at different MSA depth thresholds.

After filtering, there are 104 sequences with MSA depth ≤
100, 70 sequences with MSA depth ≤ 10, and 22 sequences

with MSA depth = 1. Beyond the constraint that no template

has TM-score > 0.5, no filtering on the number of templates

is performed.
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Figure S1. ESM-2 masked language modeling training curves. Training curves for ESM-2 models from 8M (highest curve, light) to 15B

parameters (lowest curve, dark). Models are trained to 270K updates. Validation perplexity is measured on a 0.5% random-split holdout

of UniRef50. After 270K updates the 8M parameter model has a perplexity of 10.45, and the 15B model reaches a perplexity of 6.37.

Figure S2. Results of ESMFold ablations on CAMEO and CASP14. ESMFold ablations on CAMEO and CASP14 test sets show the

largest contributing factors to performance are the language model and the use of folding blocks. Other ablations reduce performance on

CASP14 and CAMEO by 0.01-0.04 LDDT.

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2022. ; https://doi.org/10.1101/2022.07.20.500902doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.20.500902
http://creativecommons.org/licenses/by-nc-nd/4.0/


Evolutionary-scale prediction of atomic level protein structure with a language model

Figure S3. ESMFold calibration with respect to perplexity and pLDDT on CASP14 and CAMEO. Language model perplexity and ESMFold

pLDDT are both well correlated with actual structure prediction accuracy on CASP14 and CAMEO. Well understood sequences with

language model perplexity < 6 are usually well predicted by ESMFold. The strong correlation between pLDDT and LDDT suggests

filtering predictions by pLDDT will mostly capture well predicted structures.

Figure S4. ESMFold vs AlphaFold2 and RoseTTAfold timing experiments. We test the speed of ESMFold vs AlphaFold2 on sequence

lengths up to 1024. At low sequence lengths, ESMFold is dominated by language model performance, while the O(N3) computation

of pairwise representations takes over at high sequence lengths. Most of the speed advantage of ESMFold comes from not needing to

process the MSA branch. We see an over 60x speed advantage for shorter protein sequences, and a reasonable speed advantage for longer

protein sequences. We also do not count Jax graph compilation times or MSA search times for AlphaFold2 - meaning in practice there

is a larger performance advantage in the cold start case. We also use an optimized Colabfold 1.3.0 (23) to do speed comparison. No

significant optimization has been performed on ESMFold, and we suspect that further gains can be made by optimizing ESMFold as well.

For RoseTTAfold, the speed of the SE(3) Transformer dominates, especially at low sequence lengths. The number of SE(3) max-iterations

are artificially limited to 20 (default 200) and no MSAs are used as input for these measurements. Additionally, this only measures the

network forward time, and does not include the time taken to compute sidechains with PyRosetta or search for MSAs.
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Figure S5. Comparison to AlphaFold2 of structurally remote ESMFold predictions. Distributions of backbone RMSDs (left) and TM-

scores (right) of ESMFold-AlphaFold2 predictions of the same sequence, where the ESMFold prediction has both high confidence (mean

pLDDT > 0.9) and relatively low structural similarity to the PDB (Foldseek closest PDB TM-score < 0.5).

Figure S6. Comparison of ESMFold and AlphaFold-Multimer on recent-PDB-multimers dataset. DockQ (39) scores for AlphaFold-

Multimer and ESMFold predictions for chain pairs in the Recent-PDB-Multimers dataset. DockQ qualitative categorizations (left) and

quantitative comparison (right) are provided for all chain pairs. ColabFold (23) was used to generate paired MSAs for each complex using

the ‘paired+unpaired‘ MSA generation setting. UniRef, environmental, and template databases were used. ESMFold predictions are in

the same qualitative DockQ categorization for 53.2% of complexes, even though ESMFold is not trained on protein complexes. Dataset

generation and scoring methodology described in Appendix A.1.5.

Figure S7. Comparison of ESMFold and AlphaFold on a set of orphan proteins. Performance of ESMFold and AlphaFold2 on a set of

ªorphan proteinsº - sequences with few sequence or structural homologs. All compared sequences are temporally held out from the

training set. The standard AlphaFold2 sequence and template search pipeline is used to find homologs (dataset construction described

in Appendix A.5). (A) Comparison on natural proteins with various MSA depths. Depth is the total number of hits across UniRef and

metagenomic databases. (B) TM-score comparison of all individual orphans.
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8M 35M 150M 650M 3B 15B

Dataset UR50/D UR50/D UR50/D UR50/D UR50/D UR50/D

Number of layers 6 12 30 33 36 48

Embedding dim 320 480 640 1280 2560 5120

Attention heads 20 20 20 20 40 40

Training steps 500K 500K 500K 500K 500K 270K

Learning rate 4e-4 4e-4 4e-4 4e-4 4e-4 1.6e-4

Weight decay 0.01 0.01 0.01 0.01 0.01 0.1

Clip norm 0 0 0 0 1.0 1.0

Distributed backend DDP DDP DDP DDP FSDP FSDP

Table S1. ESM-2 model parameters at different scales.

LR P@L LR P@L/5 Validation Perplexity

Baseline 0.381 0.626 8.42

No RoPE 0.365 0.599 8.62

Older UniRef Data 0.368 0.599 7.98

No UR90 Sampling 0.387 0.631 8.40

Table S2. ESM-2 architecture ablations.

Model # Params # Updates
Validation

Perplexity
LR P@L LR P@L/5 CASP14 CAMEO

ESM-2

8M 270K 10.45 0.16 0.28 0.37 0.48

35M 270K 9.12 0.29 0.49 0.41 0.56

150M 270K 8.00 0.42 0.68 0.47 0.63

650M 270K 7.23 0.50 0.77 0.51 0.68

3B 270K 6.73 0.53 0.80 0.51 0.71

8M 500K 10.33 0.17 0.29 0.37 0.48

35M 500K 8.95 0.30 0.51 0.41 0.56

150M 500K 7.75 0.44 0.70 0.49 0.65

650M 500K 6.95 0.52 0.79 0.51 0.70

3B 500K 6.49 0.54 0.81 0.52 0.72

15B 270K 6.37 0.54 0.82 0.55 0.72

ESM-1b 650M Ð Ð 0.41 0.66 0.42 0.64

Prot-T5-XL

(UR50) (21)
3B Ð Ð 0.48 0.72 0.50 0.69

Prot-T5-XL

(BFD) (21)
3B Ð Ð 0.36 0.58 0.46 0.63

CARP (24) 640M Ð Ð Ð Ð 0.42 0.59

Table S3. Detailed language model comparison. Comparison at different numbers of parameters and at different numbers of training

updates. Training updates and validation perplexity are not reported for baseline models, since there is no straightforward comparison. For

the number of training updates, different models use different batch sizes, so the number of sequences seen can vary even if the number

of updates are the same. For validation perplexity, baseline models are not trained on the same dataset, and do not share a common

heldout validation set with ESM-2. Prot-T5 is an encoder-decoder language model. Only the encoder portion of the model was used in

this evaluation, however the number of parameters reported is the total number of parameters used for training. Unsupervised contact

precision results, in the form of long range precision at L and at L / 5, do allow us to compare all transformer language models despite

variance in training data. However, CARP, a convolution based language model, does not have attention maps. Note: ESM-1b is evaluated

only on sequences of length < 1024, due to constraints with position embedding.
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MGnify ID Mean plDDT

Foldseek

server

closest

TM-score

Foldseek

server

closest

PDB

Closest

blastp

sequence

identity

(UniRef90)

Closest blastp sequence

(UniRef90)

MGYP000712274586 0.96 0.45 1ttg A 54%

UniRef90 A0A539E457

Uncharacterized protein

(Acidimicrobiaceae bacterium)

MGYP000911143359 0.90 0.67 5nni A 43%

UniRef90 A0A7Y5V7P8

Uncharacterized protein

(Flavobacteriales bacterium)

MGYP001220175542 0.94 0.38 5y1x A 98%

UniRef90 UPI0013011942

Helix-turn-helix

domain-containing protein

(Caenibacillus caldisaponilyticus)

MGYP001812528822 0.93 0.39 5hh3 C 50%

UniRef90 A0A545U581

Fatty acid desaturase

(Exilibacterium tricleocarpae)

MGYP000706186022 0.92 0.47 1xks A 29%

UniRef90 A0A6N6S1Z1

Uncharacterized protein

(Candidatus brocadia)

MGYP000279975524 0.93 0.49 4l5s B 38%

UniRef90 A0A1F4EWL6

Uncharacterized protein

(Betaproteobacteria bacterium)

MGYP004000959047 0.90 0.80 6bym A
No significant

matches
NA

MGYP000936678158 0.95 0.68 5yet B
No significant

matches
NA

Table S4. Information on highlighted MGnify proteins. MGnify sequence identifiers corresponding to predicted structures highlighted

throughout this study, including the PDB chain and corresponding TM-score of the closest structure identified by the Foldseek webserver

as well as the UniRef90 entry and sequence identity of the closest sequence identified by blastp (Appendix A.4.2).
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Dataset Split Count
MSA Depth

(Total)

MSA Depth

(UniRef)
ESMFold AlphaFold2 RoseTTAFold

CAMEO

easy 97 21,458 17,627 0.90 0.93 0.89

medium 89 3,032 860 0.79 0.86 0.76

hard 8 328.5 56 0.45 0.62 0.49

CASP14 Ð 51 1228 161 0.68 0.85 0.81

Table S5. CAMEO dataset statistics broken down by difficulty class. Median MSA depth is reported for each difficulty class of the

CAMEO dataset, along with mean TM-score for ESMFold, AlphaFold, and RoseTTAFold. Half of the samples from the CAMEO dataset

consist of ªeasyº examples, which are well predicted by all models. Differentiation is greater in the ªmediumº and ªhardº classes, which

have lower MSA depth and are better predicted by AlphaFold2. Statistics for CASP14 are provided as a comparison. MSA depth numbers

provided are from the AlphaFold2 MSA generation pipeline.
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