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ABSTRACT

Automated microscope systems are increasingly used to collect large-
scale 3D image volumes of biological tissues. Since cell boundaries
are seldom delineated in these images, detection of nuclei is a crit-
ical step for identifying and analyzing individual cells. Due to the
large intra-class variability in nuclei morphology and the difficulty
of generating ground truth annotations, accurate nuclei detection re-
mains a challenging task. We propose a 3D nuclei centroid detection
method by estimating the “vector flow” volume where each voxel
represents a 3D vector pointing to its nearest nuclei centroid in the
corresponding microscopy volume. We then use a voting mechanism
to estimate the 3D nuclei centroids from the “vector flow” volume.
Our system is trained on synthetic microscopy volumes and tested on
real microscopy volumes. The evaluation results indicate our method
outperforms other methods both visually and quantitatively.

Index Terms— Nuclei centroid detection, synthetic microscopy
image generation, vector flow, voting mechanism

1. INTRODUCTION

Fluorescence microscopy is an important tool for imaging biological
tissues in three dimensions [1]. nuclei detection is an essential step
for identifying cells for quantitative analysis. For computer-aided
diagnosis such as cell tracking and cell counting, it is frequently
unnecessary to accurately delineate the boundaries of nuclei, only
to accurately identify the centroid of each nucleus. However, due
to the large volume size, variant nuclei morphology and intensity
inhomogeneity, manually identifying the nuclei centroids in a 3D
microscopy volume is so labor intensive that it is impractical. Thus,
automated nuclei detection is necessary.

A segmentation-free approach described in [1] employs multi-
scale cube filtering to locally enhance pre-processed images and uses
local maxima regions to determine candidate centroids without know-
ing the boundary of nuclei. In [2] a method that uses gradient flow
tracking and local adaptive thresholding for dense nuclei segmenta-
tion is described. Similarly, a method known as active contours or
“snakes” [3] segments the object by iteratively minimizing the energy
function and actively adjusting the contour shape to fit the object.
The image analysis tool CellProfiler [4] provides customized image
segmentation modules for identifying and quantifying cell pheno-
types. More recently, Volumetric Tissue Exploration and Analysis
(VTEA) [5], a toolkit in ImageJ, has been developed to efficiently seg-
ment nuclei and quantitatively analyze large tissue volumes. These
methods described above generally suffer from the effects of noise
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and intensity inhomogeneity of the microscopy imaging acquisition
process. This has been addressed in [6], which uses 3D active con-
tours with inhomogeneity correction for segmenting low contrast
fluorescence microscopy images.

More recently, machine learning and in particular Convolutional
Neural Networks (CNNs) have provided a different approach for
nuclei detection. The U-Net [7], a popular network for semantic
image segmentation, uses an encoder-decoder architecture with short-
cut concatenation for segmenting biomedical images. A modified
U-Net has been used in [8, 9, 10] for nuclei segmentation in 3D
fluorescence microscopy images. For these semantic segmentation
models, post-processing such as watershed is typically required for
identifying different nuclei centroids [11]. This has been improved
in [12, 13] by using a vector field energy gradient map for detecting
nuclei centroids and boundaries. These two methods can only work
on 2D images and use large amounts of hand annotated images for
training. Alternatively, [14] works on 3D volumes by fusing and
reconstructing 2D segmentation results of each slice in a volume
from three directions into a 3D segmentation mask. However, using
a 2D to 3D reconstruction may not fully capture the 3D information
of the volume. Another deep learning approach for detection and
segmentation is Regional Convolutional Neural Networks (R-CNN).
The use of R-CNN for nuclei detection in microscopy images was
described in [15]. However, these models are designed for object
detection in 2D images. This was addressed in [16], where a slice-
and-cluster strategy combined with Faster R-CNN and hierarchical
clustering was proposed to estimate the true nuclei centroids in a 3D
fluorescence microscopy volume.

The deep learning-based methods described above typically rely
on large amounts of training samples to achieve good performance
and avoid over-fitting [17]. Manually annotating large numbers of
nuclei masks in 3D microscopy volumes is labor-intensive. Data aug-
mentation techniques are necessary for generating more training data.
Traditional data augmentation approaches use random transformation
and deformation techniques to create images but cannot significantly
improve the performance of the network and are vulnerable to adver-
sarial attacks [18]. More recently, deep learning-based techniques
for data augmentation use Generative Adversarial Networks (GANs)
to generate high quality realistic images [19]. In [8], a Spatially
Constrained Cycle-Consistent Adversarial Network (SpCycleGAN)
was proposed to map synthetic binary ellipsoidal nuclei masks to
synthetic microscopy images. Similarly, [20] uses Bézier curves and
an SpCycleGAN to generate non-ellipsoidal shaped nuclei.

In this paper, we propose a 3D CentroidNet for 3D nuclei cen-
troid detection, which is an extension of the 2D method described in
[12]. Our network directly works on 3D volumes and automatically
generates synthetic volumes for training. The nuclei centroids are
estimated using a robust vector flow voting mechanism, which is
achieved by collecting votes from each voxel and followed by non-
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maximum suppression. These voxels are constructed as 3D vectors
that point to their nearest nuclei centroids in a 3D vector flow volume.
To address the data limitation issue, we train our model on synthetic
microscopy volumes generated from an SpCycleGAN and evaluate
on three different types of microscopy volumes.

2. PROPOSED METHOD

Our proposed 3D nuclei centroid detection method is shown in Fig-
ure 1. The system consists of two components: (1) 3D synthetic data
generation, and (2) 3D CentroidNet training and inference.
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Fig. 1. The block diagram of the proposed method

In this paper, we denote I as a 3D volume of size X × Y × Z.
I(x,y,z) denotes a voxel of I at location (x, y, z). Superscripts will be
used to denote the type of volume. For example, Iorig and Isyn denote
the original 3D microscopy volumes and the synthetic 3D microscopy
volumes generated from SpCycleGAN. Ibi and Ĩbi denote different
synthetic 3D binary volumes for training and inference SpCycleGAN,
and I label is the corresponding label of the nuclei where each nucleus
is marked with a unique voxel intensity. We define “vector flow” as
a 3-channel volume where each voxel location is a 3D vector that
points to its nearest nuclei centroid in the corresponding microscopy
volume.

The SpCycleGAN was trained on Ibi and Iorig and inferenced
on Ĩbi to generate Isyn [8]. The pairs of Isyn and Ĩbi will be further
used for training a 3D CentroidNet. Itarget is a four-channel 3D
volume generated from I label. The first three channels correspond to
the nuclei centroid location where each voxel represents a 3D vector
Ivec(x,y,z) and points to its nearest nucleus centroid. The details of 3D
vector flow generation and 3D centroid estimation will be discussed
in Section 2.2. The last channel is the binary mask volume Ĩbi which
is used for segmentation. Itarget serves as the ground truth of Isyn

for training the 3D CentroidNet. The output of 3D CentroidNet
consists of two parts: Îvec and Îmask, where Îvec is a three-channel
volume which represents the estimated 3D vector flow, and Îmask

is the segmentation mask. Îctr is a 3D binary volume where the
highlighted voxels represent the nuclei centroids.

2.1. 3D Synthetic Data Generation

We use synthetic microscopy volumes for training the proposed 3D
CentroidNet. The synthetic data generation involves two steps: (1)
Synthetic binary volume generation, and (2) SpCycleGAN training
and inference.

Synthetic binary volume generation. We first generate syn-
thetic 3D binary volumes Ibi and corresponding label volume I label

where each nucleus is corresponding to a unique gray-scale inten-
sity. With the assumption that nuclei are ellipsoidal, we iteratively
generate N ellipsoidal candidate nuclei having different sizes and
orientations, where N is selected based on the nuclei density in Iorig.

The size is defined by the semi-axis length a = (ax, ay, az) of an
ellipsoid and the orientation is defined by a random rotation based
on the translation matrix described in [21]. The kth candidate nuclei
Ican,k is generated with voxel intensity k ∈ {1, ..., N} and added to
I label in random locations.

Synthetic microscopy volume generation. The synthetic mi-
croscopy volume Isyn is generated from the Spatially Constrained
CycleGAN (SpCycleGAN) [8] trained with unpaired synthetic binary
volumes Ibi and the original microscopy volumes Iorig. As shown
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Fig. 2. Architecture of SpCycleGAN

in Figure 2, SpCycleGAN consists of 5 networks G, F , H , D1, and
D2. G and F are two generators that map an image from one do-
main to another. D1 and D2 are discriminators for two domains to
distinguish if the given images are real or synthetic. H is the extra
generator identical to F for maintaining the spatial alignment be-
tween a microscopy volume and its corresponding mask. The entire
loss function of SpCycleGAN L1 is shown in Equation 1,

L1 = λ1Lcycle(G,F, I
orig, Ibi) + λ2Lspatial(G,H, I

orig, Ibi)

+ LGAN(G,D1, I
bi, Iorig) + LGAN(F,D2, I

orig, Ibi) (1)

where LGAN is the discriminator loss, and λ1, λ2 are weight coeffi-
cients controlling the loss balance between the cycle consistency loss
Lcycle and the spatial constraint loss Lspatial given by a L2 norm,

Lspatial(G,H, I
bi, Iorig) = EIbi [||H(G(Ibi))− Ibi||2] (2)

2.2. 3D CentroidNet

Vector flow generation. The 3D vector flow generation prepares
the target volumes Itarget for training the 3D CentroidNet. It takes
I label as the input, where each nucleus is marked by a unique voxel
intensity, and generates the centroid of each nucleus. Then the vol-
ume Ivec is generated, where each voxel (x, y, z) has 3 channels
that represent a 3D vector Ivec(x,y,z) that points to its nearest nucleus
centroid. The voting region of a nucleus centroid (shown within the
dashed circles in Figure 3) is determined by a radius threshold Tvec.
The voxels outside the voting region are set to zero and the voxels
inside the voting region are encoded with a 3D vector pointing to
the nearest nucleus centroid (the center of the circle). The area of
the voting region is set to the same size for each nucleus so each
voxel can maximally collect an equal number of votes. Itarget is the
concatenation of Ivec and Ibi used during training 3D CentroidNet.

3D CentroidNet. To learn the nuclei centroid location using
our proposed vector flow voting mechanism, we propose a network
known as 3D CentroidNet shown in Figure 4 that consists of a head
module and a backbone network. The “head” is a multi-task learning
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Fig. 3. Overview of 3D vector flow generation (first row) and 3D
centroid estimation (second row)

Fig. 4. The architecture of our proposed 3D CentroidNet

module for learning the vector flow volume and performs vector
flow voting to estimate nuclei centroids. The “backbone” is simply
a modified 3D UNet [7]. We use an encoder-decoder network with
shortcut concatenation as the backbone so it can take a volume in
any dimension and output a volume with identical size. The encoder
consists of multiple convolution blocks and 3D max pooling layers.
Each convolution block consists of a 3D convolution layer with filter
size 3 × 3 × 3, a 3D batch normalization layer, and a leaky ReLU
layer. For the decoder, conversely, each 3D transpose convolution
block consists of a 3D transpose convolution layer followed by a 3D
batch normalization and a leaky ReLU layer.

Multitask learning. The head of the network consists of two
branches. One branch outputs the estimated vector flow volume Îvec,
and another branch outputs the binary segmentation masks Îmask.
The segmentation branch can help the network identify the boundary
of nuclei and converge faster due to the extra loss constraint. Note
that there is no sigmoid function used to obtain Îvec because the
voxel values can be a negative number or a large number. In other
words, the vector encoded in a voxel can point to anywhere in a
volume. During training, the synthetic volumes Isyn generated from
SpCycleGAN are used as the input, and the output volumes from two
branches Îmask and Îvec are compared with Itarget for optimization.
Specifically, the output vector flow volumes Îvec are compared with
the ground truth vector flow volumes Ivec and optimized using the
Mean Square Error (MSE) loss function, whereas the segmentation
results Îmask are compared with the ground truth binary volumes Ĩbi

and optimized using the combination of Focal Loss [22] LFL and
Tversky Loss [23] LTL. The total loss of our network L2 is shown in
Equation 3.

L2 = λ3LTL(Ĩ
bi, Îmask) + λ4LFL(Ĩ

bi, Îmask)

+ λ5LMSE(I
vec, Îvec) (3)

3D centroid estimation. The steps for 3D centroid estimation
are shown in Figure 3. Îvec is a 3-channel volume where each voxel
is a 3D vector that points to somewhere in the volume. We denote the

Fig. 5. Visualization of the ground truth vector flow volume (left)
and the estimated 3D vector flow volume (right) for a volume in real
microscopy Data-II. Each cone represents a 3D vector pointing to its
nearest nuclei centroid

“votes” of a voxel Ĩvec(x,y,z) as the number of other voxels that point to
it. For example, if there are 3 different vectors that point to Ĩvec(x,y,z),
then the voxel Ivote(x,y,z) will have 3 votes. A voting map volume Ivote

is generated where the intensity of each voxel is the number of votes
for that voxel to be a centroid. Thus, the higher voxel intensity in
a voting map indicates higher probability of being a centroid. Non-
maximum suppression with window threshold size Tctr is used to
remove duplicate centroids. Finally, we use intensity thresholding
to remove the voxels with votes less than Tvote. The details of the
parameter values are shown in Table 1. The visualization of the 3D
vector flow is shown in Figure 5.

3. EXPERIMENTAL RESULTS

3.1. Experimental Setup

Our proposed method is trained on synthetic microscopy volumes and
tested on three different real microscopy data denoted as Data-I, Data-
II and Data-III. Data-I is a gray-scale volume of size X × Y × Z =
128 × 128 × 64 voxels, whereas Data-II includes 16 volumes of
size 128 × 128 × 16 voxels and Data-III consists of 4 volumes
of size 128 × 128 × 64 voxels. These data are collected from rat
kidney using two-photon microscopy and the ground truth volumes
are manually annotated using ITK-SNAP [25]. The original Data-I,
Data-II, and Data-III can be obtained from [9]. For corresponding
synthetic volumes, the parameters for generating Ibi are appropriately
chosen based on the nuclei size in real microscopy volumes. As
shown in Table 1, rmin and rmax are the minimum and maximum
semi-axis length of the nuclei size. Tov is the maximum allowed
overlapping voxels between two nuclei. N is the total number of
nuclei in a synthetic volume. The SpCycleGAN is trained on 4 pairs
of Ibi and Iorig individually for each data with λ1 = λ2 = 10,
and inferenced on 50 other synthetic binary volumes Ĩbi to generate
synthetic microscopy volumes Isyn for training 3D CentroidNet.

rmin rmax Tov N Tvec Tctr Tvote Tmatch

Data-I 4 8 5 400 10 7 30 4− 8

Data-II 10 14 10 40 24 7 200 6− 12

Data-III 6 12 20 200 16 7 70 6− 12

Table 1. Parameters for synthetic binary volume generation, 3D
centroid estimation, and object centroid-based evaluation

For 3D CentroidNet, 3 different models denoted as M-I, M-II, and
M-III are trained on synthetic Data-I, Data-II, and Data-III, respec-
tively. Since Data-III consists of both ellipsoidal and non-ellipsoidal
nuclei whereas our synthetic data generated from SpCycleGAN con-

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.21.500996doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.21.500996
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 6. Visual evaluation using ImageJ’s 3D visualization tool [24]. The first column are example testing volumes from original microscopy
Data-I and Data-III. The nuclei centroid estimation results for CellProfiler (second column), Squassh (third column), VTEA (fourth column),
DeepSynth (fifth column), RCNN-SliceNet (sixth column), and our 3D CentroidNet (last column). The estimated centroids are red and the
ground truth centroids are green

Data-I Data-II Data-III
P R F1 P R F1 P R F1

[4] 75.46 71.73 73.55 72.24 91.68 80.41 75.38 86.18 80.40
[26] 75.00 18.02 29.06 80.78 66.50 72.77 86.08 27.60 38.24
[5] 72.32 57.24 63.91 78.22 80.02 78.41 61.39 65.96 63.48
[9] 97.90 82.33 89.44 77.68 88.43 82.35 95.24 66.67 78.43

[14] 91.17 91.17 91.17 80.90 80.09 84.50 81.03 78.33 79.66
[16] 93.21 92.23 92.72 80.72 90.54 84.86 85.96 81.67 83.76
Ours 96.69 93.93 95.29 85.87 91.42 88.35 86.44 87.93 87.18

Table 2. Comparison of the object centroid-based evaluation results
using Precision (P), Recall (R), and F1 scores

tains only ellipsoidal nuclei, we observed that M-III does not gen-
eralize well on real microscopy Data-III. Thus, we updated M-III
on 3 volumes of real Data-III with the same parameter for training
synthetic Data-III. The 3D CentroidNet was implemented in PyTorch
and trained for 100 epochs with the Adam optimizer and initial learn-
ing rate 0.001. The weight coefficients of the loss function is set to
λ3 = 1, λ4 = 10, λ5 = 10. As shown in Table 1, the parameters for
3D centroid estimation are chosen based on the average nuclei size in
the volume.

3.2. Quantitative Evaluation

To quantitatively evaluate the centroid detection accuracy of our
model, we use object centroid-based precision P = NTP

NTP+NFP
, re-

call R = NTP
NTP+NFN

, and F1 = 2PR
P+R

scores to evaluate the centroid
detection accuracy. For each detected centroid, we define that it is
“matched” with a ground truth centroid if their Euclidean distance is
less than a centroid distance threshold Tmatch. Note that each ground
truth centroid always matches with its nearest detected centroid if
there are multiple detections. NTP is the number of True Positives
(“matched” pairs). Similarly, NFP is the number of False Positives
(number of detected centroids with no associated ground truth cen-
troid matched), and NFN is the number of False Negatives (number
of remaining no matched ground truth centroids). Tmatch is chosen
based on the inspection of real microscopy data and verified by a
biologist. The details of Tmatch is shown in Table 1. In addition, we
use the Average Precision (AP) and mean Average Precision (mAP)
that was presented in [16] for object centroid-based evaluation. APt

is the AP score with the distance threshold Tmatch = t. The perfor-
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Fig. 7. Comparison of the object centroid-based evaluation results
using Average Precision (AP) for Data-I (left) and Data-III (right)

mance of our method was compared with VTEA [5], CellProfiler [4],
Squassh [26], and three deep learning methods DeepSynth [9], Cell-
pose [14], and RCNN-SliceNet [16]. We use Cellpose to first obtain
the 3D instance segmentation masks. We then extract the centroids for
each nucleus obtained from Cellpose. The RCNN-SliceNet is capable
of capturing almost all nuclei but suffers from over-detection, whereas
DeepSynth missed some non-ellipsoidal nuclei. Our approach uses a
one stage method and addresses the limitations of RCNN-SliceNet
which requires a rough estimation of the nuclei number. Also, since
our method works directly on 3D volumes using a 3D CNN, it can
make better use of the 3D information of a volume. The object
centroid-based evaluation results shown in Figure 6, Table 2 and
Figure 7 indicate that our method achieved best visual performance
as well as quantitative accuracy towards mAP and F1 scores on three
different microscopy data.

4. CONCLUSION

In this paper, we proposed an approach, 3D CentroidNet, to detect
the centroid of nuclei in 3D microscopy volumes. The nuclei centroid
detection is achieved by a robust vector flow voting mechanism. We
demonstrate that 3D CentroidNet outperforms the compared meth-
ods in nuclei centroid detection on three microscopy datasets. 3D
CentroidNet is able to work on any size of input volumes. Our
method is practical to use since the user only needs to provide origi-
nal microscopy volumes and our network will automatically generate
synthetic microscopy volumes for training 3D CentroidNet and pro-
vide 3D detections for these original microscopy volumes. The code
and dataset are available upon request to imart@ecn.purdue.edu
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