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Abstract
Hearing and vision sensory systems are tuned to the natural statistics of acoustic and
electromagnetic energy on ea�h, and are evolved to be sensitive in ethologically
relevant ranges. But what are the natural statistics of odors, and how do olfactory
systems exploit them? Dissecting an accurate machine learning model1 for human
odor perception, we �nd a computable representation for odor at the molecular level
that can predict the odor-evoked receptor, neural, and behavioral responses of nearly
all terrestrial organisms studied in olfactory neuroscience. Using this olfactory
representation (Principal Odor Map, POM), we �nd that odorous compounds with
similar POM representations are more likely to co-occur within a substance and be
metabolically closely related; metabolic reaction sequences2 also follow smooth paths
in POM despite large jumps in molecular structure. Just as the brain’s visual
representations have evolved around the natural statistics of light and shapes, the
natural statistics of metabolism appear to shape the brain’s representation of the
olfactory world.

Intro
Sensory neuroscience depends on quantitative maps of the sensory world. Color
mixing principles3–5 and corresponding biological mechanisms6–8 help explain the
organization of color perception in the early visual system. Gabor �lters describe the
receptive �elds of visual co�ex (V1) simple cells in later stages of visual processing9.
They also account for the organization of acoustic energy from high- to low-frequency
and explain the tonotopic representation of perceptual tuning in animal hearing10,11.
Understanding these sensory representations is critical for the design and
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interpretation of experiments that probe the organization of our sensory world.
However, a representation and organizational framework for odor has not yet been
established. Even though structure-activity relationships in human olfaction have been
explored12–15, “activity cli�s” – seemingly small changes in molecular structure that
produce profound changes in activity16 (such as odor) – have limited the
generalizability of representations developed from structural motifs14 . Does such a
representation for odor – common to species separated by evolutionary time – even
exist?

Machine learning models, pa�icularly neural networks, have identi�ed common
representations encoded in biological nervous systems for sensory modalities,
including vision and audition17. For instance, the �rst few layers of convolutional neural
networks – trained on visual scenes drawn from natural statistics – learn to implement
Gabor �lters18. More strikingly, learned representations at progressively deeper layers
of neural networks predict the responses of neurons in progressively deeper
structures in the ventral visual stream19,20. Similarly, neural networks trained to classify
odors can also match olfactory system connectivity21. Representations of the sensory
world learned by training predictive models thus o�en recapitulate nature.

Here we pe�orm a comprehensive meta analysis on 12 olfactory neuroscience
datasets12,22–31, spanning multiple species and levels of neural processing. We �nd that
the embedding from a graph neural network trained on human olfactory perception,
which we term the principal odor map (POM), is highly predictive of the olfactory
responses in nearly all datasets, even for species separated by hundreds of millions of
years in evolution. In addition, we �nd POM is speci�c to olfaction as it shows no
advantage in enteric chemoreception tasks or the prediction of general
physico-chemical prope�ies. The existence and speci�city of POM not only suggest a
shared representation of odor across animals but also provide an accurate and
computable framework to study the organization of odor space. We show that
metabolic reactions that determine the states of all living things – and the odors they
emit – explain the organization of POM, and that multi-step reaction paths are smooth
trajectories in POM. Finally, we identify strong associations between POM and the
natural co-occurrence of molecules in natural substances. Together, these results
suggest that the natural statistics of biologically-produced molecules shaped the
convergent evolution of animal olfactory systems and representations despite
signi�cant di�erences in biological implementation.
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Figure 1: A single latent space can explain olfactory data across species and scales.  a) A graph
neural network model pre-trained on human olfactory perceptual data produces a principal odor map,
or POM (latent space, dashed box), which can be used to make predictions about any small, volatile
molecule in biological and behavioral experiments. b) A random forest model using only POM produces
predictions that meet or exceed those obtained from commonly-used generic molecular features32,33

(Mordred) across a range of olfactory datasets12,22–31,34–40 in di�erent species (green for ve�ebrates and
blue for inve�ebrates), but not for prediction of non-odorous molecular prope�ies (orange). The Y-axis
is the di�erence between pe�ormance indices for models using POM vs. generic molecular features.
Pe�ormance index is a rescaled metric to place classi�cation and regression pe�ormance on the same
axis. Pe�ormance indices of 0 and 100 represent random and pe�ect predictions, respectively. Error
bars are calculated as the standard deviation of pe�ormance di�erences across multiple random seeds.
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Results
Neural network embedding as a principal map for animal olfaction
Graph neural networks (GNNs) show state-of-the-a� ability to accurately predict
human olfactory perceptual labels in both retrospective41 and prospective se�ings1.
Here, we use a GNN embedding – the neural network layer immediately preceding the
task-speci�c architecture – as a representation of odor and evaluate its predictive
power in a meta analysis across 12 datasets (Methods) in olfactory neuroscience
spanning 9 common model species, including mosquito, fruit �y, and mouse, as well as
di�erent scales of biology, including olfactory receptor, neuron response, and
whole-animal behavior (Figure 1a; Extended Data Figure 1). We quantify the predictive
pe�ormances of the GNN embedding on regression or classi�cation tasks for these
curated datasets, and compare its pe�ormance against generic chemical
representations o�en used in the predictive chemoinformatic models. As shown in
Figure 1b, the embedding predicts receptor, neural, and behavioral olfaction data
be�er than generic chemical representations across species separated by up to 500M
years of evolution – and possessing independently evolved olfactory systems. We
thus term this embedding the principal odor map, or POM.

The principal odor map is speci�c for olfaction
While the POM exhibits generalizability across olfactory tasks in various species, it
should be no be�er than generic chemical representations on tasks irrelevant to
olfaction in order to optimize its representational power speci�cally for olfaction (i.e.
the no-free-lunch theorems42). As shown in Figure 1b, POM does not show a signi�cant
or consistent advantage over generic chemical representations for predicting
molecular prope�ies that are not likely exploited by olfaction, such as electronic
prope�ies (e.g., QM739) and adverse drug reactions (e.g., SIDER35) compiled by
MoleculeNet34. We then apply POM to predict molecular binding activity for
G-protein-coupled receptors (GPCRs, of which mammalian olfactory receptors are
only a subset29) generally, including those involved in enteric chemical sensation40 (e.g.,
5HT1A for serotonin and DRD2 for dopamine). While POM demonstrates superior
pe�ormance for GPCRs involved in human olfaction, their pe�ormance is signi�cantly
worse for GPCRs related to enteric chemical sensation compared to generic chemical
representations, showing speci�city for olfaction (Figure 1b, Extended Data Figure 2).
We observe a similar result when we restrict the analysis to only the original training
molecules, showing that it is the task and not the molecule which determines the
suitability of the POM. (Extended Data Figure 3).
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Figure 2: Metabolic pathways predict distance in the principal odor map (POM).  a) The contents of
MetaCyc, a large database of experimentally-elucidated metabolic reactions across multiple species,
were used to construct directed graphs connecting metabolites, including those with odors (non-gray).
b) The discrete pairwise distance of two molecules was de�ned by the sho�est directed path between
them within a species’ metabolic graph (if any).  Each step corresponds to a single chemical reaction
speci�ed in MetaCyc. c) Continuous pairwise distances between molecules in POM – which was
produced from human perceptual data alone – are strongly correlated with discrete metabolic distance
(le�, r=0.93).  This e�ect is not driven solely by the structure similarity of related metabolites, since a
weaker relationship is observed using alternative structural distance metrics including tanimoto distance
(center, r=0.71) and edit distance in count-based �ngerprints (right, r=0.80). d) Two pairs of example
molecules that are closely related in metabolism. While these are structurally dissimilar molecules
(tanimoto distance>0.65; le�: change in a key functional group; right: removal of a major substructure), a
single metabolic reaction can turn one to the other, and therefore, POM also organizes them closely
together (POM distance<0.12). In turn, they have similar odor pro�les.

Metabolic activity explains the organization of the principal odor map
Since animals have di�erent biological implementations for external molecular
detection (e.g., ionotropic receptors for mosquitoes and independently evolved
metabotropic GPCRs for mammals), it is surprising that a human-derived
representation of odor can explain responses in a diverse set of species. We
hypothesize that such convergent evolution could be the result of a shared natural
environment for most animals where they experience the same set of ethological
signals, including various nutrients and pheromonal cues from metabolic processes; in
other words, detecting and identifying the state of living things by their odor is broadly
useful across species.
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To test this hypothesis, we explored all odorant molecules in a carefully curated
metabolic reaction database called MetaCyc2, containing experimentally elucidated
reaction pathways. We identi�ed 17 species with su�cient metabolic data, spanning 4
kingdoms of life (Extended Data Figure 4). We then constructed networks of
metabolites for these species in which directed edges represent the direction of a
reaction between one node (a reactant) and another (a product) (Figure 2a). We then
computed the discrete “metabolic distance” between any two compounds by
calculating the sho�est paths through these networks (Figure 2b; Extended Data
Figure 4). From those metabolic networks with enough metabolites (>100), we
repeatedly sampled 50 pairs of odorants (molecules that pass a validated rule set for
odor probability43) for each metabolic distance ranging from 1 to 12, and asked how
well the distance in POM correlates with these metabolic distances (Figure 2c). We
found that there is a strong correlation between the metabolic distance and POM
distance (r=0.93), and that common measures of structural similarity between these
metabolites can only account for pa� of the relationship (r<0.8). This is especially true
for neighbor metabolites in metabolic networks where a biological reaction changes
the molecular structure drastically; while such drastic changes produce large structural
distances, only smaller changes in POM are observed -- the reactant and product
spanning this structural cli� frequently share a common odor pro�le (Figure 2d).

Having established that metabolic distance was closely associated with
distance in POM, we next asked whether metabolic reactions are easier to understand
and interpolate in POM. If a pathway of reactions proceeds in a consistent direction in
a molecular representation, then that pathway can be identi�ed with that direction
(e.g., “toward fermentation”); alternatively, the pathway could simply be a random walk
in space. Using principal components analysis, we visualized the metabolic pathway for
both DIBOA-glucoside biosynthesis (Figure 3a) and gibberellin biosynthesis (Figure 3b)
in 2D with both count-based structure �ngerprints (cFP) and POM. We �nd the
organizations of POM show a smooth progression from sta�ing metabolites to �nal
product metabolites, even though the same pathways show irregular progressions
when organized simply by molecular structure. To fu�her quantify such e�ects, we
examine the “smoothness” of all triplets of three consecutive metabolites (pairs of
consecutive reactions) in 37 unique metabolic pathways with only odorant molecules
(Figure 3c). As shown in Figure 3d, most of the paths for these triplets become
smoother a�er the pre-trained neural network projects their structure into POM (see
Extended Data Figures 7 and 8 for additional controls and analysis), suggesting that the
organization of POM re�ects a deeper relationship between olfaction and metabolic
processes.
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Figure 3: Smoothness of metabolic pathways in the principal odor map (POM). a) Le�: A 4-step
pathway (DIBOA-glucoside biosynthesis) depicted in a 2D representation of the structure �ngerprints
(count-based �ngerprints, or cFP) using principal components analysis. Right: the same pathway
depicted in a 2D representation of the principal odor map (POM). b) Le�, the same 2D cFP
representation for a 6-step pathway (gibberellin biosynthesis).  Right, a 2D representation of the same
pathway in the POM. We observe relatively smooth trajectories in POM for these pathways even though
the same pathways show irregular trajectories in the structure space. c) To systematically quantify such
“smoothness”, we examine all unique pathways in the metabolic network (top). A desirable molecular
representation should exhibit smooth reaction paths, proceeding in a more consistent direction from the
sta�ing metabolite to the �nal metabolite allowing interpolation for intermediate metabolites (center).
Smoothness for an intermediate metabolite is formally de�ned as the ratio between the direct euclidean
distance and total path length between the sta� and end metabolites. A smoother path will result in a
ratio close to 1 (bo�om). d) Metabolic trajectories are smoother a�er metabolite structures are
projected to POM than when using alternative structural distance metrics (paired t-test, p<0.0001 for
both structure distance metrics).
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Figure 4: Co-occurrence of odorous molecules in natural substances is explained by the principal
odor map (POM).  a) We compiled a dataset of 214 molecules found in 303 essential oils and computed
their pairwise POM distance (red) and cFP edit distance (blue), where molecule pairs that co-occur in
the same essential oil are indicated by dark boxes. b) To make POM and cFP edit distance comparable,
we so� both POM and cFP edit distances for all 22,791 molecular pairs in the dataset from small to large,
and mark co-occurring pairs with dark lines; we then c) plot the average shi� in distance rank (relative to
a random pair) for co-occurring (le�) and non co-occurring (right) molecule pairs under POM distance
(red), cFP edit distance (blue), and Tanimoto distance (purple). As expected, the co-occurring pairs have
a smaller rank (nearer together) and non co-occurring pairs have a higher rank (fu�her apa�). More
impo�antly, this rank shi� for co-occurring molecules is ~2x larger in POM than for structures distance
(paired t-test, p<0.0001), and reversed for non-co-occurring pairs (paired t-test, p<0.001). Error bar
indicates the 95% con�dence interval. d) Two example pairs of co-occurring molecules that POM
successfully recognizes as closely related while conventional structure-based distance fails. Common
odor labels for the two molecules as predicted by a state-of-the-a� model41. e) The terpenoid
biosynthesis pathway shows that these molecule pairs (red) are close downstream metabolic products
of geranyl diphosphate44, explaining both their co-occurrence and their proximity in the POM despite
their dissimilar structures.
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Molecules that co-occur in nature are also closer in the principal odor map
To fu�her validate our hypothesis, we investigated 214 molecules that co-occur in 303
essential oils aggregated in the Py�ume data repository45. Molecules which co-occur
in the same object in nature usually convey similar ethological cues, including danger,
conspeci�cs, or in the case of plants, nutrient availability. If the organization of POM is
indeed driven by the shared natural ethological signals driven by metabolic processes,
they should also be represented similarly in the POM.

We calculated the distance for all molecule pairs in POM and also using a
common structural similarity metric (Figure 4a). If co-occurring pairs share metabolic
origins, then such co-occurring pairs should be closer together in POM than would be
expected by chance. Indeed, the distance distribution for co-occurring molecule pairs
is shi�ed towards “nearness” in POM; this shi� is larger than one would expect when
only considering their structure similarity (Figure 4b,c). As an illustration, we sample
two pairs of co-occurring molecules – one pair from rose oil and the other from
orange oil – that have a very distinct within-pair structure (tanimoto distance > 0.95,
Figure 4d). Despite their distinct structures, we discover that both pairs of molecules
are pa� of the terpenoid biosynthesis pathway and are closely related downstream
products of geranyl diphosphate (Figure 4e). The POM representation – in which the
distance within each such pair is small – captures their physical co-occurrence and
proximity in the metabolome.

Discussion
In this study, we found that the embedding of a graph neural network pre-trained on a
reference human olfaction dataset can be used as a principal odor map (POM) for
predicting general receptor, neuron, or animal behavioral olfactory tasks across a large
number of datasets. Using POM as an accurate and computable proxy for odor
representation, we then proposed a hypothesis for the organization of odor with three
facets: (1) Co-occurring molecules in nature are also nearby in the POM; (2) the
underlying metabolic network dictating co-occurrence is highly correlated with the
POM representation; and (3) directed metabolic reaction pathways trace smooth and
consistent paths in the same representation. These results suggest that evolution of
numerous terrestrial species’ olfactory systems has converged to decode a shared and
principal set of ethological signals organized by the metabolic processes of nature and
the natural statistics that emerge from it. Therefore, we hypothesize that the olfactory
umwelt may be more similar across species than previously appreciated.

This claim unlocks new directions for olfactory neuroscience, animal ethology,
and metabolomics. First, we predict that olfactory neural representations in most
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animals should be well-explained by POM or future representations based on similar
principles. Theory suggests that tuning of neurons46,47 and even plasticity48 should
re�ect the natural statistics of odor; these statistics may be organized by metabolic
activity, and may have esoteric geometries49. Second, the homology between odor
space and metabolic space suggests that animal olfactory behavior may be broadly
organized around the detection and discrimination of metabolic markers and even
holistic metabolic states50: How ripe is this fruit51? How healthy is this mate? How
nutritious is this soil? Third, the discovery of novel metabolic reactions and pathways
could be informed by results from olfaction itself; molecules which have a similar smell
– for reasons otherwise unknown – may be neighbors in an ethologically-relevant
metabolic network. Mechanistically, olfaction mediated by the trace amine-associated
receptors (TAARs)52,53, which detect metabolically-downstream products of essential
nutrient amino acids, already shows the signature of a “metabolism detector”. Our
results suggest this may be a feature of olfactory chemosensation more broadly. Over
both evolutionary time and individual learning and development, the structure of
metabolomes could also provide a substrate enabling smooth, separable manifolds to
develop in neural activity space, a likely requirement for invariant object recognition54.

How universal can the principal odor map be, given that outputs of sensory
neurons and downstream behaviors are driven by both evolution and learning?
Ce�ainly individual experiences can modify odor perception and act as an additional
organizing force on any olfactory map. But environmental correlations are also learned
through experience, and many of these are broadly shared across both individuals and
species. For example, direct experience of the co-occurrence of citronellal and
alpha-terpineol in an orange peel should reinforce, through olfactory plasticity in the
brain (e.g., in co�ex), those evolutionary changes in the periphery (e.g., receptors)
driven by that same co-occurrence. Indeed, we found no clear pa�ern in relative
predictive pe�ormance of the POM as a function of processing stage (from periphery
to behavior). However, we do observe that the pe�ormance of POM improves
non-asymptotically as a function of training data size and quality41; it is thus unclear
where the ceiling lies for this approach.

In some networks, connected nodes are not only close in graph distance (e.g.
one hop away) but also in physical distance (e.g. same household, same postal code,
etc.) Similarly, we show that metabolic distance is closely related to odor distance. But
there are surely exceptions; a single edge of a social network graph may span
continents, and this exception to the general pa�ern may be impo�ant for explaining
the macrostructure of the phenomenon. By analogy, such exceptions for odor, where
a single metabolic step gives rise to a radically unrelated odor pro�le, could represent
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the boundaries between large, innate odor categories. Given the high correlation
between metabolic distance and POM distance that we observe, these are indeed
exceptions to a general rule. Future work, relying upon larger metabolic pathway
datasets (especially including pathways that have yet to be elucidated), might �nd
enough such exceptions to determine their meaning.

Ludwig Boltzmann and Erwin Schrödinger argued that the fundamental object
of struggle for organisms is to identify and feed upon negative entropy (free
energy)55,56. Each life form appears to be equipped with enzymatic and mechanical
tools to access niches of free energy. Eleanor Gibson theorized that perception
becomes re�ned during development to intuitively access this information57. Indeed,
the sense of smell seems designed to identify quantities and accessibility classes of
chemical free energy, which are determined in turn by metabolic processes in living
things. Odors thus tend to be more similar within speci�c pockets of the chemical
ecosystem and the carbon cycle. Evolution may have thus ethologically-tuned neural
representations of chemical stimuli to the statistics and dynamics of this cycle.
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Methods
Principal odor map
The principal odor map, or POM, corresponds to the activations of an embedding layer
within a neural network, pre-trained on human olfactory perceptual data41. Brie�y, the
neural network contains three components: 1) a graph neural network (GNN) that
represents the molecule as a graph and learns a representation for each atom through
message-passing, 2) a multi-layer perceptron that aggregates the atom
representations and learns an embedding for the entire molecule, and �nally 3) a single
fully connected layer predicting di�erent odor descriptors. A�er pre-training the
neural network, the parameters of the models are �xed, and the �rst and second
components are used deterministically to generate the location of arbitrary odor-like
molecules within the POM; equivalently, the molecule is represented as a graph and
projected to a single vector representing the activations of the neural network’s �nal
embedding layer. The representation of any odor-like molecule in the POM is this
vector.

Pe�ormance index for supervised learning
Under the supervised learning se�ing (using molecular featurization to predict
out-of-domain results, see Figure 1), the pe�ormance index of a dataset for a speci�c
representation (e.g., POM or Mordred32) is calculated from a random forest model’s
pe�ormance using that speci�c representation as input features. The supervised
learning se�ing includes some datasets with category labels (classi�cation) and some
with real number labels (regression).

For datasets of size N <= 200, we split the data in a leave-one-out fashion where
we hold out one molecule at a time for evaluation and train with N-1 data points until all
molecules have been held out once. For each split, N di�erent seeds are used to
initiate the model and the training data is jackknife resampled. For larger datasets of
size N > 200, we pe�orm a �ve-fold cross validation split of the data instead, and for
each split, 100 seeds are used to initiate the model and the training data is resampled
with replacement.

For datasets with categorical labels we compute auROC, while R2 score is
compute for datasets with real number labels. To calculate the pe�ormance index, we
then rescale the auROC or R2 score for each dataset such that 0 represents random
pe�ormance and 100 represents pe�ect pe�ormance. Speci�cally, auROC can be
conve�ed to the pe�ormance index with (auROC - 0.5) * 100, and R2 score can be
conve�ed to the pe�ormance index by multiplying by 100. Finally, pe�ormance
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indices are averaged across all the seeds and targets (in those cases where the
dataset contains multiple targets).

Since the optimal hyper-parameters for the model can be di�erent for di�erent
representations and datasets, we pe�orm a scan for impo�ant hyper-parameters for
random forest models including number of trees in the forest, di�erent ways to assign
weight for each class label, number of features to consider during a split, as well as the
minimum number of samples required to split and internal node or construct a leaf
node. For Morgan �ngerprints (cFP and bFP)58, we include an additional
hyper-parameter to select for the optimal dimension of the �ngerprints. In the end, we
repo� the pe�ormance index using the best hyper-parameter choices from the scan,
for each featurization.

Pe�ormance index for mouse piriform co�ical activity dataset
Following the original analysis for the dataset in Pashkovski et al30, we used correlation
distance as the basis for measuring both neural activity distances and molecular
representation (e.g. POM or Dragon59) distances for each molecule pair, a�er centering
the values per-neuron or per-feature dimension. Pearson correlations were then used
to measure how well each representation captured the neural activity distances
observed in di�erent experimental conditions (representing various pa�s of the brain
and di�erent sets of probes). The pe�ormance index is then calculated by averaging
and rescaling these la�er correlations across each experimental condition.

Datasets used in Figure 1
Each of the datasets below is indicated with a le�er ([x]) corresponding to its position
in Figure 1b.

Dataset for human olfaction
Dravnieks [c]. This dataset28 contains 128 unique molecules with 146 odor descriptor
targets, where each molecule has a perceptual rating for each odor descriptor, which
we can use for regression labels.
DREAM Olfaction Prediction Challenge (Keller et al.) [h]. This dataset is generated
from the data published with the crowd-sourced DREAM Olfaction Prediction
Challenge12 where we used the “gold” dilution (i.e. the one used to score the challenge)
to generate the average perceptual rating for 369 molecules over 21 odor descriptor
targets such as pleasantness, grass, garlic, sweaty, etc.
Human olfactory receptors [i]. This dataset is compiled from the literature and from
databases as pa� of the OdoriFy e�o�29, and we use the binary response label for all
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eight di�erent receptor targets including OR1A1, OR1A2, OR1G1, OR2J2, OR2W1,
OR51E1, OR51E2, and OR52D1.

Dataset for mouse piriform co�ex activity [f]
The activity for each odorant and neuron pair is computed from the original raw
time-series response curve kindly provided by the authors of a mouse piriform co�ical
activity dataset30. For each trial, the response curve is �rst smoothed by averaging
each frame with a moving window of size 5. The baseline mean μ and standard
deviation σ are then established using activities from the last 30 frames immediately
before the designated odor onset. A response is elicited for the trial if the max
response value within 30 frames a�er the onset is larger than μ + 3 * σ. The activity for
each odorant and neuron pair is represented as the average elicitation rate across
multiple trials.

Dataset for insect olfaction
A total of 11 insect olfaction datasets are organized from 7 prior works in the literature
and one previously unpublished data source.

MacWilliam et al.22 [a]. The authors pe�orm a behavioral experiment with Drosophila
using the T-maze assay. They measure the a�raction and aversion with a preference
index between -1 and 1 for around 60 compounds, as shown in Figure 5 of their paper.
The wild-type preference index for each compound is extracted, and the dataset is
represented as a binary classi�cation task, where a compound is considered positive if
it can elicit a strong a�raction (>0.25) or a strong aversion (<-0.5).

Xu et al.25 [b]. The authors measure the odorant-elicited in vitro electrophysiological
current response for CquiOR136 in the southern house mosquito, Culex
quinquefasciatus. The authors measured this response for around 200 compounds as
listed in experimental procedures. The compounds that can elicit detectable currents
are found in Fig. 3 of that paper and are therefore assigned a positive label in this
binary prediction task.

Mosquito repellency of fragrance molecules (Wei et al., unpublished) [d]. As pa�
of an unpublished data source, 38 molecules were selected from a fragrance catalog,
and their repellency was tested with a mosquito feeder assay: the fragrance molecules
are coated on the membrane of a nano feeder containing 100 ul of blood meal. A�er
feeding for 10 minutes, the average percentage of (%) unfed mosquitoes is measured
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over two trials. The repellency is then calculated by normalizing the unfed percentage
such that ethanol has a 0% repellency, while the best possible repellency is 100%. This
dataset is formulated as a binary classi�cation task, where a compound is assigned a
positive label if more than 90% repellency is observed.

Missbach et al.23 [e]. The authors pe�orm single sensillum recordings for various
types of olfactory sensory neurons (OSNs) in four di�erent species including wingless
bristletail, Lepismachilis y-signata, �rebrat, Thermobia domestica, neopteran leaf
insect, Phyllium siccifolium, and fruit �y, Drosophila melanogaster. The average spike
count per second is recorded for a panel of 35 odorant molecules with six di�erent
functional groups. The spike count data is compiled for each species from Figure 3 of
the paper, and formulated as a classi�cation task where a compound is labeled as
positive for a speci�c OSN target if the average elicited �ring rate is 50% higher than
the baseline �ring rate.

del Mármol et al.31 [g]. The authors measure the odorant-elicited response for
olfactory receptors MhOR1 and MhOR5 from the jumping bristletail, Machilis hrabei.
The authors express the respective receptors in HEK cells and pe�orm whole-cell
recordings. An activity index is then computed for a panel of odorants based on the
log(EC50) and the maximal response. The data from Supplementary Table 4 and 6 of
that paper is compiled and formulated as a regression task with multiple targets.

Carey et al.26 [i]. The authors express various olfactory receptors for malaria mosquito
Anopheles gambiae in ‘empty neurons’, and measure the olfactory receptor neurons
(ORNs) responses as a consequence of odorant stimuli. We cast various receptor ORN
responses as di�erent regression targets, and compile the data from Supplementary
Table 2c of the paper.

Hallem and Carlson24 [k]. The authors pe�orm a similar assay as Carey et al.26, but
with olfactory receptors in Drosophila. The data is extracted from Table S2 of the
paper, and similarly compiled as a regression task with multiple targets.

Oliferenko et al.27 [n]. The authors measure the Aedes aegypti repellency for about
90 molecules as the minimum e�ective dosage (MED). Following the same threshold
as the original paper, this dataset is casted as a binary classi�cation task where
compounds with an observed MED of less than 0.15 µmol/cm2 are considered active.

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 20, 2022. ; https://doi.org/10.1101/2022.07.21.500995doi: bioRxiv preprint 

https://paperpile.com/c/aH4ViU/qTCRs
https://paperpile.com/c/aH4ViU/18WS1
https://paperpile.com/c/aH4ViU/YsE9g
https://paperpile.com/c/aH4ViU/k3MP3
https://paperpile.com/c/aH4ViU/YsE9g
https://paperpile.com/c/aH4ViU/eSpWX
https://doi.org/10.1101/2022.07.21.500995
http://creativecommons.org/licenses/by/4.0/


Datasets for non olfaction related tasks
Enteric GPCR binding [q]. Five large human GPCR targets are pulled from GPCRdb40

including 5GT1A (serotonin receptor 1a), CNR2 (cannabinoid receptor 2), DRD2
(dopamine receptor 2), GHSR (ghrelin receptor), and OPRK (opioid receptor kappa).
Since GPCRdb contains the binding a�nities collated from multiple sources, we use
the average binding score as our regression label for each target.

Other molecular prope�ies [l, m, o, q, r]. From MoleculeNet34, �ve diverse tasks are
selected as non olfaction related molecular prope�ies, including electronic prope�ies
(QM739,60), binding a�nity with BACE-1 protein (BACE38), water solubility (ESOL37),
hydration free energy (FreeSolv36), and adverse drug reaction (SIDER35). All these tasks
contain a single regression label except SIDER which is a multi-label classi�cation task.

Dataset Standardization
All olfactory datasets are standardized by removing the following molecules: 1) data
points with multiple molecules (i.e. mixtures), 2) molecules with only a single atom, 3)
molecules with atoms that are not hydrogen, carbon, nitrogen, oxygen and sulfur, or 4)
molecules with a molecular weight of more than 500 daltons. Nearly all odorant
molecules in the raw datasets passed this empirically-motivated standardization �lter43

and are kept in the standardized dataset.

Metabolic networks and metabolic distance
A metabolic network is constructed for each species where each node represents a
metabolite and each directed edge connects the reactant and product metabolites in
di�erent experimentally elucidated reactions in the MetaCyc database2. Among all
metabolic networks for di�erent species, the 17 largest networks each with more than
or equal to 100 metabolites are fu�her studied.

For each metabolic network, all metabolites are labeled odorous or not
according to mass transpo� principles established in Mayhew et al., 202243. All pairs of
odorous metabolites with an existing path in their network are enumerated and the
distance of their sho�est path is used as their metabolic distance — the minimum
number of metabolic reactions to conve� one odorous metabolite to another. Due to
the sparsity of these metabolic networks, far more metabolite pairs with sho�
metabolic distances (<3) are found compared to those with long metabolic distances
(>8). In order to fairly study the organization of metabolite pairs across various
distances, metabolite pairs are resampled such that an even number (=50) of
metabolite pairs are sampled for each metabolic distance. The Pearson correlation
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coe�cients shown in Figure 2 are also consistent across di�erent sampling seeds
(Extended Data Figure 5) and are destroyed by pe�urbations that corrupt the
metabolic graph (Extended Data Figure 6).

Computing distances
The POM distance between molecules is de�ned as the correlation distance between
their embeddings, which are centered across the population of molecules (e.g. all
sampled odorous metabolite pairs, or all compounds in essential oil). Tanimoto
distance33 is computed using RDKit61 based on bit-based �ngerprints. cFP edit distance
between two molecules approximates the absolute di�erence between their
structures and is de�ned as the L1 distance between their count-based �ngerprints.

Visualizing metabolic pathways and calculating their smoothness
In order to visualize the metabolic pathways (Figure 3a,b), both the count-based
�ngerprints (cFP) and principal odor map (POM) are projected to a compressed 64
dimensional space via principal components analysis. Using subspaces with a common
number of dimensions also controls for any dimensionality bias that might be present
in these comparisons. Explaining more than 80% of the variance in both
representations, the �rst two dimensions of the PCA projections are then used to
visualize the trajectory of these pathways in cFP vs. POM.

To quantify the “smoothness” of these metabolic pathways (Figure 3d), 34
unique metabolic pathways with distance ranging from 3 to 13 are extracted from the
15 metabolic networks. For an example pathway “A->B->C->D”, we can calculate the
smoothness for interpolation of the two intermediate metabolites B and C. The
smoothness for interpolating B can be de�ned as d(A, D) / (d(A, B) + d(B, D)), where d is
the euclidean distance between the 64 dimensional PCA projection of cFP or POM
(Figure 3c). In total, 61 such valid odorous metabolite triplets are found and evaluated.

Common scents for molecule pairs
The common scents for molecule pairs listed in Figure 2d and Figure 4d are predicted
by a state of the a� model41. An odor label is assigned to the molecule if the model
predicts a label probability > 0.5 for that label. Multiple labels are possible for each
molecule.
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