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Abstract18

The inflation of test statistics in genome-wide association (GWA) studies due to confounding factors such19

as cryptic relatedness, population stratification, and spurious non-zero genetic effects driven by linkage20

disequilibrium (LD) has been well characterized in the literature. The key theoretical contribution of21

this work is that epistasis (i.e., the interaction between multiple loci and/or genes) can also lead to22

misestimated GWA summary statistics. To address this challenge, we develop marginal epistatic LD23

score regression and the accompanying software package MELD: an extended framework which takes in24

GWA test statistics and accurately partitions true additive genetic variation from non-additive genetic25

variation, as well as other biases. By re-analyzing 25 well-studied quantitative phenotypes from 349,46826

individuals of European ancestry in the UK Biobank and up to 159,095 individuals in BioBank Japan, we27
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illustrate that nonlinear effects are a significant source of signal in reported GWA summary statistics and28

provide evidence that epistasis is more widespread in human phenotypes than previously reported. Of29

the 25 complex traits we analyzed in the UK Biobank, 23 phenotypes have a significant amount of tagged30

epistasis captured within additive summary statistics, including height, urate level, and cholesterol levels.31

The MELD software and its application to these biobanks represent a significant step towards resolving the32

true contribution of epistasis to human complex traits.33

Introduction34

Understanding the genetic contribution to trait variation, or heritability, has been a central line of35

inquiry for over a century in a range of species, including our own1,2. Until recently, studies of genetic36

heritability in humans have been reliant on typically small sized family studies with known relatedness37

structure between individuals3,4. Due to advances in genomic sequencing and the steady development38

of novel statistical tools, it is now possible to obtain reliable heritability estimates from biobank-scale39

datasets of unrelated individuals5–8. Accurate estimation of heritability in these larger cohorts is crucial40

for gaining insight into the biological underpinnings of complex trait variation.41

Narrow-sense heritability (denoted h2) is defined as the true contribution of additive genetic effects42

in the generative model phenotypic trait variation5,6,9. Due to computational and privacy considera-43

tions with biobank-scale genome-wide association (GWA) studies, a recent trend has been to estimate44

narrow-sense heritability using GWA summary statistics (i.e., effect sizes and standard errors estimated45

from the GWA linear model). In the GWA linear model, additive effect sizes and standard errors for46

individual single nucleotide polymorphisms (SNPs) are estimated by regressing phenotype measurements47

onto the allele counts of each locus independently. It has become clear that many traits have a complex48

and polygenic basis—that is, hundreds to thousands of individual genetic loci across the genome often49

contribute to the variation of a single trait10. However, broad-sense heritability (H2), which includes50

all genetic factors that contribute to trait variation, including non-additive factors such as dominance or51

epistatic effects, has not been a focus in these traditional studies.52

Recent statistical methods have been developed to better distinguish true polygenic genetic architec-53

ture from confounding factors, such as cryptic relatedness and population stratification, when estimating54

narrow-sense heritability from genetic variants5,6,11,12. The most widely used of these approaches is55
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linkage disequilibrium (LD) score regression and the corresponding LDSC software5, which corrects for56

inflation in GWA summary statistics by modeling the relationship between the variance of SNP-level57

effect sizes and the sum of correlation coefficients between focal SNPs and their genomic neighbors (i.e.,58

the LD score of each variant). The main motivation behind the LDSC model is that, for polygenic traits,59

non-associated (or “null”) SNPs have a higher probability to emit spurious nonzero effects. This can be60

simply because they are in some degree of LD with (at least) one-of-many causal variants5 or because61

they have a trans-interaction effect with variants located within a gene enriched for associations with the62

trait of interest13. The goal of LDSC is to partition the bias in summary statistics due to this confounding63

and thereby provide a more precise estimate of narrow-sense heritability. As of late, there have been64

many efforts to build upon and improve the LDSC framework. For example, one limitation of the LDSC65

model is that, in practice, it only uses the diagonal elements of the squared LD matrix in its formulation.66

This tradeoff helps the method to scale genome-wide, but it also has been shown to lead to large standard67

errors for heritability estimates12,14,15. As a result, newer approaches have attempted to reformulate the68

LDSC model by using the eigenvalues of the LD matrix to leverage more of the information present in the69

correlation structure between SNPs6,12.70

While the LDSC model and its current extensions have improved accuracy for narrow-sense heritability71

estimation, none consider the need to correct possible misestimation in additive GWA summary statis-72

tics stemming from tagged nonlinear genetic effects. This is in part due to the longstanding and ongoing73

debate about the contribution of non-additive effects (e.g., epistasis and dominance effects) on the archi-74

tecture of human complex traits16–26. However, despite these controversies, many association mapping75

studies in humans have identified candidates of epistasis that notably contribute to trait variation27–30,76

and some have recently shown that gene-by-gene interactions can drive heterogeneity of causal variant77

effect sizes across diverse human populations31. Epistasis is a well-known contributor to trait architecture78

in several model organisms32–43. Importantly, non-additive genetic variation has been proposed as one79

of the main factors that explains missing heritability—the proportion of heritability not explained by the80

top associated variants in GWA studies44. Lastly, and particularly relevant to this work, studies have81

hypothesized that nonlinear genetic effects can confound heritability estimation in pedigree studies and82

cause misestimation of heritability statistics, creating so-called “phantom heritability”22,45,46.83

The key theoretical insight we highlight in this manuscript is that, in addition to polygenicity and84

other biases, SNP-level GWA summary statistics can provide evidence of epistasis if there is a nonzero85
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correlation between individual-level genotypes and their nonlinear genetic interactions in the generative86

model of complex traits. Here, we limit our demonstration to second-order (or pairwise) epistasis but this87

general concept can easily be extended to other sources of nonlinear genetic variation (e.g., dominance).88

To that end, we present the “marginal epistatic LD score” regression model or MELD: a simple extension89

of the LDSC framework which takes SNP-level effect sizes as input and aims to uniquely partition true90

additive genetic variation from non-additive genetic variation and other uncontrolled confounding factors.91

The main difference between MELD and LDSC is that the MELD model includes an additional set of “marginal92

epistatic” LD scores in its regression. These scores measure the amount of higher-order genetic variation93

that is tagged by each SNP in the GWA dataset. In practice, these additional scores are computationally94

efficient to compute and require nothing more than access to an ancestry-matched set of samples if95

genotype data are not available to the user, equivalent to the necessary data for performing LD score96

regression.97

Through extensive simulations, we show that MELD improves upon the estimation of narrow-sense98

heritability when genetic interactions are indeed present in the generative model for complex traits.99

More importantly, MELD has a calibrated type I error rate and does not overestimate non-additive genetic100

contribution to trait variation in simulated data when only additive effects are present. In real data101

analyses of 25 complex, continuous traits in the UK Biobank and BioBank Japan, we illustrate that102

pairwise interactions are a significant source of bias in reported additive GWA summary statistics—103

suggesting that epistasis is more pervasive in human phenotypes than previously reported. We believe104

that MELD represents a significant step towards resolving the true contribution of epistasis to human105

complex traits.106

Results107

Overview of marginal epistatic LD score regression108

Marginal epistatic LD score regression is a statistical framework which seeks to accurately partition true109

additive genetic effects from both tagged non-additive genetic variation and confounding factors such as110

polygenicity, cryptic relatedness, and population stratification. As an overview of the method and our111

corresponding software MELD, we will assume that we are analyzing a GWA dataset D = {X,y} where112

X is an N × J matrix of genotypes with J denoting the number of SNPs (each of which is encoded as113
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{0, 1, 2} copies of a reference allele at each locus j) and y is an N -dimensional vector of measurements114

of a quantitative trait. MELD only requires summary statistics of individual-level data: namely, marginal115

effect size estimates for each SNP β̂ and an empirical LD matrix R (which can be provided via reference116

panel data). In this study, we focus on pairwise statistical epistasis but this framework can easily be117

adapted to distinguish higher-order nonlinear interactions as well.118

We begin by assuming the following generative linear model for complex traits119

y = Xβ + Wθ + ε, ε ∼ N (0, (1−H2)I), (1)120

where β = (β1, . . . , βJ) is a J-dimensional vector containing the true additive effect sizes for an additional121

copy of the reference allele at each locus on y; W is an N ×M matrix of (pairwise) epistatic interactions122

between some subset of causal SNPs, where columns of this matrix are assumed to be the Hadamard123

(element-wise) product between genotypic vectors of the form xj ◦ xk for the j-th and k-th variants;124

θ = (θ1, . . . , θM ) is an M -dimensional vector containing the interaction effect sizes; ε is a normally125

distributed error term with mean zero and variance scaled according to the proportion of phenotypic126

variance not explained by the broad-sense heritability of the trait47, where the broad-sense heritability127

of the trait is denoted by H2. I denotes an N ×N identity matrix. For convenience, we will assume that128

the genotype matrix (column-wise) and the trait of interest have been mean-centered and standardized.129

Lastly, we let each individual effect size follow a normal distribution with variances proportional to their130

individual contributions to the broad-sense heritability of the trait of interest47–51131

βj ∼ N (0, H2ρ/J), θm ∼ N (0, H2(1− ρ)/M) (2)132

where ρ measures the proportion of total genetic effects that is contributed by the additive effects.133

Effectively, we say V[Xβ] = H2ρ = h2 is the narrow-sense heritability for a trait, while V[Wθ] = H2(1−ρ)134

makes up the remaining proportion of the broad-sense heritability.135

A central goal in GWA studies is to infer the true additive effects for each SNP. This is usually done by136

assuming two conditions: (i) non-additive genetic effects play a negligible role on the overall architecture137

of complex traits24,25, and (ii) that the genotype and interaction matrices X and W do not share the138

same column space (i.e., such that XᵀW = 0). However, if we relax these assumptions, then the following139

relationship between the moment matrix Xᵀy, the observed marginal GWA summary statistics β̂, and140
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the true coefficient values β holds in expectation (see Materials and Methods)141

Xᵀy = (XᵀX)β + (XᵀW)θ
≈⇐⇒ β̂ = Rβ + Vθ (3)142

where R is an empirical estimate of the LD matrix and V represents an empirical estimate of the143

correlation between the individual-level genotypes X and the span of genetic interactions between causal144

SNPs in W. Intuitively, the term Vθ can be interpreted as “bias” in the additive effect estimate that145

stem from tagged interaction effects. Here, we use “bias” in the statistical sense to mean any systematic146

difference between the expected value of an estimator and true value of the parameter being estimated147

(i.e., E[β̂]− β 6= 0). Note that when either conditions (i) or (ii) are indeed met such that Vθ = 0, the148

equation above simplifies to a relationship between LD and summary statistics that is assumed in many149

common GWA studies13,52–57.150

Recall that the goal of MELD is to identify the proportion of bias that stems from epistatic effects151

within additive GWA summary statistics. To do this, we build upon the LD score regression framework152

and the corresponding LDSC software47. Here, we note that, according to Eq. (3), β̂ ∼ N (Rβ+ Vθ, λR)153

where λ is a misestimation factor (i.e., inflation or deflation) due to uncontrolled confounding effects12,58.154

Next, we condition on Θ = (β,θ) and take the expectation of chi-square statistics χ2 = N β̂β̂ᵀ to yield155

E[β̂β̂ᵀ] = E
[
E
[
β̂β̂ᵀ |Θ

]]
= E

[
V
[
β̂ |Θ

]
+ E

[
β̂ |Θ

]
E
[
β̂ |Θ

]ᵀ]
= E [λR + (Rβ + Vθ)(Rβ + Vθ)ᵀ]

= E [λR + RββᵀR + 2RβθᵀV + VθθVᵀ]

= λR +

(
H2ρ

J

)
R2 +

(
H2(1− ρ)

M

)
V2.

(4)156

We define `j =
∑
k r

2
jk as the LD score for the additive effect of the j-th variant47, and fj =

∑
m v

2
jm157

represents the “marginal epistatic” LD score which encodes the interaction between the j-th variant and158

all other variants in the data set51, respectively. By considering only the diagonal elements of LD matrix159

in the first term, similar the original LDSC approach12,47, we get the following simplified regression160

E[χ2] ∝ 1 + `τ + fσ (5)161
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where χ2 = (χ2
1, . . . , χ

2
J) is a J-dimensional vector of chi-square summary statistics, and ` = (`1, . . . , `J)162

and f = (f1, . . . , fJ) are J-dimensional vectors of additive and marginal epistatic LD scores, respectively.163

Furthermore, we define the variance components τ = NH2ρ/J and σ = NH2(1− ρ)/M as the additive164

and epistatic regression coefficients of the model, and 1 is the intercept meant to model the misestima-165

tion factor due to uncontrolled confounding effects (e.g., cryptic relatedness structure). In practice, we166

efficiently compute the marginal epistatic LD scores by considering only a subset of interactions between167

each j-th focal SNP and SNPs within a cis-proximal window around the j-th SNP. This is based on the168

observation that LD decays outside of a window of 1 centimorgan (cM); therefore, SNPs outside the 1cM169

window centered on the j-th SNP will not significantly contribute to its LD scores. The MELD software170

package combines weighted least squares with a model averaging strategy (over different genomic window171

values) to estimate regression parameters. It then derives P -values for identifying summary statistics with172

significant bias stemming from epistatic signal by testing the null hypothesis H0 : σ = 0. Importantly,173

under the null of a trait being generated by only additive effects, the MELD model in Eq. (5) is equivalent174

to the original LDSC framework.175

Lastly, we want to note the empirical observation that the additive (`) and marginal epistatic (f) LD176

scores are lowly correlated. This is important because that means that the presence of marginal epistatic177

LD scores in the model specified in Eq. (5) has little-to-no influence over the estimate for the additive178

coefficient τ . Instead, the inclusion of f re-partitions the proportion of summary statistics biased by179

non-additive genetic variation (which would usually be included in the intercept) and places it within180

σ. In other words, we can interpret σ as the misestimation factor due to tagged epistasis. As a result,181

we use the difference between coefficient estimates τ − σ to construct unbiased estimates of narrow-sense182

heritability. A full theoretical derivation of the marginal epistatic LD regression framework and details183

about its corresponding implementation in our software MELD can be found in Materials and Methods.184

Detection of significant tagged epistasis using MELD in simulations185

We test the utility of MELD across different genetic trait architectures via an extensive simulation study186

(Materials and Methods). Here, we generate synthetic phenotypes using real genome-wide genotype data187

from individuals of self-identified European ancestry in the UK Biobank. To do so, we first assume that188

traits have a polygenic architecture where all SNPs have a non-zero additive effect. Next, we randomly189

select a set of causal epistatic variants and divide them into two interacting groups (Materials and190

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2022. ; https://doi.org/10.1101/2022.07.21.501001doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.21.501001
http://creativecommons.org/licenses/by-nc/4.0/


8

Methods). One may interpret the SNPs in group #1 as being the “hubs” in an interaction map51; while,191

SNPs in group #2 are selected to be variants within some kilobase (kb) window around each SNP in192

group #1. We assume a wide-range of simulation scenarios by varying the following parameters:193

• broad-sense heritability: H2 = 0.3 and 0.6;194

• proportion of phenotypic variation that is explained by additive effects: ρ = 0.5, 0.8, and 1;195

• percentage of SNPs selected to be in group #1: 1%, 5%, and 10%;196

• genomic window used to assign SNPs to group #2: ±10 and ±100 kb.197

We also varied the correlation between SNP effect size and minor allele frequency (MAF) (as discussed198

in Schoech et al. 59). All results presented in this section are based on 100 different simulated phenotypes199

for each parameter combination.200

Overall, results show that MELD robustly detects significant tagged epistatic effects, regardless of the201

total number of causal interactions genome-wide (Figure 1). Instead, the power of MELD depends on202

the proportion of phenotypic variation that is explained by additive versus non-additive effects, and its203

power tends to scale with the window size used to compute the marginal epistatic LD scores (again204

see Materials and Methods). MELD shows similar ability to detect tagged epistatic effects even in the205

presence of MAF-dependent effect sizes and when we vary the number of SNPs assigned to be in group206

#2 (Figures S1-S5).207

Importantly, MELD does not falsely identify putative epistatic effects in GWA summary statistics when208

the synthetic phenotype they were derived from was generated only by additive effects. Figure 2 illustrates209

the performance of MELD under the null hypothesis, with the type I error rates for different estimation210

window sizes of the marginal epistatic LD scores highlighted in panel A. Here, we also show that, when211

no epistasis is present, MELD unbiasedly estimates the epistatic coefficient in the regression model σ = 0212

(Figure 2B), robustly estimates the narrow-sense heritability of traits correctly (Figure 2C), and provides213

well-calibrated P -values when assessed over many traits (Figure 2D). This behavior is consistent across214

different MAF-dependent effect size distributions, and MELD is not sensitive to misspecification of the215

estimation windows used to generate the marginal epistatic LD scores (Figures S6-S7).216

Lastly, one of the most important innovations that MELD offers over the traditional LDSC framework217

is the correction of narrow-sense heritability estimates after detecting bias from non-additive genetic218
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variation. Here, we applied both methods to the same set of simulations in order to understand how219

LDSC behaves for traits that were generated with epistatic effects. Figures 3 and S8 depict boxplots of the220

narrow-sense heritability estimates for each approach and shows that, across an array of different synthetic221

phenotype architectures, LDSC routinely overestimates the truth in our simulations that include nonzero222

epistatic effects. In contrast, MELD more accurately partitions the total genetic variance explained, which223

in turn leads to more precise estimation. The mean absolute error between the true h2 value and the224

estimates produced by MELD and LDSC are shown in Table S1 and S2, respectively. Generally, the error225

in narrow-sense heritability estimates is higher for LDSC than it is for MELD across each of the scenarios226

that we consider.227

Application of MELD to the UK Biobank and BioBank Japan228

To assess whether nonlinear genetic interactions are significantly biasing GWA summary statistics in229

empirical biobank data, we applied MELD to 25 continuous quantitative traits from the UK Biobank and230

BioBank Japan (Table S3). Protocols for computing GWA summary statistics for the UK Biobank are231

described in the Materials and Methods; while pre-computed summary statistics for BioBank Japan were232

downloaded directly from the consortium website (see URLs). We release marginal epistatic LD scores233

on the MELD GitHub page from two reference populations in the 1000 Genomes: 489 individuals from the234

European superpopulation (EUR) and 504 individuals from the East Asian (EAS) superpopulation (see235

also Table S4).236

In 23 of the 25 traits we analyzed in the UK Biobank, we detected significant bias stemming from237

pairwise epistasis (Table 1). This includes many canonical traits of interest in heritability analyses: height,238

cholesterol levels, urate levels, and both systolic and diastolic blood pressure. Our findings in Table 1239

are supported by multiple published studies identifying epistasis in a given trait of interest. For example,240

Li et al. 60 found statistical evidence for epistatic interactions that contributed to the pathogenesis of241

coronary artery disease. It was also recently shown that non-additive variation plays a significant role242

in body mass index12. Generally, we find that the traditional LDSC underestimates trait narrow-sense243

heritability when it does not consider this additional source of genetic signal as opposed to MELD (Table244

S6). In BioBank Japan, the only trait with a significant nonlinear component was triglyceride levels.245

We believe that this, in part, may be due to the discrepancy in sample sizes between the UK Biobank246

(N = 349, 469 for all traits) and BioBank Japan (Table S5).247
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For each of the 25 traits that we analyzed, we found that the MELD narrow-sense heritability estimates248

are generally correlated with that of the LDSC in both the UK Biobank (r2 = 0.591, P = 1.13×10−5) and249

BioBank Japan (r2 = 0.815, P = 6.95×10−10). Additionally, we found that the narrow-sense heritability250

estimates for the same traits between the two biobanks are highly correlated according to both LDSC251

(r2 = 0.664, P = 1.26× 10−6) and MELD (r2 = 0.734, P = 4.69× 10−8) analysis. These results are shown252

in Figure 4A and B, respectively.253

After comparing the MELD narrow-sense heritability estimates to LDSC, we then assessed whether there254

was significant difference in the amount of bias in the GWA summary statistics derived from the the UK255

Biobank and BioBank Japan (i.e., comparing the estimates of σ; see Figure 4C). We show that, while256

heterogeneous between traits, the bias introduced by nonlinear interactions is relatively of the same257

magnitude for both biobanks (r2 = 0.239, P = 0.013). Notably, the trait with the most significant258

evidence of epistatic bias in GWA summary statistics is height which is known to have a highly polygenic259

architecture. Across the 25 traits studied, the estimated additive coefficients between UK Biobank and260

BioBank Japan are also highly correlated (r2 = 0.748, P = 2.49× 10−10).261

Finally, we show that the intercepts estimated by LDSC and MELD are highly correlated in both the262

UK Biobank and the BioBank Japan. Recall that these intercept estimates represent the confounding263

factor due to uncontrolled effects. For LDSC this does include bias from pairwise genetic interactions,264

while MELD intercept estimates do not include bias due to these types of nonlinear effects. The MELD265

intercept estimates tend to be correlated but generally different than those computed with LDSC —266

empirically indicating that non-additive genetic variation is partitioned away from other types of biases267

when marginal epistatic scores included in the LD score framework (Figure S9). This result shows similar268

patterns of bias both the UK Biobank and BioBank Japan, and it confirms that nonlinear effects can be269

a source of bias in heritability estimation.270

Discussion271

In this paper, we present MELD, an extension of the LD score regression framework that partitions true272

additive genetic variation from biases introduced by non-additive genetic effects using GWA summary273

statistics. The key insight underlying MELD is that SNP-level GWA summary statistics can be biased if274

there is a nonzero correlation between individual-level genotypes and their nonlinear genetic interactions;275
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this is in addition to other biases well-known to affect GWA results such as polygenic trait architecture.276

MELD builds upon the original LDSC model through the inclusion of “marginal epistatic” LD scores which277

capture sources of epistasis that are tagged by each SNP in the data (Figures 1 and S1-S5). Through278

extensive simulations, we show that MELD is well-calibrated under the null model when traits are generated279

only by additive effects (Figures 2 and S6-S7), and it provides improved narrow-sense heritability estimates280

over LDSC when traits are generated with interaction effects (Figures 3 and S8, and Tables S1 and S2).281

Lastly, in real data, we show examples of many traits with estimated GWA summary statistics that282

are biased by epistatic effects in the UK Biobank and BioBank Japan (Figures 4 and S9, and Tables 1283

and S6). We have made MELD a publicly available command line tool that requires minimal updates284

to the environment used to run the original implementation of LD score regression. In addition, we285

provide pre-computed marginal epistatic LD scores calculated from the European (EUR) and East Asian286

(EAS) reference populations in the 1000 Genomes phase 3 data (see Data and Software Availability under287

Materials and Methods).288

The current implementation of the MELD framework offers many directions for future development and289

applications. First, we note that in this study we did not incorporate additional variant annotations (e.g.,290

based on epigenetic information, regulatory genomic units) during our computation of LD scores61–63.291

The inclusion of additional annotations has been shown to provide more refined narrow-sense heritability292

estimates from GWA summary statistics while accounting for linkage64. A key part of our future work293

is to explore whether considering annotation groups would also improve our ability to identify tagged294

epistasis. Second, in its current form, the MELD software only considers non-additive genetic variation295

and ignores unobserved environmental or population-specific covariates that could also cause biases in296

GWA summary statistics. In the future, we plan to expand the MELD framework to also study confounding297

stemming from factors such as gene-by-environment (G×E) or gene-by-sex (G×Sex) interactions. We can298

do this by computing a new set of scores which encode how loci interact with one or more environmental299

instruments65–67. Lastly, we have only focused on analyzing one phenotype at a time in this study.300

However, many previous studies have extensively shown that modeling multiple phenotypes can often301

dramatically increase power68. Therefore, it would be interesting to extend the MELD framework to302

multiple traits to study nonlinear genetic correlations in the same way that LDSC was recently extended303

to uncover additive genetic correlation maps across traits69.304
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URLs305

MELD software package for implementing marginal epistatic LD score regression, https://github.com/306

lcrawlab/MELD; LDSC software package for implementing LD score regression, https://github.com/307

bulik/ldsc/; UK Biobank, https://www.ukbiobank.ac.uk; BioBank Japan, http://jenger.riken.308

jp/en/result; 1000 Genomes Project genetic map and haplotypes, http://mathgen.stats.ox.ac.309

uk/impute/data_download_1000G_phase1_integrated.html; Database of Genotypes and Phenotypes310

(dbGaP), https://www.ncbi.nlm.nih.gov/gap; NHGRI-EBI GWAS Catalog, https://www.ebi.ac.311

uk/gwas/; GRM-MAF-LD package, https://github.com/arminschoech/GRM-MAF-LD; GCTA toolkit,312

https://yanglab.westlake.edu.cn/software/gcta/.313
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Materials and Methods335

Generative statistical model for complex traits336

Our goal in this study is to re-analyze summary statistics from genome-wide association (GWA) studies337

and distinguish true additive genetic associations from bias stemming from tagged epistatic interactions.338

We begin by assuming the following generative linear model for complex traits and phenotypes339

y = Xβ + Wθ + ε, ε ∼ N (0, (1−H2)I), (6)340

where y denotes an N -dimensional vector of phenotypic states for a quantitative trait of interest measured341

in N individuals; X is an N × J matrix of genotypes, with J denoting the number of single nucleotide342

polymorphism (SNPs) encoded as {0, 1, 2} copies of a reference allele at each locus; β = (β1, . . . , βJ) is343

a J-dimensional vector containing the true additive effect sizes for an additional copy of the reference344

allele at each locus on y; W is an N ×M matrix of (pairwise) epistatic interactions between some subset345

of causal SNPs, where columns of this matrix are assumed to be the Hadamard (element-wise) product346

between genotypic vectors of the form xj ◦ xk for the j-th and k-th variants; θ = (θ1, . . . , θM ) is an347

M -dimensional vector containing the interaction effect sizes; ε is a normally distributed error term with348

mean zero and variance scaled according to the proportion of phenotypic variance not explained by the349

broad-sense heritability of the trait, denoted by H2; and I denotes an N ×N identity matrix.350

For convenience, we further assume that the genotype matrix (column-wise) and trait of interest351

have been mean-centered and standardized. Furthermore, we want to point out that the generative352

formulation of Eq. (6) can also be easily extended to accommodate other fixed effects (e.g., age, sex,353

or genotype principal components), as well as other random effects terms that can be used to account354

for sample non-independence due to other environmental factors. In addition, we choose to assume that355

β and θ are fixed effects here, but modeling these coefficients as a random effect is straightforward.356

Lastly, in this work, we only consider second order (or pairwise) epistatic relationships between SNPs.357

However, the generalization of the proposed framework to detect bias from higher-order interactions is358

also straightforward and only involves manipulating the epistatic matrix W51,70.359
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GWA summary statistics and tagged epistatic effects360

As previously mentioned, the key theoretical insight of this work is that, in addition to polygenicity and361

other sources of confounding such as cryptic relatedness and population stratification, SNP-level GWA362

summary statistics can also be biased if there is a nonzero correlation between individual-level genotypes363

and their interactions (as defined in Eq. (6)). Here, we use the term “bias” in the statistical sense to mean364

any systematic difference between the expected value of an estimator and true value of the parameter365

being estimated (i.e., E[β̂]− β 6= 0). We now formally derive this concept. Throughout this section, we366

will use XᵀX/N to denote the linkage disequilibrium (LD) or pairwise correlation matrix between SNPs.367

We will then let R represent an LD matrix empirically estimated from external data (e.g., directly from368

GWA study data, or using an LD map from a population with similar genomic ancestry to that of the369

samples analyzed in the GWA study). The important property here is that370

E[XᵀX] ≈ NR, E[xᵀ
jxj ] ≈ N, E[xᵀ

jxk] ≈ Nrjk (7)371

where the term rjk is defined as the Pearson correlation coefficient between the j-th and k-th SNPs,372

respectively, and xj denotes the j-th column of the individual-level genotype matrix X.373

A central goal in GWA studies is to jointly infer the true additive effects β = (XᵀX)−1Xᵀy for each374

SNP, given both genotypic and phenotypic measurements for each assayed individual. However, since375

the generative model in Eq. (6) is an underdetermined linear system (i.e., J > N) for many GWA376

applications, we need to make additional modeling assumptions on the regression coefficients to make377

the generative model identifiable. To do so, we follow standard linear modeling approaches47–51 and378

assume that each individual effect size follows a normal distribution with variances proportional to their379

individual contributions to the broad-sense heritability of the trait of interest. Namely, we assume that380

βj ∼ N (0, H2ρ/J), θm ∼ N (0, H2(1− ρ)/M), j = 1, . . . , J m = 1, . . . ,M (8)381

where ρ measures the proportion of total genetic effects that is contributed by the additive effects.382

Alternatively, we say that V[Xβ] = H2ρ = h2 is said to be the narrow-sense heritability of the trait,383

while the set of nonlinear interactions involving some subset of causal SNPs contribute the remaining384

V[Wθ] = H2(1− ρ) to the overall broad-sense heritability.385
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Additive GWA summary statistics assuming no epistasis386

In traditional GWA studies, genetic interactions are assumed to play a negligible role on the overall387

architecture of complex traits (i.e., ρ ≈ 1 or θ = 0)23,24,26; therefore, summary statistics of the true388

additive effects β in Eq. (6) are typically derived by computing a marginal least squares estimate with389

the observed data390

β̂j = (xᵀ
jxj)

−1xᵀ
jy ⇐⇒ β̂ = diag(XᵀX)−1Xᵀy. (9)391

There are two key identities that may be taken from Eq. (9). The first uses Eq. (7) and is the approximate392

relationship (in expectation) between the moment matrix Xᵀy and the additive effect size estimates β̂:393

Xᵀy = diag(XᵀX)β̂ ≈ N β̂. (10)394

The second key point combines Eqs. (7) and (10) and describes the asymptotic relationship between the395

observed marginal GWA summary statistics β̂ and the true coefficient values β where396

β = (XᵀX)−1Xᵀy ≈ (NR)−1N β̂ = R−1β̂. (11)397

After some algebra, the above mirrors a high-dimensional regression model where β̂ = Rβ with the398

estimated summary statistics as the response variables and the empirically estimated LD matrix acting as399

the design matrix13,52,53,55,57. Theoretically, the resulting output coefficients from this high-dimensional400

model are the desired true effect size estimates used to generate the phenotype of interest.401

Additive GWA summary statistics with tagged epistasis402

When genetic interactions do significantly contribute to the architecture of complex traits (i.e., ρ < 1 or403

θ 6= 0), the marginal GWA summary statistics derived using least squares in Eq. (9) can be confounded404

if there is a nonzero correlation between genotypes and and their epistatic interactions. To see this, we405

take the joint solution for the true regression coefficients β and θ from the generative model in Eq. (6)406

β
θ

 =

XᵀX XᵀW

WᵀX WᵀW


−1 Xᵀ

Wᵀ

y, (12)407
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where the matrix XᵀW can be interpreted as the sample correlation between individual-level genotypes408

and the epistatic interactions between causal SNPs. By solving for the additive genetic effects (again in409

expectation using Eqs. (7) and (10)), we get the following alternative relationship between the moment410

matrix Xᵀy, the observed marginal GWA summary statistics β̂, and the true coefficient values β where411

Xᵀy = (XᵀX)β + (XᵀW)θ
≈⇐⇒ β̂ = Rβ + Vθ. (13)412

Here, we define V to represent an empirical estimate of the correlation between the individual-level413

genotypes and the non-additive genetic interaction matrix such that E[XᵀW] ≈ NV. Similar to the LD414

matrix R, the correlation matrix V is also assumed to be computed from reference panel data. Intuitively,415

when Vθ 6= 0 there is additional bias in the effect size estimates, and when Vθ = 0 then the relationship416

in Eq. (13) converges onto the conventional asymptotic assumption between GWA summary statistics417

and the true SNP additive effects in Eq. (11)13,52,53,55,57.418

Full derivation of marginal epistatic LD score regression419

In order to derive the marginal epistatic LD score regression framework, recall that our goal is to identify420

evidence of tagged epistatic effects within misestimated GWA summary statistics. To do this, we build421

upon the LD score regression framework and the LDSC software47. Much of the derivation in this section422

will be done mirroring this previous work. Here, we assume nonzero contributions from epistatic effects423

in the generative model of complex traits as in Eq. (13), and we use the observed least squares estimates424

from Eq. (9) to compute chi-square statistics χ2
j = Nβ̂2

j for every j = 1, . . . , J SNP in the data. Taking425

the expectation of these chi-square statistics yields426

E[χ2
j ] = NE[β̂2

j ] = N

[
V[β̂j ] +

(
E[β̂j ]

)2]
. (14)427

We can simplify Eq. (14) in two steps. First, by combining the prior assumption in Eq. (8) and the428

asymptotic approximation in Eq. (13), we can show that marginal expectation (i.e., when not conditioning429

on the true coefficients) E[β̂j ] = 0 for all variants. Second, by conditioning on the generative model from430
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Eq. (6), we can use the law of total variance to simplify V[β̂j ] where431

V[β̂j ] = E[V[β̂j |X]] + V[E[β̂j |X]] ≈ E[V[xᵀ
jy/N |X]] + 0

= E
[

1

N2
xᵀ
j {V[y |X]}xj

]
= E

[
1

N2
xᵀ
j

{
H2ρ

J
XXᵀ +

H2(1− ρ)

M
WWᵀ + (1−H2)

}
xj

]
= E

[
1

N2

{
H2ρ

J
xᵀ
jXXᵀxj +

H2(1− ρ)

M
xᵀ
jWWᵀxj +N(1−H2)

}]
.

432

Using the same logic from the original LDSC regression framework47, we can use Isserlis’ theorem71 to433

write the above in terms of more familiar quantities based on sample correlations434

1

N2
xᵀ
jXXᵀxj =

J∑
k=1

r̃2jk,
1

N2
xᵀ
jWWᵀxj =

M∑
m=1

ṽ2jm (15)435

where r̃jk is used to denote the sample correlation between additively-coded genotypes at the j-th and436

k-th variants, and ṽjm is used to denote the sample correlation between the genotype of the j-th variant437

and the m-th epistatic interaction on the phenotype of interest (again see Eq. (13)). Furthermore, we438

can use the delta method (only displaying terms up to O(1/N2)) to show that (in expectation)439

E[r̃2jk] ≈ r2jk + (1− r2jk)/N, E
[
ṽ2jm

]
≈ v2jm +

(
1− v2jm

)
/N. (16)440

Next, we can then approximate the quantities in Eq. (15) via the following441

E

[
J∑
k=1

r̃2jk

]
≈ `j + (J − `j)/N, E

[
M∑
m=1

ṽ2jm

]
≈ fj + (M − fj) /N (17)442

where `j is the corresponding LD score for the additive effect of the j-th variant and fj represents the443

“marginal epistatic” LD score between the j-th SNP and all other variants in the data set51, respectively.444

Altogether, this leads to the specification of the univariate framework with the j-th SNP445

E[χ2
j ] ≈ N

[(
H2ρ

J

)
`j +

(
H2(1− ρ)

M

)
fj +

1

N
(1−H2)

]
= `jτ + fjσ + 1 (18)446
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where we define τ = NH2ρ/J as estimates of the true additive genetic signal, the coefficient σ =447

NH2(1− ρ)/M as an inflation or deflation factor due to tagged epistasis, and 1 is the intercept meant to448

model the misestimation due to uncontrolled confounding effects. Similar to the original LDSC formulation,449

an intercept greater than one means significant bias from sources other than polygenicity. Note that the450

simplification for many of the terms above such as (1−H2)/N ≈ 1/N results from our assumption that451

the number of individuals in our study is large. For example, the sample sizes for each biobank-scale452

study considered in the analyses of this manuscript are at least on the order of N ≥ 104 observations (see453

Table S5). Altogether, we can jointly express Eq. (18) in multivariate form as the following454

E[χ2] ≈ `τ + fσ + 1 (19)455

where χ2 = (χ2
1, . . . , χ

2
J) is a J-dimensional vector of chi-square summary statistics, and ` = (`1, . . . , `J)456

and f = (f1, . . . , fJ) are J-dimensional vectors of additive and marginal epistatic LD scores, respectively.457

It is important to note that, while χ2 must be recomputed for each trait of interest, both vectors ` and458

f only need to be constructed once per reference panel or individual-level genotypes (see next section for459

efficient computational strategies).460

To identify summary statistics that have significant tagged epistatic signal, we test the null hypothesis461

H0 : σ = 0. The MELD software package implements the same model fitting strategy as LDSC. Here, we462

use weighted least squares to fit the joint regression in Eq. (19) such that463

σ̂ = (fᵀΨf)−1fᵀΨχ2, ψjj = [`j τ̂ + fj σ̂ + 1]
−2

(20)464

where Ψ is a J × J diagonal weight matrix with nonzero elements set to values inversely proportional to465

the conditional variance V[χ2
j | `j , fj ] = ψ−1jj to adjust for both heteroscedasticity and over-estimation of466

the summary statistics for each SNP47. Standard errors for each coefficient estimate are derived via a467

delete-one jackknife over blocks of SNPs in the data64, and we then use those standard errors to derive468

P -values with a two-sided test (i.e., testing the alternative hypothesis HA : σ 6= 0). For all analyses in this469

paper, we estimate narrow-sense heritability using a de-biased coefficient which is computed by taking470

the difference between τ̂ − σ̂ (i.e., the estimated additive component minus the inflation or deflation that471

stems from tagged pairwise genetic effects).472
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Efficient computation of marginal epistatic LD scores473

In practice, marginal epistatic LD scores in MELD can be computed efficiently through realizing two key474

opportunities for optimization. First, given J SNPs, the full matrix of genome-wide interaction effects475

W contains on the order of J(J − 1)/2 total pairwise interactions. However, the correlation between the476

genotype of the j-th SNP and the interactions where its involved (i.e., xᵀ
j (xj ◦ xl) for l 6= j) is bound to477

be much larger than the correlation between the genotype of the j-th SNP xj and interactions involving478

some other SNP (e.g., xᵀ
j (xk ◦ xl) for k 6= j and l 6= j). To that end, we can compute the MELD score479

for each SNP by replacing the full W matrix with Wj which includes only interactions involving the480

j-th SNP. Analogous to the original LDSC formulation47, we consider only interactive SNPs within a cis-481

window proximal to the focal j-th SNP for which we are computing the MELD score. In the original LDSC482

methodology, this is based on the observation that LD decays outside of a window of 1 centimorgan (cM);483

therefore, SNPs outside the 1cM window centered on the j-th SNP j will not significantly contribute to484

its LD score.485

The second opportunity for optimization comes from the fact that the matrix of interaction effects,486

Wj , does not ever need to be explicitly generated. Referencing Eq. (15), the MELD scores are defined as487

xᵀ
jWjW

ᵀ
j xj/N

2. This can be re-written as xᵀ
j (DjX

(j))(DjX
(j))ᵀxj , where Dj = diag(xj) is a diagonal488

matrix with the j-th genotype as its nonzero elements51 and X(j) denotes the subset SNPs within a489

cis-window proximal to the focal j-th SNP. This means that the MELD score for the j-th SNP can be490

simply computed as the following491

fj ≈
1

N2
(xᵀ
j )2X(j)X(j)ᵀ(xj)

2. (21)492

With these simplifications, the computational complexity of generating MELD scores reduces to that of493

computing LD scores — modulo a vector-by-vector Hadamard product which, for each SNP, is constant494

factor of N (i.e., the number of genotyped individuals).495

Model averaged coefficient estimates496

When computing the marginal epistatic LD scores, the most important decision is choosing the number497

of interacting SNPs to include in X(j) (or equivalently Wj for each j-th focal SNP in the calculation of498

fj in Eq. (21). The MELD framework considers different estimating windows to account for our lack of a499
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priori knowledge about the “correct” non-additive genetic architecture of traits. Here, we follow previous500

work50,54,56–58,72 by considering an L-valued grid of possible SNP interaction window sizes. After fitting501

a series of MELD regressions with marginal epistatic LD scores f (l) generated under the L-different window502

sizes, we compute normalized importance weights using their maximized likelihoods via the following503

π(l) =
L
(
`,f (l); β̂

)
∑
l′ L

(
`,f (l′); β̂

) , L∑
l=1

π(l) = 1. (22)504

As a final step in the model fitting procedure, we empirically compute averaged estimates of the coefficients505

τ and σ by marginalizing (or averaging) over the L-different grid combinations of estimating windows506

τ̂ =

L∑
l=1

π(l)τ̂ (l), σ̂ =

L∑
l=1

π(l)σ̂(l). (23)507

This final step can be viewed as an analogy to model averaging where marginal estimates are computed508

via a weighted average using the importance weights73. In the current study, we average over estimated509

marginal epistatic LD scores generated using different windows of ±5, ±10, ±25, and ±50 SNPs around510

each j-th focal SNP.511

Relationship between minor allele frequency and effect size512

The LDSC software computes LD scores using annotations over equally spaced minor allele frequency513

(MAF) bins. These annotations enable the per trait relationship between the MAF and the effect size of514

each variant in the genome to vary based on the discrete category (or MAF bin) it is placed into. This515

additional flexibility is intended to help LDSC be more robust when estimating narrow-sense heritability.516

The relationship between MAF and effect size is already implicitly encoded in the LDSC formulation since517

we assume genotypes are normalized. When normalizing by the variance of each SNP (or equivalently its518

MAF), we make the assumption that rare variants inherently have larger effect sizes. There exists a true519

functional relationship between MAF and effect size which is likely to be somewhere between the two520

extremes of (i) normalizing each SNP by its MAF and (ii) allowing the variance per SNP to be dictated521

by its MAF.522

Recent approaches have proposed using a single parameter α to better represent the nonlinear rela-523

tionship between MAF and variant effect size. The main idea is that this α not only provides the same524
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additional flexibility to LDSC as the MAF-based discrete annotations, but it also empirically yields even525

more precise narrow-sense heritability estimates74. Namely, we use526

`j(c) :=
∑
k

Ljk(α)ac(k), Ljk(α) = r2jkV[xk]1−α (24)527

where ac(k) is the annotation value for the c-th categorical bin. The α parameter is unknown in practice528

and needs to be estimated for any given trait. While standard ranges for α can be used for heritability es-529

timates, we use a restricted maximum likelihood (REML) based method which was recently developed59.530

In the MELD software, we use this α construction to handle the relationship between MAF and variant531

effect size for two specific reasons. First, by constructing the LD scores using α, we more accurately532

capture the variation in chi-square test statistics due to additive effects74. Second, we note that there is533

correlation between MAF and (i) LD scores, (ii) marginal epistatic LD scores, and (iii) trait architecture.534

To that end, if we do not properly condition on MAF, there becomes additional bias, and we may535

falsely attribute some amount of variation in the chi-square test statistics to LD or the tagged epistasis.536

Therefore, in our formulation, we include an α term on the LD scores to condition on this effect. We537

demonstrate in simulation that this removes the bias introduced by the relationship between MAF and538

trait architecture, and it mitigates potential inflation of type I error rates in the MELD test.539

Estimation of allele frequency parameters540

In the main text, we analyzed 25 complex traits in both the UK Biobank and BioBank Japan data sets.541

In order to account for minor allele frequency (MAF) dependent trait architecture, we calculated α values542

for each trait that had not been analyzed by previous studies59. The α estimates for each of the 25 traits543

analyzed in this study are shown in Table S4. Intuitively, α parameterizes the weighting of the effects544

of each individual variant given its frequency in the study cohort and can take on values in the range of545

[-1,0]. More negative values of α indicate that lower frequency variants contribute more to the observed546

variation in a trait of interest, whereas values of α closer to zero indicate that common variants contribute547

a greater amount of variation to observed trait values.548

We took α values for 11 traits (again see Table S4) that had previously been calculated from Schoech549

et al. 59 . For the remaining 14 traits analyzed in this study, we followed the estimation protocol described550

in the same manuscript. Specifically, using the variants passing the quality control step in our pipeline for551
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25,000 randomly selected individuals in the UK Biobank cohort, we constructed MAF-dependent genetic552

relatedness matrices for values of α = {−1,−0.95,−0.9, . . . , 0} using the GRM-MAF-LD software, https:553

//github.com/arminschoech/GRM-MAF-LD. We then used the GCTA software75 to obtain heritability and554

likelihood estimates using REML for each α-trait pairing. We then fit a trait-specific profile likelihood555

across the range of α values and estimate the maximum likelihood value of α using a natural cubic spline.556

Simulation studies557

We used a simulation scheme to generate synthetic quantitative traits and SNP-level summary statis-558

tics under multiple genetic architectures using real genome-wide data from individuals of self-identified559

European ancestry in the UK Biobank. First, we assume that every SNP in the genome has at least a560

small additive effect on the traits of interest. Next, we randomly select a subset of SNPs to have nonzero561

epistatic effects and assume that complex traits are generated via the following general linear model562

y = Xβ + Wθ + ε, ε ∼ N (0, κ2I), (25)563

where y is an N -dimensional vector containing all the phenotypes; X is an N × J matrix of genotypes564

encoded as 0, 1, or 2 copies of a reference allele; β is a J-dimensional vector of additive effect sizes for each565

SNP; W is an N ×M matrix which holds all pairwise interactions between the randomly selected subset566

of the interacting SNPs with corresponding effects θ; and ε is an N -dimensional vector of environmental567

noise. The phenotypic variance is assumed to be V[y] = 1. The additive and interaction effect sizes for568

SNPs are randomly drawn from independent standard normal distributions and then rescaled so that569

they explain a fixed proportion of the broad-sense heritability V[Xβ] + V[Wθ] = H2. Note that we570

do not assume any specific correlation structure between the effect sizes β and θ. We then rescale the571

random error term such that V[ε] = (1−H2). In the main text, we compare the traditional LDSC to its572

direct extension in MELD. For each method, GWA summary statistics are computed by fitting a single-573

SNP univariate linear model via least squares where β̂j = (xᵀ
jxj)

−1xᵀ
jy for every j = 1, . . . , J SNP in574

the data. These effect size estimates are used to derive the chi-square test statistics χ2
j = Nβ̂2

j . We575

implement both LDSC and MELD with the LD matrix R = XᵀX/N and the additive-epistatic correlation576

matrix V = XᵀW/N being computed using a reference panel of 489 individuals from the European577

superpopulation (EUR) of the 1000 Genomes Project. The resulting matrices R and V are used to578
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compute the LD scores and marginal epistatic LD scores, respectively.579

When generating synthetic traits, we assume that the additive effects make up ρ% of the broad-sense580

heritability while the pairwise interactions make up the remaining (1−ρ)%. Alternatively, the proportion581

of the heritability explained by additivity is said to be V[Xβ] = ρH2, while the proportion detailed by582

genetic interactions is given as V[Wθ] = (1 − ρ)H2. The setting of ρ = 1 represents the limiting null583

case for MELD where the variation of a trait is driven by solely additive effects. Here, we use the same584

simulation strategy used in Crawford et al. 51 where we divide the causal epistatic variants into two585

groups. One may view the SNPs in group #1 as being the “hubs” of an interaction map. SNPs in group586

#2 are selected to be variants within some kilobase (kb) window around each SNP in group #1. Given587

different parameters for the generative model in Eq. (25), we simulate data mirroring a wide range of588

genetic architectures by toggling the following parameters:589

• broad-sense heritability: H2 = 0.3 and 0.6;590

• proportion of phenotypic variation that is explained by additive effects: ρ = 0.5, 0.8, and 1;591

• percentage of SNPs selected to be in group #1: 1% (sparse), 5%, and 10% (polygenic);592

• genomic window used to assign SNPs to group #2: ±10 and ±100 kilobase (kb);593

• allele frequency parameter: α = -1, -0.5, and 0.594

All figures and tables show the mean performances (and standard errors) across 100 simulated replicates.595

Preprocessing for the UK Biobank and BioBank Japan596

In order to apply the the MELD framework to 25 continuous traits the UK Biobank76, we first down-597

loaded genotype data for 488,377 individuals in the UK Biobank using the ukbgene tool (https:598

//biobank.ctsu.ox.ac.uk/crystal/download.cgi) and converted the genotypes using the provided599

ukbconv tool (https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=149660). Phenotype data600

for the 25 continuous traits were also downloaded for those same individuals using the ukbgene tool.601

Individuals identified by the UK Biobank as having high heterozygosity, excessive relatedness, or aneu-602

ploidy were removed (1,550 individuals). After then separating individuals into self-identified ancestral603

cohorts using data field 21000 , unrelated individuals were selected by randomly choosing an individ-604

ual from each pair of related individuals. This resulted in N =349,469 white British individuals to be605
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included in our analysis. We downloaded imputed SNP data from the UK Biobank for all remaining606

individuals and removed SNPs with an information score below 0.8. Information scores for each SNP are607

provided by the UK Biobank (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1967).608

Quality control for the remaining genotyped and imputed variants was then performed on each co-609

hort separately using the following steps. All structural variants were first removed, leaving only single610

nucleotide polymorphisms (SNPs) in the genotype data. Next, all AT/CG SNPs were removed to avoid611

possible confounding due to sequencing errors. Then, SNPs with minor allele frequency less than 1%612

were removed using the PLINK 2.077 command --maf 0.01 . We then removed all SNPs found to be in613

Hardy-Weinberg equilibrium, using the PLINK --hwe 0.000001 flag to remove all SNPs with a Fisher’s614

exact test P -value > 10−6. Finally, all SNPs with missingness greater than 1% were removed using the615

PLINK --mind 0.01 flag.616

We then performed a genome-wide association (GWA) study for each trait in the UK Biobank on617

the remaining 8,981,412 SNPs. SNP-level GWA effect sizes were calculated using PLINK and the --glm618

flag77. Age, sex, and the first twenty principal components were included as covariates for all traits619

analyzed78. Principal component analysis was performed using FlashPCA 2.079 on a set of independent620

markers derived separately for each ancestry cohort using the PLINK command --indep-pairwise 100 10 0.1621

. Using the parameters --indep-pairwise removes all SNPs that have a pairwise correlation above 0.1622

within a 100 SNP window, then slides forward in increments of ten SNPs genome-wide.623

In order to analyze data from BioBank Japan, we downloaded publicly available GWA summary624

statistics for the 25 traits listed in Table S5 from http://jenger.riken.jp/en/result. Summary625

statistics used age, sex, and the first ten principal components as confounders in the initial GWA study.626

We then used individuals from the East Asian (EAS) superpopulation from the 1000 Genomes Project627

Phase 3 to calculate paired LDSC and MELD scores from a reference panel. We pruned the reference628

panel using the PLINK command --indep-pairwise 100 10 0.5 to limit the computational time of629

calculating scores77. This resulted in reference scores for 1,164,666 SNPs that are included on the MELD630

GitHub repository (see URLs). Using summary statistics from BioBank Japan, with scores calculated631

from the EAS population in the 1000 Genomes, we obtained MELD narrow-sense heritability estimates for632

each of the 25 traits.633
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Data and software availability634

Source code and tutorials for implementing marginal epistatic LD score regression via the MELD package635

are written in Python and are publicly available online at https://github.com/lcrawlab/MELD. All636

software for the traditional LD score regression framework with LDSC were fit using the default settings,637

unless otherwise stated in the main text. Source code for LDSC was downloaded from https://github.638

com/bulik/ldsc. Data from the UK Biobank Resource76 (https://www.ukbiobank.ac.uk) was made639

available under Application Numbers 14649 and 22419. Data can be accessed by direct application to640

the UK Biobank.641

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 11, 2022. ; https://doi.org/10.1101/2022.07.21.501001doi: bioRxiv preprint 

https://github.com/lcrawlab/MELD
https://github.com/bulik/ldsc
https://github.com/bulik/ldsc
https://github.com/bulik/ldsc
https://www.ukbiobank.ac.uk
https://doi.org/10.1101/2022.07.21.501001
http://creativecommons.org/licenses/by-nc/4.0/


27

Figures642

H2 = 0.6, ρ = 0.5

P
ow

er
P

ow
er

H2 = 0.3, ρ = 0.5 H2 = 0.3, ρ = 0.8

H2 = 0.6, ρ = 0.8

Percentage sparsity Percentage sparsity

A B

D

1 5 10 1 5 10

1

0.8

0.6

0.4

0.2

0

1

0.8

0.6

0.4

0.2

0

C

± 5 SNPs
± 10 SNPs
± 25 SNPs
± 50 SNPs

Estimation Window Size

Figure 1. Power calculations for the MELD framework on simulated data. Synthetic trait
architecture was simulated using real genotype data from individuals of self-identified European ancestry
in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic
trait architecture). Next, we randomly select two groups of interacting variants and divide them into two
interacting groups. The group #1 SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs
genome-wide (see the x-axis in each panel). These interact with the group #2 SNPs which are selected to
be variants within a ±10 kilobase (kb) window around each SNP in group #1. Coefficients for additive
and interaction effects were simulated with no minor allele frequency dependency α = 0 (see Materials and
Methods). Panels (A) and (B) are results with simulations using a broad-sense heritability H2 = 0.3,
while panels (C) and (D) were generated with H2 = 0.6. We also varied the proportion of broad-sense
heritability contributed by additive effects to (A, C) ρ = 0.5 and (B, D) ρ = 0.8, respectively. Here, we
are blind to the parameter settings used in generative model and run MELD while computing the marginal
epistatic LD scores using different estimating windows of ±5 (green), ±10 (orange), ±25 (purple), and
±50 (pink) SNPs. Results are based on 100 simulations per parameter combination and the horizontal
bars represent standard errors. Generally, the performance of MELD increases with larger broad-sense
heritability and lower proportions of additive variation. Note that LDSC is not shown here because it does
not search for tagged epistatic effects in summary statistics. Similar plots for a range of α values and
generative interacting SNP window sizes are shown in Figures S1-S5.
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Figure 2. The MELD framework is well-calibrated and does not identify evidence of tagged
epistasis when traits are generated by only additive effects. In these simulations, synthetic
trait architecture is made up of only additive genetic variation (i.e., ρ = 1). Coefficients for additive
and interaction effects were simulated with no minor allele frequency dependency α = 0 (see Materials
and Methods). Here, we are blind to the parameter settings used in generative model and run MELD

while computing the marginal epistatic LD scores using different estimating windows of ±5 (green), ±10
(orange), ±25 (purple), and ±50 (pink) SNPs. (A) Mean type I error rate using the MELD framework
across an array of estimation window sizes for the marginal epistatic scores. This is determined by
assessing the P -value of the epistatic coefficient (σ) in the MELD regression model and checking whether
P < 0.05. (B) Estimates of the epistatic coefficient (σ). Since traits were simulated with only additive
effects, these estimates should be centered around zero. (C) Narrow-sense heritability (h2) estimates
where the true value is H2ρ = h2 = 0.6. (D) QQ-plot of the P -values for the epistatic coefficient (σ) in
MELD. Results are based on 100 simulations per parameter combination and the horizontal bars represent
standard errors. Similar plots for a range of α values and generative interacting SNP window sizes are
shown in Figures S6-S7.
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Figure 3. MELD robustly and accurately estimates narrow-sense heritability in simulations,
compared to LDSC, due to our accounting for epistatic signals in additive GWA summary
statistics. Synthetic trait architecture was simulated using real genotype data from individuals of self-
identified European ancestry in the UK Biobank (Materials and Methods). All SNPs were considered to
have at least an additive effect (i.e., creating a polygenic trait architecture). Next, we randomly select
two groups of interacting variants and divide them into two interacting groups. The group #1 SNPs are
chosen to be 10% of the total number of SNPs genome-wide. These interact with the group #2 SNPs
which are selected to be variants within a ±100 kilobase (kb) window around each SNP in group #1.
Coefficients for additive and interaction effects were simulated with no minor allele frequency dependency
α = 0 (see Materials and Methods). Here, we assume a broad-sense heritability (A) H2 = 0.3 or (B)
H2 = 0.6, and we vary the proportion contributed by additive effects with ρ = {0.2, 0.4, 0.6, 0.8}. The
true narrow-sense heritability is set as H2ρ = h2. MELD outperforms LDSC in each scenario. Results
are based on 100 simulations per parameter combination. MELD estimates of narrow-sense heritability
partitioned by estimation window are shown in Figure S8. The mean absolute error between the true h2

value and the estimates produced by MELD and LDSC are shown in Table S1 and S2, respectively.
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Figure 4. The MELD framework recovers narrow-sense heritability and provides estimates
of tagged epistasis in GWA summary statistics (σ) for 25 quantitiative traits in the UK
Biobank and BioBank Japan. (A) In both the UK Biobank (green) and BioBank Japan (purple),
narrow-sense heritability estimates from MELD and LDSC are highly correlated for 25 different complex
traits. The Spearman correlation coefficient between h2 estimates for the UK Biobank and BioBank
Japan is r2 = 0.880 and r2 = 0.800, respectively. (B) Narrow-sense heritability estimates from the
UK Biobank are correlated with those from the BioBank Japan across 25 traits using both LDSC and
MELD. Estimates from MELD are more agreeable (Spearman r2 = 0.748) between biobanks than those from
the original LD score regression model (Spearman r2 = 0.641). (C) MELD estimates of the inflation or
deflation due to tagged epistasis (i.e., estimates of σ) between traits in the UK Biobank and BioBank
Japan. (D) MELD estimates of the additive coefficient τ . Note that the narrow-sense heritability estimates
displayed in panels (A) and (B) are also given in Table S6.
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Tables643

Trait UK Biobank BioBank Japan

BMI 0.008 0.611

Basophil 0.290 0.301

CRP 0.005 0.928

Cholesterol 1.52 ×10−4 0.262

DBP 5.76 ×10−6 0.743

EGFR 3.41 ×10−4 0.189

Eosinophil 4.21×10−10 0.506

HBA1C 1.37 ×10−8 0.925

HDL 7.00 ×10−11 0.832

Height 1 ×10−22 0.197

Hematocrit 1.51 ×10−8 0.798

Hemoglobin 1.89 ×10−8 0.883

LDL 5.37 ×10−5 0.250

Lymphocyte 2.19×10−8 0.830

MCH 3.66 ×10−5 0.953

MCHC 4.91 ×10−4 0.358

MCV 7.50 ×10−9 0.961

Monocyte 2.84×10−7 0.246

Neutrophil 0.002 0.121

Platelet 5.81 ×10−4 0.253

RBC 2.99×10−10 0.686

SBP 7.79×10−10 0.558

Triglyceride 0.530 0.003

Urate 4.41 ×10−6 0.582

WBC 1.33 ×10−7 0.418

Table 1. MELD P -values for the estimated bias stemming from non-additive variation for 25
traits in the UK Biobank and BioBank Japan. Note that 23 of the 25 traits in the UK Biobank
had a significant amount of uncorrected bias (P < 0.05), while one trait (Triglyceride) had significant
tagged epistasis in the BioBank Japan. The two traits without significant tagged epistasis in the UK
Biobank were Basophil (P = 0.290) and Triglyceride (P = 0.530).
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Figure S1. Power calculations for the MELD framework on simulated data using a ±10 kilobase
(kb) window to generate pairwise interactions between causal SNPs and a moderate minor
allele frequency dependency α = −0.5 for effect sizes. Synthetic trait architecture was simulated
using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All
SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture).
Next, we randomly select two groups of interacting variants and divide them into two interacting groups.
The group #1 SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the
x-axis in each panel). These interact with the group #2 SNPs which are selected to be variants within
a ±10 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction
effects were simulated with minor allele frequency dependency α = −0.5 (see Materials and Methods).
Panels (A) and (B) are results with simulations using a broad-sense heritability H2 = 0.3, while panels
(C) and (D) were generated with H2 = 0.6. We also varied the proportion of broad-sense heritability
contributed by additive effects to (A, C) ρ = 0.5 and (B, D) ρ = 0.8, respectively. Here, we are blind
to the parameter settings used in generative model and run MELD while computing the marginal epistatic
LD scores using different estimating windows of ±5 (green), ±10 (orange), ±25 (purple), and ±50 (pink)
SNPs. Results are based on 100 simulations per parameter combination and the horizontal bars represent
standard errors.
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Figure S2. Power calculations for the MELD framework on simulated data using a ±10 kilobase
(kb) window to generate pairwise interactions between causal SNPs and a strong minor
allele frequency dependency α = −1 for effect sizes. Synthetic trait architecture was simulated
using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All
SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture).
Next, we randomly select two groups of interacting variants and divide them into two interacting groups.
The group #1 SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the
x-axis in each panel). These interact with the group #2 SNPs which are selected to be variants within
a ±10 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction
effects were simulated with minor allele frequency dependency α = −1 (see Materials and Methods).
Panels (A) and (B) are results with simulations using a broad-sense heritability H2 = 0.3, while panels
(C) and (D) were generated with H2 = 0.6. We also varied the proportion of broad-sense heritability
contributed by additive effects to (A, C) ρ = 0.5 and (B, D) ρ = 0.8, respectively. Here, we are blind
to the parameter settings used in generative model and run MELD while computing the marginal epistatic
LD scores using different estimating windows of ±5 (green), ±10 (orange), ±25 (purple), and ±50 (pink)
SNPs. Results are based on 100 simulations per parameter combination and the horizontal bars represent
standard errors.
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Figure S3. Power calculations for the MELD framework on simulated data using a ±100
kilobase (kb) window to generate pairwise interactions between causal SNPs and no minor
allele frequency dependency α = 0 for effect sizes. Synthetic trait architecture was simulated
using real genotype data from individuals of self-identified European ancestry in the UK Biobank. All
SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture).
Next, we randomly select two groups of interacting variants and divide them into two interacting groups.
The group #1 SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the
x-axis in each panel). These interact with the group #2 SNPs which are selected to be variants within
a ±100 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction
effects were simulated with no minor allele frequency dependency α = 0 (see Materials and Methods).
Panels (A) and (B) are results with simulations using a broad-sense heritability H2 = 0.3, while panels
(C) and (D) were generated with H2 = 0.6. We also varied the proportion of broad-sense heritability
contributed by additive effects to (A, C) ρ = 0.5 and (B, D) ρ = 0.8, respectively. Here, we are blind
to the parameter settings used in generative model and run MELD while computing the marginal epistatic
LD scores using different estimating windows of ±5 (green), ±10 (orange), ±25 (purple), and ±50 (pink)
SNPs. Results are based on 100 simulations per parameter combination and the horizontal bars represent
standard errors.
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Figure S4. Power calculations for the MELD framework on simulated data using a ±100
kilobase (kb) window to generate pairwise interactions between causal SNPs and a moder-
ate minor allele frequency dependency α = −0.5 for effect sizes. Synthetic trait architecture
was simulated using real genotype data from individuals of self-identified European ancestry in the UK
Biobank. All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait
architecture). Next, we randomly select two groups of interacting variants and divide them into two
interacting groups. The group #1 SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs
genome-wide (see the x-axis in each panel). These interact with the group #2 SNPs which are selected to
be variants within a ±100 kilobase (kb) window around each SNP in group #1. Coefficients for additive
and interaction effects were simulated with minor allele frequency dependency α = −0.5 (see Materials
and Methods). Panels (A) and (B) are results with simulations using a broad-sense heritability H2 = 0.3,
while panels (C) and (D) were generated with H2 = 0.6. We also varied the proportion of broad-sense
heritability contributed by additive effects to (A, C) ρ = 0.5 and (B, D) ρ = 0.8, respectively. Here, we
are blind to the parameter settings used in generative model and run MELD while computing the marginal
epistatic LD scores using different estimating windows of ±5 (green), ±10 (orange), ±25 (purple), and
±50 (pink) SNPs. Results are based on 100 simulations per parameter combination and the horizontal
bars represent standard errors.
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Figure S5. Power calculations for the MELD framework on simulated data using a ±100
kilobase (kb) window to generate pairwise interactions between causal SNPs and a strong
minor allele frequency dependency α = −1 for effect sizes. Synthetic trait architecture was sim-
ulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank.
All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architecture).
Next, we randomly select two groups of interacting variants and divide them into two interacting groups.
The group #1 SNPs are chosen to be 1%, 5%, and 10% of the total number of SNPs genome-wide (see the
x-axis in each panel). These interact with the group #2 SNPs which are selected to be variants within
a ±100 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction
effects were simulated with minor allele frequency dependency α = −1 (see Materials and Methods).
Panels (A) and (B) are results with simulations using a broad-sense heritability H2 = 0.3, while panels
(C) and (D) were generated with H2 = 0.6. We also varied the proportion of broad-sense heritability
contributed by additive effects to (A, C) ρ = 0.5 and (B, D) ρ = 0.8, respectively. Here, we are blind
to the parameter settings used in generative model and run MELD while computing the marginal epistatic
LD scores using different estimating windows of ±5 (green), ±10 (orange), ±25 (purple), and ±50 (pink)
SNPs. Results are based on 100 simulations per parameter combination and the horizontal bars represent
standard errors.
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Figure S6. The MELD framework is well-calibrated and does not overestimate bias stemming
from tagged epistasis when traits are generated by only additive effects and a moderate
minor allele frequency dependency α = −0.5 for effect sizes. In these simulations, synthetic
trait architecture is made up of only additive genetic variation (i.e., ρ = 1). Coefficients for additive
and interaction effects were simulated with minor allele frequency dependency α = −0.5 (see Materials
and Methods). Here, we are blind to the parameter settings used in generative model and run MELD

while computing the marginal epistatic LD scores using different estimating windows of ±5 (green), ±10
(orange), ±25 (purple), and ±50 (pink) SNPs. (A) Mean type I error rate using the MELD framework
across an array of estimation window sizes for the marginal epistatic scores. This is determined by
assessing the P -value of the epistatic coefficient (σ) in the MELD regression model and checking whether
P < 0.05. (B) Estimates of the epistatic coefficient (σ). Since traits were simulated with only additive
effects, these estimates should be centered around zero. (C) Narrow-sense heritability (h2) estimates
where the true value is H2ρ = h2 = 0.6. (D) QQ-plot of the P -values for the epistatic coefficient (σ) in
MELD. Results are based on 100 simulations per parameter combination and the horizontal bars represent
standard errors.
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Figure S7. The MELD framework is well-calibrated and does not overestimate bias stemming
from tagged epistasis when traits are generated by only additive effects and a strong minor
allele frequency dependency α = −1 for effect sizes. In these simulations, synthetic trait architec-
ture is made up of only additive genetic variation (i.e., ρ = 1). Coefficients for additive and interaction
effects were simulated with minor allele frequency dependency α = −1 (see Materials and Methods).
Here, we are blind to the parameter settings used in generative model and run MELD while computing
the marginal epistatic LD scores using different estimating windows of ±5 (green), ±10 (orange), ±25
(purple), and ±50 (pink) SNPs. (A) Mean type I error rate using the MELD framework across an array of
estimation window sizes for the marginal epistatic scores. This is determined by assessing the P -value of
the epistatic coefficient (σ) in the MELD regression model and checking whether P < 0.05. (B) Estimates
of the epistatic coefficient (σ). Since traits were simulated with only additive effects, these estimates
should be centered around zero. (C) Narrow-sense heritability (h2) estimates where the true value is
H2ρ = h2 = 0.6. (D) QQ-plot of the P -values for the epistatic coefficient (σ) in MELD. Results are based
on 100 simulations per parameter combination and the horizontal bars represent standard errors.
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Figure S8. MELD robustly and accurately estimates narrow-sense heritability in simulations
by controlling for epistatic bias in GWA summary statistics. Synthetic trait architecture was sim-
ulated using real genotype data from individuals of self-identified European ancestry in the UK Biobank.
All SNPs were considered to have at least an additive effect (i.e., creating a polygenic trait architec-
ture). Next, we randomly select two groups of interacting variants and divide them into two interacting
groups. The group #1 SNPs are chosen to be 10% of the total number of SNPs genome-wide. These
interact with the group #2 SNPs which are selected to be variants within a ±100 kilobase (kb) window
around each SNP in group #1. Coefficients for additive and interaction effects were simulated with no
minor allele frequency dependency α = 0 (see Materials and Methods). Here, we assume a broad-sense
heritability (A) H2 = 0.3 or (B) H2 = 0.6, and we vary the proportion contributed by additive effects
with ρ = {0.2, 0.4, 0.6, 0.8}. The true narrow-sense heritability is set as H2ρ = h2. We run MELD while
computing the marginal epistatic LD scores using different estimating windows of ±5, ±10, ±25, and
±50 SNPs, respectively. These results help motivate the model averaging strategy over the different esti-
mation window sizes for the marginal epistatic LD scores in MELD. Results are based on 100 simulations
per parameter combination.
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Figure S9. The MELD framework recovers narrow-sense heritability and provides estimates
of bias in the UK Biobank and BioBank Japan. In both the UK Biobank (green) and BioBank
Japan (purple), the intercepts for narrow-sense heritability estimation from MELD and LDSC are highly
correlated for 25 different complex traits. Note that these intercept estimates represent the confounding
factor due to uncontrolled effects. For LDSC this does include bias from pairwise genetic interactions,
while MELD intercept estimates do not include bias due to these types of effects (i.e., they have been
partitioned out). The Spearman correlation coefficients between estimates of the intercept for traits in
the UK Biobank and BioBank Japan are r2 = 0.959 and r2 = 0.986, respectively. The dotted x = y line
represents points for when the two sets of estimates are equal.
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Supplementary Tables645

LDSC MELD (± 5 SNPs)

True h2 Estimated h2 MAE Estimated h2 MAE

0.06 0.181 (0.002) 0.121 (0.002) -0.047 (0.003) 0.107 (0.003)

0.12 0.208 (0.002) 0.086 (0.002) 0.043 (0.003) 0.078 (0.004)

0.18 0.241 (0.002) 0.061 (0.002) 0.135 (0.003) 0.046 (0.003)

0.24 0.272 (0.002) 0.036 (0.002) 0.214 (0.004) 0.037 (0.003)

MELD (± 10 SNPs) MELD (± 25 SNPs)

True h2 Estimated h2 MAE Estimated h2 MAE

0.06 0.031 (0.003) 0.033 (0.002) 0.098 (0.002) 0.039 (0.002)

0.12 0.098 (0.003) 0.030 (0.002) 0.146 (0.003) 0.029 (0.002)

0.18 0.170 (0.003) 0.024 (0.002) 0.200 (0.002) 0.026 (0.002)

0.24 0.234 (0.003) 0.027 (0.002) 0.252 (0.003) 0.028 (0.002)

MELD (± 50 SNPs) MELD (Average)

True h2 Estimated h2 MAE Estimated h2 MAE

0.06 0.128 (0.002) 0.068 (0.002) 0.052 (0.004) 0.062 (0.002)

0.12 0.167 (0.002) 0.047 (0.002) 0.113 (0.003) 0.046 (0.002)

0.18 0.214 (0.002) 0.035 (0.002) 0.180 (0.002) 0.033 (0.001)

0.24 0.259 (0.003) 0.030 (0.002) 0.240 (0.002) 0.030 (0.001)

Table S1. Comparison of LDSC and MELD estimates of narrow sense heritability when H2 =
0.3. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified
European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e.,
creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and
divide them into two interacting groups. The group #1 SNPs are chosen to be 10% of the total number
of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be variants within a
±100 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects
were simulated with no minor allele frequency dependency α = 0 (see Materials and Methods). Here,
we assume a broad-sense heritability H2 = 0.6 and vary the proportion contributed by additive effects
with ρ = {0.2, 0.4, 0.6, 0.8}. The true narrow-sense heritability is set as H2ρ = h2. We run MELD while
computing the marginal epistatic LD scores using different estimating windows of ±5, ±10, ±25, and
±50 SNPs. The “average” column represents results using model averaging over the different estimating
windows (see Materials and Methods). We report the mean estimates of h2 (with standard errors in the
parentheses) and use mean absolute error (MAE) to quantify the difference between the two methods.
Results are based on 100 simulations per parameter combination. As shown in Figures 3 and S8, LDSC
consistently overestimates narrow-sense heritability when there is non-additive trait variation.
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LDSC MELD (± 5 SNPs)

True h2 Estimated h2 MAE Estimated h2 MAE

0.12 0.315 (0.002) 0.194 (0.002) -0.072 (0.004) 0.193 (0.004)

0.24 0.382 (0.002) 0.142 (0.002) 0.100 (0.004) 0.140 (0.004)

0.36 0.450 (0.003) 0.090 (0.003) 0.277 (0.004) 0.083 (0.004)

0.48 0.523 (0.003) 0.044 (0.002) 0.440 (0.004) 0.047 (0.004)

MELD (± 10 SNPs) MELD (± 25 SNPs)

True h2 Estimated h2 MAE Estimated h2 MAE

0.12 0.064 (0.003) 0.058 (0.003) 0.180 (0.003) 0.060 (0.003)

0.24 0.200 (0.004) 0.045 (0.003) 0.283 (0.003) 0.045 (0.003)

0.36 0.340 (0.004) 0.045 (0.003) 0.393 (0.003) 0.036 (0.003)

0.48 0.471 (0.004) 0.031 (0.002) 0.498 (0.003) 0.030 (0.002)

MELD (± 50 SNPs) MELD (Averaged)

True h2 Estimated h2 MAE Estimated h2 MAE

0.12 0.229 (0.002) 0.109 (0.002) 0.100 (0.006) 0.105 (0.003)

0.24 0.318 (0.003) 0.078 (0.003) 0.225 (0.005) 0.077 (0.003)

0.36 0.414 (0.003) 0.055 (0.003) 0.360 (0.003) 0.053 (0.002)

0.48 0.509 (0.003) 0.034 (0.002) 0.479 (0.002) 0.036 (0.001)

Table S2. Comparison of LDSC and MELD estimates of narrow sense heritability when H2 =
0.6. Synthetic trait architecture was simulated using real genotype data from individuals of self-identified
European ancestry in the UK Biobank. All SNPs were considered to have at least an additive effect (i.e.,
creating a polygenic trait architecture). Next, we randomly select two groups of interacting variants and
divide them into two interacting groups. The group #1 SNPs are chosen to be 10% of the total number
of SNPs genome-wide. These interact with the group #2 SNPs which are selected to be variants within a
±100 kilobase (kb) window around each SNP in group #1. Coefficients for additive and interaction effects
were simulated with no minor allele frequency dependency α = 0 (see Materials and Methods). Here,
we assume a broad-sense heritability H2 = 0.6 and vary the proportion contributed by additive effects
with ρ = {0.2, 0.4, 0.6, 0.8}. The true narrow-sense heritability is set as H2ρ = h2. We run MELD while
computing the marginal epistatic LD scores using different estimating windows of ±5, ±10, ±25, and
±50 SNPs. The “average” column represents results using model averaging over the different estimating
windows (see Materials and Methods). We report the mean estimates of h2 (with standard errors in the
parentheses) and use mean absolute error (MAE) to quantify the difference between the two methods.
Results are based on 100 simulations per parameter combination. As shown in Figures 3 and S8, LDSC
consistently overestimates narrow-sense heritability when there is non-additive trait variation.
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Trait Name Code

Body mass index BMI

High density lipoprotein HDL

Low density lipoprotein LDL

Hemoglobin A1c HBA1C

Estimated glomerular filtration rate EGFR

C-reactive protein CRP

Systolic blood pressure SBP

Diastolic blood pressure DBP

Platelet count PLC

Mean corpuscular hemoglobin concentration MCHC

Mean corpuscular hemoglobin MCH

Mean corpuscular volume MCV

Red blood cell count RBC

White blood cell count WBC

Table S3. Abbreviations used throughout this study for 14 quantitative traits analyzed in
this study. The remaining 11 traits analyzed were Basophil count, Cholesterol, Eosinophil count, Height,
Hematocrit, Hemoglobin, Lymphocyte count, Monocyte count, Neutrophil count, and Triglyceride levels,
respectively. These are not abbreviated in the main text.
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Trait α

Basophil count -0.13

BMI* -0.24

CRP -0.39

Total cholesterol -0.11

DBP* -0.39

EGFR -0.25

Eosinophil count* -0.40

MCV* -0.39

MCH* -0.42

MCHC* -0.42

Lymphocyte count* -0.52

LDL -0.20

Monocyte count* -0.19

Neutrophil count -0.09

Platelet count* -0.19

HBA1C -0.37

HDL -0.41

Height* -0.45

Hemoglobin -0.37

Hematocrit -0.37

RBC* -0.39

SBP* -0.38

Triglyceride -0.07

Urate -0.45

WBC* -0.25

Table S4. Trait-specific α parameters for each of the 25 traits analyzed. Here, α values
are used to weight each variant based on its minor allele frequency to account for frequency dependent
architectures in each trait. The ∗ indicates α parameters that were taken directly from Schoech et al. 59 .
The α parameters for other traits were calculated using the protocol used in that paper. Expansion of
trait abbreviations are given in Table S3.
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Trait Name or Code Sample Size Total SNPs Citations

Basophil count 62,076 5,653,566 80

BMI 158,284 5,653,566 81

CRP 75,391 5,608,701 80

DBP 136,615 5,653,566 80

eGFR 143,658 5,608,701 80

Eosinophil count 62,076 5,653,566 80

HDL 70,657 5,608,701 80

Height 159,095 6,296,332 82

Hematocrit 108,757 5,653,566 80

Hemoglobin 108,769 5,653,566 80

HbA1c 75,391 5,608,701 80

LDL 72,866 5,608,701 80

Lymphocyte count 62,076 5,653,566 80

MCH 108,054 5,653,566 80

MCHC 108,738 5,653,566 80

MCV 108,526 5,653,566 80

Monocyte count 62,076 5,653,566 80

Neutrophil count 62,076 5,653,566 80

PLC 108,208 5,653,566 80

RBC 108,794 5,653,566 80

SBP 136,597 5,653,566 80

Cholesterol 128,305 5,608,701 80

Triglyceride 105,597 5,608,701 80

Urate 109,029 5,608,701 80

WBC 107,694 5,653,566 80

Table S5. Number of individuals and total SNPs included in the analysis of each trait in
BioBank Japan.
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Trait UKB (LDSC) UKB (MELD) BBJ (LDSC) BBJ (MELD)

BMI 0.506 0.282* 0.097 0.102

Basophil 0.076 0.044 0.062 0.058

CRP 0.098 0.057* 0.028 0.027

Cholesterol 0.307 0.165* 0.042 0.034

DBP 0.201 0.136* 0.038 0.039

EGFR 0.401 0.244* 0.067 0.070

Eosinophil 0.227 0.175* 0.049 0.047

HBA1C 0.208 0.147* 0.061 0.058

HDL 0.359 0.215* 0.135 0.067

Height 0.815 0.57* 0.226 0.234

Hematocrit 0.262 0.191* 0.036 0.036

Hemoglobin 0.287 0.207* 0.035 0.033

LDL 0.242 0.138* 0.045 0.029

Lymphocyte 0.075 0.07* 0.052 0.052

MCH 0.358 0.204* 0.096 0.069

MCHC 0.074 0.061* 0.038 0.035

MCV 0.408 0.243* 0.096 0.07

Monocyte 0.233 0.149* 0.059 0.059

Neutrophil 0.361 0.206* 0.074 0.067

Platelet 0.604 0.353* 0.11 0.096

RBC 0.369 0.256* 0.065 0.055

SBP 0.211 0.151* 0.047 0.05

Triglyceride 0.461 0.141 0.081 0.03*

Urate 0.294 0.184* 0.119 0.069

WBC 0.264 0.176* 0.067 0.065

Table S6. Comparison of LDSC and MELD estimates of narrow-sense heritability for 25 complex
traits in the UK Biobank and BioBank Japan. MELD heritability estimates are corrected for bias
from non-additive variation. Corrections can increase or decrease the total heritability estimates on a
trait-by-trait basis. * denotes traits that have significant tagged epistasis as determined by the P -value
for the σ coefficient in MELD. See Table 1 for trait-specific P -values. Note that 23 traits in the UK Biobank
have a significant amount of uncorrected bias introduced by non-additive variance, while only one trait
(Triglycerides) has significant bias in BioBank Japan. Note that these estimates are also displayed in the
first two panels of Figure 4.
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