











bioRxiv preprint doi: https://doi.org/10.1101/2022.07.21.500995; this version posted August 20, 2022. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figure 2: Metabolic pathways predict distance in the principal odor map (POM). a) The contents of
MetaCyc, a large database of experimentally-elucidated metabolic reactions across multiple species,
were used to construct directed graphs connecting metabolites, including those with odors (non-gray).
b) The discrete pairwise distance of two molecules was defined by the shortest directed path between
them within a species’ metabolic graph (if any). Each step corresponds to a single chemical reaction
specified in MetaCyc. ¢) Continuous pairwise distances between molecules in POM — which was
produced from human perceptual data alone - are strongly correlated with discrete metabolic distance
(left, r=0.93). This effect is not driven solely by the structure similarity of related metabolites, since a
weaker relationship is observed using alternative structural distance metrics including tanimoto distance
(center, r=0.71) and edit distance in count-based fingerprints (right, r=0.80). d) Two pairs of example
molecules that are closely related in metabolism. While these are structurally dissimilar molecules
(tanimoto distance>0.65; left: change in a key functional group; right: removal of a major substructure), a
single metabolic reaction can turn one to the other, and therefore, POM also organizes them closely
together (POM distance<0.12). In turn, they have similar odor profiles.

Metabolic activity explains the organization of the principal odor map

Since animals have different biological implementations for external molecular
detection (e.g., ionotropic receptors for mosquitoes and independently evolved
metabotropic GPCRs for mammals), it is surprising that a human-derived
representation of odor can explain responses in a diverse set of species. We
hypothesize that such convergent evolution could be the result of a shared natural
environment for most animals where they experience the same set of ethological
signals, including various nutrients and pheromonal cues from metabolic processes; in
other words, detecting and identifying the state of living things by their odor is broadly
useful across species.
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To test this hypothesis, we explored all odorant molecules in a carefully curated
metabolic reaction database called MetaCyc? containing experimentally elucidated
reaction pathways. We identified 17 species with sufficient metabolic data, spanning 4
kingdoms of life (Extended Data Figure 4). We then constructed networks of
metabolites for these species in which directed edges represent the direction of a
reaction between one node (a reactant) and another (a product) (Figure 2a). We then
computed the discrete “metabolic distance” between any two compounds by
calculating the shortest paths through these networks (Figure 2b; Extended Data
Figure 4). From those metabolic networks with enough metabolites (>100), we
repeatedly sampled 50 pairs of odorants (molecules that pass a validated rule set for
odor probability*®) for each metabolic distance ranging from 1 to 12, and asked how
well the distance in POM correlates with these metabolic distances (Figure 2c). We
found that there is a strong correlation between the metabolic distance and POM
distance (r=0.93), and that common measures of structural similarity between these
metabolites can only account for part of the relationship (r<0.8). This is especially true
for neighbor metabolites in metabolic networks where a biological reaction changes
the molecular structure drastically; while such drastic changes produce large structural
distances, only smaller changes in POM are observed -- the reactant and product
spanning this structural cliff frequently share a common odor profile (Figure 2d).

Having established that metabolic distance was closely associated with
distance in POM, we next asked whether metabolic reactions are easier to understand
and interpolate in POM. If a pathway of reactions proceeds in a consistent direction in
a molecular representation, then that pathway can be identified with that direction
(e.g., “toward fermentation”); alternatively, the pathway could simply be a random walk
in space. Using principal components analysis, we visualized the metabolic pathway for
both DIBOA-glucoside biosynthesis (Figure 3a) and gibberellin biosynthesis (Figure 3b)
in 2D with both count-based structure fingerprints (cFP) and POM. We find the
organizations of POM show a smooth progression from starting metabolites to final
product metabolites, even though the same pathways show irregular progressions
when organized simply by molecular structure. To further quantify such effects, we
examine the “smoothness” of all triplets of three consecutive metabolites (pairs of
consecutive reactions) in 37 unique metabolic pathways with only odorant molecules
(Figure 3c). As shown in Figure 3d, most of the paths for these triplets become
smoother after the pre-trained neural network projects their structure into POM (see
Extended Data Figures 7 and 8 for additional controls and analysis), suggesting that the
organization of POM reflects a deeper relationship between olfaction and metabolic
processes.
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Figure 3: Smoothness of metabolic pathways in the principal odor map (POM). a) Left: A 4-step
pathway (DIBOA-glucoside biosynthesis) depicted in a 2D representation of the structure fingerprints
(count-based fingerprints, or cFP) using principal components analysis. Right: the same pathway
depicted in a 2D representation of the principal odor map (POM). b) Left, the same 2D cFP
representation for a 6-step pathway (gibberellin biosynthesis). Right, a 2D representation of the same
pathway in the POM. We observe relatively smooth trajectories in POM for these pathways even though
the same pathways show irregular trajectories in the structure space. ¢) To systematically quantify such
“smoothness”, we examine all unique pathways in the metabolic network (top). A desirable molecular
representation should exhibit smooth reaction paths, proceeding in a more consistent direction from the
starting metabolite to the final metabolite allowing interpolation for intermediate metabolites (center).
Smoothness for an intermediate metabolite is formally defined as the ratio between the direct euclidean
distance and total path length between the start and end metabolites. A smoother path will result in a
ratio close to 1 (bottom). d) Metabolic trajectories are smoother after metabolite structures are
projected to POM than when using alternative structural distance metrics (paired t-test, p<0.0001 for
both structure distance metrics).
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Figure 4: Co-occurrence of odorous molecules in natural substances is explained by the principal
odor map (POM). a) We compiled a dataset of 214 molecules found in 303 essential oils and computed
their pairwise POM distance (red) and cFP edit distance (blue), where molecule pairs that co-occur in
the same essential oil are indicated by dark boxes. b) To make POM and cFP edit distance comparable,
we sort both POM and cFP edit distances for all 22,791 molecular pairs in the dataset from small to large,
and mark co-occurring pairs with dark lines; we then c) plot the average shift in distance rank (relative to
a random pair) for co-occurring (left) and non co-occurring (right) molecule pairs under POM distance
(red), cFP edit distance (blue), and Tanimoto distance (purple). As expected, the co-occurring pairs have
a smaller rank (nearer together) and non co-occurring pairs have a higher rank (further apart). More
importantly, this rank shift for co-occurring molecules is ~2x larger in POM than for structures distance
(paired t-test, p<0.0001), and reversed for non-co-occurring pairs (paired t-test, p<0.001). Error bar
indicates the 95% confidence interval. d) Two example pairs of co-occurring molecules that POM
successfully recognizes as closely related while conventional structure-based distance fails. Common
odor labels for the two molecules as predicted by a state-of-the-art model*'. e) The terpenoid
biosynthesis pathway shows that these molecule pairs (red) are close downstream metabolic products
of geranyl diphosphate**, explaining both their co-occurrence and their proximity in the POM despite
their dissimilar structures.
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Molecules that co-occur in nature are also closer in the principal odor map

To further validate our hypothesis, we investigated 214 molecules that co-occur in 303
essential oils aggregated in the Pyrfume data repository*®. Molecules which co-occur
in the same object in nature usually convey similar ethological cues, including danger,
conspecifics, or in the case of plants, nutrient availability. If the organization of POM is
indeed driven by the shared natural ethological signals driven by metabolic processes,
they should also be represented similarly in the POM.

We calculated the distance for all molecule pairs in POM and also using a
common structural similarity metric (Figure 4a). If co-occurring pairs share metabolic
origins, then such co-occurring pairs should be closer together in POM than would be
expected by chance. Indeed, the distance distribution for co-occurring molecule pairs
is shifted towards “nearness” in POM; this shift is larger than one would expect when
only considering their structure similarity (Figure 4b,c). As an illustration, we sample
two pairs of co-occurring molecules — one pair from rose oil and the other from
orange oil — that have a very distinct within-pair structure (tanimoto distance > 0.95,
Figure 4d). Despite their distinct structures, we discover that both pairs of molecules
are part of the terpenoid biosynthesis pathway and are closely related downstream
products of geranyl diphosphate (Figure 4e). The POM representation — in which the
distance within each such pair is small = captures their physical co-occurrence and
proximity in the metabolome.

Discussion

In this study, we found that the embedding of a graph neural network pre-trained on a
reference human olfaction dataset can be used as a principal odor map (POM) for
predicting general receptor, neuron, or animal behavioral olfactory tasks across a large
number of datasets. Using POM as an accurate and computable proxy for odor
representation, we then proposed a hypothesis for the organization of odor with three
facets: (1) Co-occurring molecules in nature are also nearby in the POM; (2) the
underlying metabolic network dictating co-occurrence is highly correlated with the
POM representation; and (3) directed metabolic reaction pathways trace smooth and
consistent paths in the same representation. These results suggest that evolution of
numerous terrestrial species’ olfactory systems has converged to decode a shared and
principal set of ethological signals organized by the metabolic processes of nature and
the natural statistics that emerge from it. Therefore, we hypothesize that the olfactory
umwelt may be more similar across species than previously appreciated.

This claim unlocks new directions for olfactory neuroscience, animal ethology,
and metabolomics. First, we predict that olfactory neural representations in most
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animals should be well-explained by POM or future representations based on similar
principles. Theory suggests that tuning of neurons** and even plasticity*® should
reflect the natural statistics of odor; these statistics may be organized by metabolic
activity, and may have esoteric geometries*. Second, the homology between odor
space and metabolic space suggests that animal olfactory behavior may be broadly
organized around the detection and discrimination of metabolic markers and even
holistic metabolic states®®: How ripe is this fruit'? How healthy is this mate? How
nutritious is this soil? Third, the discovery of novel metabolic reactions and pathways
could be informed by results from olfaction itself; molecules which have a similar smell
- for reasons otherwise unknown - may be neighbors in an ethologically-relevant
metabolic network. Mechanistically, olfaction mediated by the trace amine-associated
receptors (TAARs)®?®3, which detect metabolically-downstream products of essential
nutrient amino acids, already shows the signature of a “metabolism detector”. Our
results suggest this may be a feature of olfactory chemosensation more broadly. Over
both evolutionary time and individual learning and development, the structure of
metabolomes could also provide a substrate enabling smooth, separable manifolds to
develop in neural activity space, a likely requirement for invariant object recognition®.

How universal can the principal odor map be, given that outputs of sensory
neurons and downstream behaviors are driven by both evolution and learning?
Certainly individual experiences can modify odor perception and act as an additional
organizing force on any olfactory map. But environmental correlations are also learned
through experience, and many of these are broadly shared across both individuals and
species. For example, direct experience of the co-occurrence of citronellal and
alpha-terpineol in an orange peel should reinforce, through olfactory plasticity in the
brain (e.g., in cortex), those evolutionary changes in the periphery (e.g., receptors)
driven by that same co-occurrence. Indeed, we found no clear pattern in relative
predictive performance of the POM as a function of processing stage (from periphery
to behavior). However, we do observe that the performance of POM improves
non-asymptotically as a function of training data size and quality*’; it is thus unclear
where the ceiling lies for this approach.

In some networks, connected nodes are not only close in graph distance (e.g.
one hop away) but also in physical distance (e.g. same household, same postal code,
etc.) Similarly, we show that metabolic distance is closely related to odor distance. But
there are surely exceptions; a single edge of a social network graph may span
continents, and this exception to the general pattern may be important for explaining
the macrostructure of the phenomenon. By analogy, such exceptions for odor, where
a single metabolic step gives rise to a radically unrelated odor profile, could represent
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the boundaries between large, innate odor categories. Given the high correlation
between metabolic distance and POM distance that we observe, these are indeed
exceptions to a general rule. Future work, relying upon larger metabolic pathway
datasets (especially including pathways that have yet to be elucidated), might find
enough such exceptions to determine their meaning.

Ludwig Boltzmann and Erwin Schrodinger argued that the fundamental object
of struggle for organisms is to identify and feed upon negative entropy (free
energy)®>®. Each life form appears to be equipped with enzymatic and mechanical
tools to access niches of free energy. Eleanor Gibson theorized that perception
becomes refined during development to intuitively access this information®’. Indeed,
the sense of smell seems designed to identify quantities and accessibility classes of
chemical free energy, which are determined in turn by metabolic processes in living
things. Odors thus tend to be more similar within specific pockets of the chemical
ecosystem and the carbon cycle. Evolution may have thus ethologically-tuned neural
representations of chemical stimuli to the statistics and dynamics of this cycle.
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Methods

Principal odor map

The principal odor map, or POM, corresponds to the activations of an embedding layer
within a neural network, pre-trained on human olfactory perceptual data*'. Briefly, the
neural network contains three components: 1) a graph neural network (GNN) that
represents the molecule as a graph and learns a representation for each atom through
message-passing, 2) a multi-layer perceptron that aggregates the atom
representations and learns an embedding for the entire molecule, and finally 3) a single
fully connected layer predicting different odor descriptors. After pre-training the
neural network, the parameters of the models are fixed, and the first and second
components are used deterministically to generate the location of arbitrary odor-like
molecules within the POM; equivalently, the molecule is represented as a graph and
projected to a single vector representing the activations of the neural network’s final
embedding layer. The representation of any odor-like molecule in the POM is this
vector.

Performance index for supervised learning

Under the supervised learning setting (using molecular featurization to predict
out-of-domain results, see Figure 1), the performance index of a dataset for a specific
representation (e.g., POM or Mordred®) is calculated from a random forest model’s
performance using that specific representation as input features. The supervised
learning setting includes some datasets with category labels (classification) and some
with real number labels (regression).

For datasets of size N <= 200, we split the data in a leave-one-out fashion where
we hold out one molecule at a time for evaluation and train with N-1 data points until all
molecules have been held out once. For each split, N different seeds are used to
initiate the model and the training data is jackknife resampled. For larger datasets of
size N > 200, we perform a five-fold cross validation split of the data instead, and for
each split, 100 seeds are used to initiate the model and the training data is resampled
with replacement.

For datasets with categorical labels we compute auROC, while R* score is
compute for datasets with real number labels. To calculate the performance index, we
then rescale the auROC or R? score for each dataset such that O represents random
performance and 100 represents perfect performance. Specifically, auROC can be
converted to the performance index with (auROC - 0.5) * 100, and R? score can be
converted to the performance index by multiplying by 100. Finally, performance
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indices are averaged across all the seeds and targets (in those cases where the
dataset contains multiple targets).

Since the optimal hyper-parameters for the model can be different for different
representations and datasets, we perform a scan for important hyper-parameters for
random forest models including number of trees in the forest, different ways to assign
weight for each class label, number of features to consider during a split, as well as the
minimum number of samples required to split and internal node or construct a leaf
node. For Morgan fingerprints (cFP and bFP)*®, we include an additional
hyper-parameter to select for the optimal dimension of the fingerprints. In the end, we
report the performance index using the best hyper-parameter choices from the scan,
for each featurization.

Performance index for mouse piriform cortical activity dataset

Following the original analysis for the dataset in Pashkovski et al*°, we used correlation
distance as the basis for measuring both neural activity distances and molecular
representation (e.g. POM or Dragon®) distances for each molecule pair, after centering
the values per-neuron or per-feature dimension. Pearson correlations were then used
to measure how well each representation captured the neural activity distances
observed in different experimental conditions (representing various parts of the brain
and different sets of probes). The performance index is then calculated by averaging
and rescaling these latter correlations across each experimental condition.

Datasets used in Figure 1
Each of the datasets below is indicated with a letter ([x]) corresponding to its position
in Figure 1b.

Dataset for human olfaction

Dravnieks [c]. This dataset?® contains 128 unique molecules with 146 odor descriptor
targets, where each molecule has a perceptual rating for each odor descriptor, which
we can use for regression labels.

DREAM Oilfaction Prediction Challenge (Keller et al.) [h]. This dataset is generated
from the data published with the crowd-sourced DREAM Olfaction Prediction
Challenge™ where we used the “gold” dilution (i.e. the one used to score the challenge)
to generate the average perceptual rating for 369 molecules over 21 odor descriptor
targets such as pleasantness, grass, garlic, sweaty, etc.

Human olfactory receptors [il. This dataset is compiled from the literature and from
databases as part of the OdoriFy effort®, and we use the binary response label for all
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eight different receptor targets including OR1A1, OR1A2, OR1G1, OR2J2, OR2W1,
ORS51E1, OR51E2, and OR52D1.

Dataset for mouse piriform cortex activity [f]

The activity for each odorant and neuron pair is computed from the original raw
time-series response curve kindly provided by the authors of a mouse piriform cortical
activity dataset®. For each trial, the response curve is first smoothed by averaging
each frame with a moving window of size 5. The baseline mean u and standard
deviation o are then established using activities from the last 30 frames immediately
before the designated odor onset. A response is elicited for the trial if the max
response value within 30 frames after the onset is larger than . + 3 * o. The activity for
each odorant and neuron pair is represented as the average elicitation rate across
multiple trials.

Dataset for insect olfaction
A total of 11 insect olfaction datasets are organized from 7 prior works in the literature
and one previously unpublished data source.

MacWilliam et al.? [a]. The authors perform a behavioral experiment with Drosophila
using the T-maze assay. They measure the attraction and aversion with a preference
index between -1 and 1 for around 60 compounds, as shown in Figure 5 of their paper.
The wild-type preference index for each compound is extracted, and the dataset is
represented as a binary classification task, where a compound is considered positive if
it can elicit a strong attraction (>0.25) or a strong aversion (<-0.5).

Xu et al.®* [b]. The authors measure the odorant-elicited in vitro electrophysiological
current response for CquiOR136 in the southern house mosquito, Culex
quinquefasciatus. The authors measured this response for around 200 compounds as
listed in experimental procedures. The compounds that can elicit detectable currents
are found in Fig. 3 of that paper and are therefore assigned a positive label in this
binary prediction task.

Mosquito repellency of fragrance molecules (Wei et al., unpublished) [d]. As part
of an unpublished data source, 38 molecules were selected from a fragrance catalog,
and their repellency was tested with a mosquito feeder assay: the fragrance molecules
are coated on the membrane of a nano feeder containing 100 ul of blood meal. After
feeding for 10 minutes, the average percentage of (%) unfed mosquitoes is measured
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over two trials. The repellency is then calculated by normalizing the unfed percentage
such that ethanol has a 0% repellency, while the best possible repellency is 100%. This
dataset is formulated as a binary classification task, where a compound is assigned a
positive label if more than 90% repellency is observed.

Missbach et al.”® [e]. The authors perform single sensillum recordings for various
types of olfactory sensory neurons (OSNs) in four different species including wingless
bristletail, Lepismachilis y-signata, firebrat, Thermobia domestica, neopteran leaf
insect, Phyllium siccifolium, and fruit fly, Drosophila melanogaster. The average spike
count per second is recorded for a panel of 35 odorant molecules with six different
functional groups. The spike count data is compiled for each species from Figure 3 of
the paper, and formulated as a classification task where a compound is labeled as
positive for a specific OSN target if the average elicited firing rate is 50% higher than
the baseline firing rate.

del Marmol et al.*’ [g]l. The authors measure the odorant-elicited response for
olfactory receptors MhOR1 and MhORS5 from the jumping bristletail, Machilis hrabei.
The authors express the respective receptors in HEK cells and perform whole-cell
recordings. An activity index is then computed for a panel of odorants based on the
log(ECs,) and the maximal response. The data from Supplementary Table 4 and 6 of
that paper is compiled and formulated as a regression task with multiple targets.

Carey et al.” [i]. The authors express various olfactory receptors for malaria mosquito
Anopheles gambiae in ‘empty neurons’, and measure the olfactory receptor neurons
(ORNSs) responses as a consequence of odorant stimuli. We cast various receptor ORN
responses as different regression targets, and compile the data from Supplementary
Table 2c of the paper.

Hallem and Carlson® [k]. The authors perform a similar assay as Carey et al.%, but
with olfactory receptors in Drosophila. The data is extracted from Table S2 of the
paper, and similarly compiled as a regression task with multiple targets.

Oliferenko et al.” [n]. The authors measure the Aedes aegypti repellency for about
90 molecules as the minimum effective dosage (MED). Following the same threshold
as the original paper, this dataset is casted as a binary classification task where
compounds with an observed MED of less than 0.15 umol/cm? are considered active.
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Datasets for non olfaction related tasks

Enteric GPCR binding [q]. Five large human GPCR targets are pulled from GPCRdb*°
including 5GT1A (serotonin receptor 1a), CNR2 (cannabinoid receptor 2), DRD2
(dopamine receptor 2), GHSR (ghrelin receptor), and OPRK (opioid receptor kappa).
Since GPCRdb contains the binding affinities collated from multiple sources, we use
the average binding score as our regression label for each target.

Other molecular properties [l, m, o, g, r]. From MoleculeNet**, five diverse tasks are
selected as non olfaction related molecular properties, including electronic properties
(QM7*%9), binding affinity with BACE-1 protein (BACE®), water solubility (ESOL¥),
hydration free energy (FreeSolv*®), and adverse drug reaction (SIDER®). All these tasks
contain a single regression label except SIDER which is a multi-label classification task.

Dataset Standardization

All olfactory datasets are standardized by removing the following molecules: 1) data
points with multiple molecules (i.e. mixtures), 2) molecules with only a single atom, 3)
molecules with atoms that are not hydrogen, carbon, nitrogen, oxygen and sulfur, or 4)
molecules with a molecular weight of more than 500 daltons. Nearly all odorant
molecules in the raw datasets passed this empirically-motivated standardization filter*®
and are kept in the standardized dataset.

Metabolic networks and metabolic distance
A metabolic network is constructed for each species where each node represents a
metabolite and each directed edge connects the reactant and product metabolites in
different experimentally elucidated reactions in the MetaCyc database®. Among all
metabolic networks for different species, the 17 largest networks each with more than
or equal to 100 metabolites are further studied.

For each metabolic network, all metabolites are labeled odorous or not
according to mass transport principles established in Mayhew et al., 2022*. All pairs of
odorous metabolites with an existing path in their network are enumerated and the
distance of their shortest path is used as their metabolic distance — the minimum
number of metabolic reactions to convert one odorous metabolite to another. Due to
the sparsity of these metabolic networks, far more metabolite pairs with short
metabolic distances (<3) are found compared to those with long metabolic distances
(>8). In order to fairly study the organization of metabolite pairs across various
distances, metabolite pairs are resampled such that an even number (=50) of
metabolite pairs are sampled for each metabolic distance. The Pearson correlation
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coefficients shown in Figure 2 are also consistent across different sampling seeds
(Extended Data Figure 5) and are destroyed by perturbations that corrupt the
metabolic graph (Extended Data Figure 6).

Computing distances

The POM distance between molecules is defined as the correlation distance between
their embeddings, which are centered across the population of molecules (e.g. all
sampled odorous metabolite pairs, or all compounds in essential oil). Tanimoto
distance® is computed using RDKit®' based on bit-based fingerprints. cFP edit distance
between two molecules approximates the absolute difference between their
structures and is defined as the L1 distance between their count-based fingerprints.

Visualizing metabolic pathways and calculating their smoothness

In order to visualize the metabolic pathways (Figure 3a,b), both the count-based
fingerprints (cFP) and principal odor map (POM) are projected to a compressed 64
dimensional space via principal components analysis. Using subspaces with a common
number of dimensions also controls for any dimensionality bias that might be present
in these comparisons. Explaining more than 80% of the variance in both
representations, the first two dimensions of the PCA projections are then used to
visualize the trajectory of these pathways in cFP vs. POM.

To quantify the “smoothness” of these metabolic pathways (Figure 3d), 34
unique metabolic pathways with distance ranging from 3 to 13 are extracted from the
15 metabolic networks. For an example pathway “A->B->C->D”, we can calculate the
smoothness for interpolation of the two intermediate metabolites B and C. The
smoothness for interpolating B can be defined as d(A, D) / (d(A, B) + d(B, D)), where d is
the euclidean distance between the 64 dimensional PCA projection of cFP or POM
(Figure 3c). In total, 61 such valid odorous metabolite triplets are found and evaluated.

Common scents for molecule pairs

The common scents for molecule pairs listed in Figure 2d and Figure 4d are predicted
by a state of the art model*. An odor label is assigned to the molecule if the model
predicts a label probability > 0.5 for that label. Multiple labels are possible for each
molecule.
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