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Abstract 
From early detection of variants of concern to vaccine and therapeutic design, pandemic 
preparedness depends on identifying viral mutations that escape the response of the host 
immune system. While experimental scans are useful for quantifying escape potential, they 
remain laborious and impractical for exploring the combinatorial space of mutations. Here we 
introduce a biologically grounded model to quantify the viral escape potential of mutations at 
scale. Our method - EVEscape - brings together fitness predictions from evolutionary models, 
structure-based features that assess antibody binding potential, and distances between mutated 
and wild-type residues. Unlike other models that predict variants of concern based on newly 
observed variants, EVEscape has no reliance on recent community prevalence, and is 
applicable before surveillance sequencing or experimental scans are broadly available. We 
validate EVEscape predictions against experimental data on H1N1, HIV and SARS-CoV-2, 
including data on immune escape. For SARS-CoV-2, we show that EVEscape anticipates 
mutation frequency, strain prevalence, and escape mutations. Drawing from GISAID, we 
provide continually updated escape predictions for all current strains of SARS-CoV-2. 
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Introduction      
Viral diseases are characterized by the interplay between immune detection and evasion, 
leading to rapid evolution and changes in virulence. Viral escape mutations influence reinfection 
rates and the duration of vaccine-induced immunity, shaping population prevalence over time. 
To develop optimal vaccines and therapeutics we need to anticipate variants that  
avoid immune detection with sufficient lead time. New experimental technologies that can test 
thousands of individual mutations simultaneously (deep mutational scanning (DMS) 
experiments) can identify mutations that escape existing patient sera or antibodies1–13. 
However, current experimental technologies are limited in a number of ways: (i) They are 
restricted to testing a miniscule proportion of the 20L possible sequence variants and 
combinations of mutations are often non-additive and epistatic14.  Emerging “Variants of 
Concern” (VOCs) often contain multiple newly seen mutations whose combined effect is difficult 
to extrapolate from DMS experiments. (ii) Mutational scanning experiments for a novel pathogen 
are delayed by challenges in developing high-throughput protein assays and in obtaining 
appropriate sera or antibody samples – to date, such data is only available for the SARS-CoV-2 
receptor binding domain (RBD). (iii) High throughput experimental assays are not necessarily 
faithful to factors influencing in vivo infectivity and immune escape. 

The limitations of experimental methods motivate the development of computational 
approaches. An ideal computational model would be able to assess escape likelihood for as-
yet-unseen variation, would be interpretable, and would make predictions with sufficient time for 
vaccine development. Unfortunately, recent computational methods for forecasting growth of 
lineages depend critically on real-time pandemic sequencing15–17. Therefore, these models can 
predict reasonably only up to 4 months ahead and cannot assess unseen variants, making them 
impractical for vaccine development. In contrast, other computational methods training on 
sequences from evolutionarily distant species have shown surprising success for predicting 
variant fitness18–20, including the impact of mutations on human health and on viral replication. 
These latter methods and related generative probabilistic models of sequences have shown 
some concordance with mutations in current VOCs21 and with variants that affect antibody 
binding22. However, broad viral evolution may contain minimal information about host-specific 
immunity, and these models do not leverage other information crucial for predicting antibody 
escape.  

In this work, we introduce EVEscape, a scalable, modular approach that does not rely on recent 
pandemic sequencing for predicting viral antibody escape, so it can be used at the start of the 
pandemic and for continuous evaluation of the risk posed by emerging variants. We combine 
models of evolutionary data, structural features, and residue dissimilarity properties in an 
interpretable, biologically grounded framework that captures epistatic effects and is therefore 
extensible to combinations of variants. EVEscape outperforms current methods and is 
generalizable across different viruses—in this work we focus on SARS-CoV-2, HIV and H1N1. 
Our model’s significant warning time for concerning mutations could allow for the development 
of more effective vaccines, antibody therapeutics and diagnostics, as well as help guide public 
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health decisions and preparedness efforts with a potentially large impact on the human and 
economic burden of a pandemic (Figure 1B).  

Results 
Modeling approach 
Viral protein variants that escape humoral immunity must disrupt antibody binding (often by 
mutating residues in epitopes), while retaining protein expression and folding, host receptor 
binding, and other properties necessary for viral infection and transmission9. Our approach—
EVEscape—predicts escape from data sources available pre-pandemic: sequence likelihood 
predictions from broader viral evolution, antibody accessibility information from protein 
structures, and changes in binding interaction propensity from residue chemical properties. 
More specifically, we express the probability of a mutation to induce immune escape as the 
product of three probabilities: likelihood to maintain fitness (‘fitness’ term), likelihood of the 
mutation to target an antibody epitope (‘accessibility’ term) and likelihood of the mutation to 
disrupt antibody binding (‘dissimilarity’ term) (Figure 1A).  
 
The fitness term is computed from a deep unsupervised generative model of mutation effects. 
The accessibility term of a protein site is modeled via the negative of the weighted contact 
number computed from viral protein structures (or if unavailable, predicted structures from 
homologs) (Table S3), while the dissimilarity term depends on the difference in charge and 
hydrophobicity between the mutant and wildtype residues. Each term is standardized and then 
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Figure 1: EVEscape assesses the likelihood of a mutation to escape immune response based on the 
probabilities of a given mutation to maintain viral fitness, to occur in an antibody epitope, and to disrupt 
antibody binding, using information available early in a pandemic. 
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fed into a temperature-scaled logistic function (Methods, Data S3). The EVEscape score is then 
obtained as the log transform of the product of the three terms.   
 
EVEscape predicts experimental antibody evasion 
To evaluate EVEscape’s performance and generalizability across viruses we compare to 
experimental deep mutational scans measuring the ability of mutations to permit viral cell entry 
in the presence of antibodies (for influenza H1 and HIV envelope proteins)10,11 or to inhibit sera 
and antibody binding (for SARS-CoV-2 RBD)1–9,12,13 (Table S4, Data S4). We focus on the 
SARS-CoV-2 RBD, as RBD is the primary target for viral neutralization23 and a large number of 
antibodies and sera have been screened. We examine performance on Flu and HIV as a 
secondary analysis to confirm generalizability, as fewer antibodies have been tested and the 
distribution of these antibodies does not reflect known immunodominant domains. We binarize 
the experimental measurement by taking the maximum value across antibodies and sera tested, 
then applying a threshold to define mutations as ‘escape’ or ‘not escape’ (Figure S1, Methods). 
We find that our main conclusions are robust to the threshold choice and that mutations 
designated as escape by our threshold are almost all within 5Å of the antibody they escape 
(Figure S1). A key feature of an escape mutant predictor is the quality of its positive ‘escape’ 
predictions, as in practice, the positive predictive value will influence costly experimental 
screening efforts and selection of a limited number of variants for vaccine incorporation. To 
reflect this, we focus on the area under the precision-recall curve (AUPRC) as a performance 

Figure 3: EVEscape captures antibody footprints and 
escape potential

Figure 3: EVEscape captures antibody footprints and escape potential. a) Precision-Recall of RBD 
DMS escape mutations compared to “null” fraction of escapes. b) RBD EVEscape predictions 
plotted against site-averaged Bloom DMS escape, with hue indicating known antibody footprints. 
c) RBD site-averaged EVEscape predictions (PDB: 7BNN). d) RBD sites of DMS escape mutants and 
of known antibody footprints (PDB: 7BNN).
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predictions plotted against site-averaged Bloom DMS escape, with hue indicating known antibody footprints. d) 
RBD site-averaged EVEscape predictions (PDB: 7BNN). e) RBD sites of DMS escape mutants and of known 
antibody footprints (PDB: 7BNN). 
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metric (reported relative to the AUPRC of a “null” model), although other measures of overall 
statistical performance (e.g., AUROC) are provided in supplementary information.  
 
EVEscape outperforms deep unsupervised sequence models and metrics of surface 
accessibility in the quality of its top escape predictions (Figure 2A, Figure S2) across datasets 
with diverse experimental methods (Figure S3, Table S4). For instance, when focusing on the 
top decile of predictions for all single substitution mutants for RBD, EVEscape captures 2.5x 
more actual escape mutants (31% of total measured), and the overall AUPRC of EVEscape 
(0.53) is 2.7 times higher than the prior state of art (0.2)22. EVEscape is especially strong at 
identifying escape mutants from polyclonal patient sera (Figure S3); in fact, nearly 50 percent of 
sera escape sites from patients infected with the original Wuhan strain or the Beta or Delta 
VOCs are in the top 10% of EVEscape predictions (Figure 2B). These mutants are of particular 
interest since they show a significant degree of escape from the unique composition of 
antibodies produced by convalescent patients, and so are crucial to considerations of reinfection 
and vaccine design. Mutations at sites E484 and G447 are particularly notable for escaping sera 
binding (E484, mutated in several VOCs, is the top EVEscape predicted site). While EVEscape 
frequently predicts escape mutations that are not observed in the escape DMS, this is likely due 
to sparse sampling of the antibodies that bind these viral proteins in DMS experiments. Indeed, 
EVEscape performance has improved as more DMS data has become available (Figure S3) 
and the majority of EVEscape positive predictions that are not observed escape mutants in 
DMS are in known antibody epitopes (Figure 2C-E, Figure S4).  
 
Model components provide complementary information for escape 
We next examine the roles each EVEscape component plays in identifying potential escape 
mutations. We find that sequence model predictions and surface accessibility metrics play the 
strongest role in performance and are both informative of antibody binding footprints as well as 
which sites have the highest number of escape mutations (Figure 3A/C, Figure S5), while 
dissimilarity is useful for distinguishing escape mutations within sites (Figure 3D). 
 
Fitness: Sequence likelihood predictions from generative sequence models reflect mutation 
fitness effects as well as site mutability, which is often an indicator of a protein region targeted 
by neutralizing antibodies24 like the SARS-CoV-2 RBD. We selected EVE18 to predict the impact 
of viral protein mutation effects on function due to its generally superior performance on a range 
of viral function DMS experiments as compared to other sequence-based models19,21,22 (Figure 
S6-S7, Note S1, Data S2, Table S2). Despite limited known natural sequence diversity for the 
coronavirus family, EVE predictions trained on pre-pandemic coronavirus sequences for SARS-
CoV-2 RBD (Table S1, Data S1) are correlated with both expression and binding to the ACE2 
host receptor (Figure 3B, Figure S8). Predictions improve with the incorporation of pandemic 
sequence data (Figure S6). 
 
Antibody accessibility: Surface accessibility plays a key role in identifying where antibodies 
are most likely to contact a protein. While relative solvent accessibility (RSA) and weighted 
contact number (WCN) both reflect features of accessibility, we selected WCN as this metric 
also captures protrusion from the core structure that corresponds with where antibodies are 
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known to bind proteins25–27 (Figure S9). To capture all protein conformations potentially 
accessible to antibodies, we consider the maximum accessibility across structures (Table S3).  
 
Residue dissimilarity: Within sites targeted by antibodies, mutations must disrupt antibody 
binding while retaining a certain minimum fitness to facilitate escape. EVE scores select for the 
most likely mutation under learned constraints from viral evolution, but may not capture antibody 
evasion. Thus, we incorporated a term summarizing residue dissimilarity in properties known to 
impact protein-protein interactions (hydrophobicity and charge28,29) to identify the most likely 
escape mutations. We find that within sites that have escape mutants, a high charge-
hydrophobicity dissimilarity is predictive of escape, and that this simple metric correlates with 
within-site escape more than individual chemical properties, substitution-matrix derived 
distance, or distance in the latent space of the EVE model (Figure 3D, Figure S10A). For 
instance, L452K/R/E/D mutations that decrease hydrophobicity have high escape potential 
(Figure 3C), with the residue dissimilarity metric boosting the EVEscape scores from 80th to 90th 
percentile compared to L452I/A/G/V. These predictions are in concordance with observed C110 
antibody binding in the DMS experiment (Figure 3E, Data S4). In general, a low charge-

Figure 4: Importance of accessibility and dissimilarity 
metrics in escape prediction performance

Figure 4: Surface accessibility metrics and mutation effect models provide complementary information for 
predicting antibody epitopes, while residue dissimilarity reflects within-site escape likelihood. a) All features of 
EVEscape contribute to performance in predicting RBD escape mutants. b) EVE prediction captures a combination 
of SARS2 RBD yeast expression and ACE2 binding - features both necessary for successful immune escape. c) Sites 
with either high WCN accessibility or high EVE fitness predictions have a greater percent of escape mutants. 
d) Chemical property dissimilarity is indicative of mutant escape likelihood within a site, more so than substitution 
matrices or other distance calculations. Summary of within-site escape point biserial correlations with charge-
hydrophobicity dissimilarity for sites with some escape (3-17 escape mutations) (left), plots illustrating charge-
hydrophobicity dissimilarity performance in key sites (right). e) The L452 RBD site is an example of decrease in 
hydrophobicity displacing the proximal alanine in the RBD C110 antibody interaction. (PDB: 7K8V) 
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hydrophobicity dissimilarity does not preclude escape (Figure 3D), plausibly because any 
mutation to a residue with a large number of antibody contacts is likely to disrupt antibody 
binding. Correlations between within-site maximum escape and charge-hydrophobicity distance 
are higher for sites targeted by multiple screened antibodies, suggesting that data capturing a 
larger diversity of antibody paratopes improves dissimilarity performance (Figure S10). 
 
Another potential escape strategy is to alter the glycans shielding the protein surface. We 
experimented with maximizing the dissimilarity factor if a mutation can remove a known surface 
glycan. While addition of glycosylation is also important for antibody escape30, we focused on 
loss of glycosylation because mutations removing glycan sites are readily identified by their 
alteration of surface N-linked glycosylation motifs. For the HIV envelope protein, this improves 
prediction of escape mutants—unsurprisingly, as surface glycosylation changes are a common 
escape strategy for HIV variants31 (Figure S11). While DMS experiments do not reflect escape 
impacts of glycosylation loss for the other viral proteins, this factor is an important consideration 
for real-world escape32–34. 
 
As a real-world example of the interplay of the three model components, more than half of 
mutations to the highly accessible and mutable E484 site are in the top 2% of EVEscape 
predictions, nicely confirmed by the appearance of E484A/K (with high charge dissimilarity 
scores) in numerous VOCs including Omicron. E484 is involved in a salt bridge with R96 and 
R50 of LY-CoV555 (therapeutic antibody bamlanivimab), which lost FDA authorization because 
Omicron (E484A) escapes binding35. 
 
EVEscape predicts broad, non-neutralizing antibodies as least escapable 
 An ideal escape predictor will reflect the likelihood of a mutant to escape polyclonal serum 
composed of antibodies that are most prevalent in the convalescent and vaccinated population. 
To evaluate EVEscape’s coverage of diverse antibody epitopes, we examined predictions of 
escape mutants across the four structurally defined classes of RBD-targeting antibodies 
identified by Barnes et. al36. EVEscape top predictions incorporate escape mutants across 
diverse epitope regions, with heavy coverage of antibody classes 1-3 and sparse coverage of 
class 4 (Figure 4A-B). These top predictions include known Class 1 and 2 immunodominant 
sites E484, K417, and L452. Class 2 antibodies have been identified as immunodominant in the 
sera of convalescent patients, followed by class 3 and 14. Class 4 antibodies bind to a cryptic 
epitope only revealed when 2 of the 3 RBDs on the Spike protein trimer are in the ‘up’ 
conformation, and are capable of binding SARS-CoV-1 as well as SARS-CoV-2 but are less 
potent neutralizers37.  
 
Generally, EVEscape scores are lower for escape mutations from antibodies that bind to a 
diverse pool of sarbecoviruses (“broad” antibodies) (Figure 4C) – these mutants are also less 
likely to be seen in the pandemic9. This is likely due to the typical high conservation of broad 
antibody epitopes in viral evolution, as well as the propensity of broad antibodies to bind cryptic 
epitopes38 (Figure S12). Broad antibodies are of great interest due to their potential as pan-
coronavirus therapeutics but tend to be less neutralizing than the most potent antibodies that 
bind near ACE2-contacting RBD surfaces. Within broad antibodies, EVEscape better captures 
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escape from neutralizing antibodies, due to its accessibility component that captures protrusion 
from the core structure (Figure 4C, Figure S12). Broad antibodies are relatively rare in 
convalescent sera, so evasion of these antibodies is likely not essential for variant spread 
(though this may change as broad antibody therapeutics are more widely adopted)39,40. These 
results further underline the importance of broad antibodies as therapeutics that may retain 
utility throughout the pandemic, as opposed to neutralizing antibodies that may be encumbered 
by significant immune escape.  
 
EVEscape anticipates mutations in pandemic and future strains  
We then investigated whether EVEscape’s predictions (trained entirely on data available pre-
pandemic) of likely escape mutations in the Spike protein correspond with trends observed in 
SARS-CoV-2 evolution through the course of the pandemic. Over 11 million SARS-CoV-2 
sequences have been deposited in the GISAID (Global Initiative on Sharing All Influenza Data)41 
database, including more than 6500 mutations to Spike that cover more than 99% of sites. We 
focus on mutations with a one nucleotide substitution distance from the Wuhan sequence, as 
these mutations are more likely to occur and make up 93% of the residue mutations observed in 
GISAID. The frequency of mutations observed in GISAID corresponds with EVEscape scores—
mutations in the top quartile of EVEscape are almost four times as likely to be observed in the 
pandemic than the bottom quartile, and mutations with high EVEscape scores are increasing in 

Figure 5: Figure Stories of good/bad performance :

Figure 5: EVEscape predictions capture escape mutants from both polyclonal and monoclonal 
samples across many key epitope regions of RBD. a) EVEscape predictions of escape mutations cover 
diverse epitope regions across antibody classes including known immunodominant sites (E484, K417, 
L452) (PDB: 7BNN) b) EVEscape better predicts escape mutations from antibodies with narrow 
sarbecovirus binding breadth, with lower EVEscape predictions for some broad antibodies, though 
particularly those that with lower  neutralization potency c) EVEscape captures mutations that effect 
recognition by polyclonal human sera from convalescent patients across VoC infection. Mutations at 
sites E484 and G447 are particularly notable for escaping sera binding in the DMS, and E484—
notoriously mutated in several VOCs–is the top EVEscape predicted site.
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prevalence faster than those with lower scores (Figure 5B-C). Moreover, EVEscape’s 
predictions of the relative escapability of regions throughout Spike are consistent with the 
immunodominance of RBD and NTD antibodies in convalescent and vaccinated sera42,43, as 
escape mutation predictions are significantly enriched in the RBD (particularly the ACE2 
contacting loop, 40% of which are in the predicted top 10% of Spike mutations) and the NTD 
(Figure 5A, Figure S13). 
 
We examined performance specifically on VOC mutations, which have been extensively 
characterized for their fitness and immune evasion. Mutations found in the VOCs are 
predominantly in the top 25% of Spike EVEscape predictions, likely reflecting their neutral or 
positive impact on general viral fitness as well as immune evasion (Figure 5D). Of the remaining 
VOC mutations, i.e., S375F and T376A at the bottom of EVEscape’s predictions (Figure S14A), 
many are actually known to decrease fitness, including by impairing infectivity, and are often 
reverted44. EVEscape’s success at predicting VOC mutations is indicative of its capacity to learn 
a broad range of viral fitness and immune escape constraints. For instance, many VOCs exhibit 
higher ACE2 affinities, which itself can be a mechanism of immune escape through binding 

Figure 6: EVEscape anticipates mutants and strains observed in 
SARS2 pandemic

Figure 6: EVEscape anticipates single mutations and strains observed in the SARS-CoV-2 pandemic. a) Site-averaged
EVEscape scores on Spike structure (PDB: 7BNN), with spheres for sites with GISAID mutations observed more than 
10K times, depicts regions of high EVEscape scores in the RBD (particularly in the ACE2 contacting region, the RBM, 
which also corresponds well to frequently observed GISAID mutations) and NTD. b) EVEscape mutation scores 
correspond to observed GISAID mutations in the RBD. c) Percentage of mutations in each EVEscape quartile seen by 
each date over 100 times in GISAID shows that mutations with high EVEscape scores are more likely to have been 
observed as the pandemic progresses. d) The majority of mutations in VOC strains have high EVEscape or EVE scores. 
e) BA.4 has a high EVEscape sequence propensity score compared to random mutations and other VOC mutations at 
the same mutation depth. f) EVEscape z-scores at the mutation depth of each lineage increases throughout 
the pandemic, particularly for VOCs. Z-scores are relative to random combinations of single mutations seen over 
1000 times in GISAID. Note that EVEscape percentiles throughout this figure have been adjusted to consider only 
mutations that are a nucleotide distance of one away from Wuhan. 
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Figure 5: EVEscape anticipates single mutations and strains observed in the SARS-CoV-2 pandemic. a) Site-
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mutations that are a nucleotide distance of one away from Wuhan.  
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competition45. EVEscape predicts many VOC mutations with enhanced ACE2 binding (i.e., 
Q493R and L452R that have reduced antibody binding, and G339D with neutral impact on 
antibody binding) in the top 10% (Figure S14A). EVEscape is in general more predictive of 
frequent VOCs than EVE alone (Figure S14B). The few VOCs mutations (i.e., A222V and 
T547K) with significant EVE—but not EVEscape—scores are known both for functional 
improvements such as monomer packing and RBD opening and for not impacting escape46,47. 
On the other hand, mutations with the highest EVEscape but low EVE scores include R190S 
and R408S, which are in hydrophobic pockets that likely facilitate significant immune escape48.  
 
For circulating viral strains, escape requires all mutations in the sequence to preserve viral 
function while facilitating immune evasion. To create strain-level escape propensity predictions, 
we aggregated EVEscape predictions across all individual Spike mutations in a strain, then 
compared the aggregate EVEscape score to that of other sequences at the same mutational 
distance from the original Wuhan strain. We find that VOCs compare favorably to random 
sequences at the same mutational depth, and in particular the Delta and Omicron strains known 
for their fitness and immune evasion are at the top end of score distributions (Figure 5E-F, 
Figure S14C, Data S5). VOCs like Omicron BA.4 compare favorably against not only sequences 
of random mutations at the same depth, but also against sequences composed only of 
mutations already known to be favorable — those seen more than 100 times in GISAID, and 
even more strikingly, against combinations of mutations sampled from other VOCs. These 
results illustrate EVEscape’s promise as an early-detection tool for identifying the most 
concerning variants in the large pool of available pandemic sequencing data. Future results will 
be available on our website (evescape.org) that enables real-time variant escape tracking 
through EVEscape rankings of newly occurring variants from GISAID and interactive 
visualization of likely future mutations to our top predicted escape variants.  
 
Discussion 
Predicting viral evolution under shifting immune constraints is crucial to pandemic 
preparedness. Experimental methods craft assays to capture viral functional properties while 
computational sequence models learn constraints from the evolutionary record – approaches 
we view as orthogonal but synergistic towards this end. While experimental methods can be 
tailored to key protein functions, they are time-consuming and thus limited in scope, and often 
miss aspects of natural virus function (particularly high-throughput methods). Computational 
sequence models learn a full picture of constraints from the course of natural evolution, but are 
subject to limitations of their training data. Pandemic surveillance data is restricted to making 
predictions for observed mutations, leaving blind spots regarding future mutational avenues as 
well as bias due to sampling and epidemiological effects49. Historical viral evolution data is 
immediately available at pandemic onset, and due to greater sequence diversity, is widely 
extensible to potential mutations and their combinations. However, novel pandemic constraints 
(such as immunity) are unlikely to be captured. To achieve early prediction, EVEscape 
combines historical viral evolution data with a biologically-informed strategy using only protein 
structure to anticipate immune selection and escape. Our model identifies key escape mutations 
and strains in high-throughput experiments of antibody binding and throughout the SARS-CoV-2 
pandemic. 
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Later in a pandemic, EVEscape is flexible to incorporating antibody binding footprints, 
experimental screens and pandemic surveillance data to match current knowledge on SARS-
CoV-2 specific immune targeting and mutation tolerance. EVEscape can also enhance this 
understanding by proposing escape variant libraries for experimental investigation, as well as 
suggesting viral proteins and regions with significantly high or low potential for escape to inform 
future therapeutics.  
 
EVEscape is a modular, scalable, and interpretable probabilistic framework that may be used to 
identify observed pandemic strains most likely to thrive in conditions of widespread pre-existing 
immunity, as well as to propose the most concerning new mutations on any circulating strain. To 
this end, we provide predictions for all single mutation variants of SARS-CoV-2 Spike as well as 
aggregate strain-level predictions for all strains that have been observed 1000 times or more in 
GISAID and will continue to update with new strains. As the framework is generalizable across 
viruses, EVEscape can be used from the start for future pandemics as well as to better 
understand and prepare for emerging pathogens. 
 
Data and Code Availability 
All data is provided in supplementary materials. Code is available at https://github.com/OATML-
Markslab/EVEscape and future updates will be available at evescape.org.    
 
Additional Information 
Supplementary Information is available for this paper. Correspondence and requests for 
materials should be addressed to Debora Marks. 
 
Supplementary Information: This file contains supplementary note S1, supplementary figures 
S1-S14 and supplementary tables S1-S4. 
 
Supplementary Data 1: Alignments used for EVE models for SARS-CoV-2, HIV, and Flu. 
 
Supplementary Data 2: EVE and EVmutation scores for DMS fitness experiments. 
 
Supplementary Data 3: EVEscape performance for selection of factor-specific temperature 
scaling. 
 
Supplementary Data 4: EVEscape scores and escape and fitness data for all Spike, HIV, and 
Flu mutations. 
 
Supplementary Data 5: EVEscape sequence propensity for all SARS-CoV-2 PANGO lineages. 
 
Supplementary Data 6: Acknowledgements for all GISAID sequences.  
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Methods 
Data acquisition: 
Multiple sequence alignments: 
For each viral protein, we construct multiple sequence alignments performing 5 iterations of the 
profile-HMM based homology search tool jackhmmer50 against the UniRef100 database. As 
previously reported for EVE, DeepSequence, and EVcouplings, we generally keep sequences 
that align to at least 50% of the target sequence and columns with at least 70% coverage, 
except in the case of SARS-CoV-2 Spike where we use lower column coverage as needed (30-
70%) to maximally cover experimental positions and significant pandemic sites18–20. For our pre-
pandemic (pre-2020) alignment used as the primary model throughout this paper, we remove 
pandemic sequences using the “date of creation” variable from UniRef. We optimized search 
depth to maximize sequence coverage and the effective number of sequences (Neff) included 
after re-weighting similar protein sequences in the alignment within a Hamming distance cutoff 
of 0.01. To select sequence depth, we prioritized alignments with coverage >0.7L and Neff/L>1, 
or if this was not attainable, relaxed the requirements for Neff/L.  
Structure and structure-based calculations 
Selecting structures for surface accessibility calculations: 
For each viral surface protein, we selected crystal structures representing known structural 
states available to B-cell and antibody interactions (extracellular conformations) (Table S3). All 
heteroatoms and protein chains not part of the trimeric viral surface protein were removed. 
Antibody footprints: 
To identify known antibody footprints of viral surface proteins in the RCSB PDB, we queried the 
database with the protein name and the word “antibody” and required that the source organism 
contain both “Homo sapiens” and the given virus name. Then for each structure we identified 
antibody and viral protein polymer entities and computed the antibody footprint as any residue 
with any atom within 3.5 angstroms of the antibody. Finally, we mapped footprints to the target 
viral protein sequence by using SIFTS to renumber all hits according to a UniProt ID, then used 
a MUSCLE multiple sequence alignment of the different UniProt sequences to map those hits to 
the target viral protein sequence. 
Deep mutational scans 
We benchmark our models on a series of viral protein deep mutational scans1–13,51–58 (Table S2, 
Table S4). For each viral mutational scan, we select the variable or variables of protein fitness 
or antibody escape treated as primary in the publications. For mutants where the result is 
provided as residue frequencies observed at a given site (such as results expressed as 
preferences and processed by dms_tools2), we normalize the data at each site by dividing by 
the value of the wild-type residue. For the HIV analysis, we exclude antibody VRC34.01 due to 
its large spread of escape mutation distal to the epitope59. For SARS-CoV-2 RBD, we use only 
antibodies/sera escape data from the Wuhan sequence for our primary results. We also utilize 
data provided about the antibodies tested for the SARS-CoV-2 escape DMS studies, including 
the class of each antibody as well as the SARS-CoV-2 neutralization potency and sarbecovirus 
binding breadth9. We use the RBD dimeric ACE2 binding and expression DMS data for 
analysis54. 
Pandemic sequencing data 



 

13 

We downloaded data on Spike variants and their deposit dates in the Global Initiative on 
Sharing All Influenza Data (GISAID) EpiCoV project database (www.gisaid.org)41 on 5/23/22. 
We further processed this data to get counts of combinations of mutations, the date of 
emergence, and PANGO lineage, as well as get the month of emergence for each single 
mutation in Spike. We also downloaded consensus mutations for each PANGO lineage from 
Covid-19 CG60 on 7/1/22.  
 
Modeling approach: 
Overarching framework 
We express the probability of a single amino acid substitution to lead to immune escape as the 
product of three conditional probabilities (Figure 1A): 
𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑒𝑠𝑐𝑎𝑝𝑒𝑠	𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦)

= 	𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑠	𝑓𝑖𝑡𝑛𝑒𝑠𝑠) ∗ 	𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒	𝑡𝑜	𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦	|	𝑓𝑖𝑡) 	
∗ 	𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑑𝑖𝑠𝑟𝑢𝑝𝑡𝑠	𝑎𝑛𝑡𝑖𝑏𝑜𝑑𝑦	𝑏𝑖𝑛𝑑𝑖𝑛𝑔	|	𝑓𝑖𝑡, 𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒) 

The EVEscape index estimates the log likelihood of escape as per the above equation. The 
fitness factor is obtained via a deep generative model for fitness prediction, while the 
accessibility and dissimilarity factors are features derived respectively from the known 3D 
structures for the viral protein and chemical characteristics of the amino acids involved in the 
mutation compared to the wild-type (see below for details). 
Once selected, each factor is standardized and fed into a temperature scaled logistic function: 

𝑷(𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑒𝑠𝑐𝑎𝑝𝑒𝑠	𝑖𝑚𝑚𝑢𝑛𝑖𝑡𝑦)

= 	𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 <	
1

𝑇!"#$%&&
	 ∗ 	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒@𝐹!"#$%&&BC

∗ 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 <	
1

𝑇'((%&&")"*"#+
	 ∗ 	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒@𝐹'((%&&")"*"#+BC			

∗ 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 <	
1

𝑇,"&&"-"*'."#+
	 ∗ 	𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒@𝐹,"&&"-"*'."#+BC	

where the standardize(.) operator corresponds to standard scaling. We then take the log 
transform of the product of the 3 terms to obtain the final EVEscape scores. 
Factor-specific temperature scaling helps recalibrate probability estimates for each term. We 
provide our hyperparameter grid search of these temperature hyperparameters across viruses 
in Data S3, examining versions of the model where we either include or do not include 
glycosylation in the dissimilarity term. We find that the fitness and accessibility components are 
already properly calibrated (Tfitness = Taccessibility = 1.0), while the dissimilarity component benefits 
from being slightly rescaled (Tdissimilarity = 2.0). 
Fitness metric 
Observed viral protein sequences reflect evolution under selection constraints for functional and 
infectious viruses. Generative sequence models express the probability that a sequence 
𝑥	would be generated by this process as 𝑝(𝑥|𝜃), where the parameters 𝜃 capture the constraints 
describing functional variants. A generative model trained on observed viral protein variants can 
then be used to estimate the relative plausibility of a given mutant sequence as compared to 
wild-type by using the log ratio of sequence likelihoods as a heuristic:  
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𝑙𝑜𝑔
𝑝(𝑥-/#'$#|𝜃)
𝑝(𝑥0"*,#+1%|𝜃)

 

EVE (Evolutionary model of Variant Effects) is a Bayesian variational autoencoder (VAE)61, 
capable of capturing complex higher-order interactions across sequence positions. The fitness 
of a given protein sequence is measured via the log likelihood ratio of the mutated sequence x 
over that of the reference wild-type sequence w. Since an exact computation of the log 
likelihood of a sequence is intractable, we approximate it with the Evidence Lower Bound 
(ELBO) loss used to optimize the VAE: 

𝐸	343(𝑥) = −𝑙𝑜𝑔
𝑝(𝑥|𝜃)
𝑝(𝑤|𝜃)

~	𝐸𝐿𝐵𝑂(𝑤) − 𝐸𝐿𝐵𝑂(𝑥) 

The ELBO term itself is estimated via Monte Carlo sampling, using 20k samples from the 
approximate posterior distribution. These approximations have been shown to provide strong 
results in practice18. Final results are obtained by ensembling scores from 5 independently 
trained EVE models with different random seeds. 
Accessibility metric 
To predict likely antibody binding sites, we used weighted contact number (WCN) and 
compared performance to relative surface accessibility (RSA). 
Calculating weighted contact number 
We computed weighted contact numbers64 for each residue from structure as follows: 

𝑊𝐶𝑁"	 =P
1
𝑟"5657"

 

where 𝑟"5 	is the distance between the geometric centers of the residue i and residue j side 
chains. We impute missing values in WCN due to gaps in the protein structure using the mean 
of WCN values of the residues preceding and following the gap. 
RSA: 
To compute RSA, we first computed accessible surface area based on hypothetical exposure to 
solvent water molecules using DSSP62. To calculate relative accessible surface area (RSA), we 
divided accessible surface area by the residue maximum accessibilities determined in Sander et 
al63. We impute missing values in RSA due to gaps in the protein structure by using the mean of 
RSA values of the residues preceding and following the gap (counting residues adjacent to the 
gap with RSA values>1 as part of the gap). 
Aggregating across structures: 
When computing antibody-binding likelihood metrics across different structural conformations 
we used the maximum accessibility (or minimum weighted contact numbers).  
Dissimilarity metric 
To predict the likelihood of a given mutation displacing an antibody interaction, we used a 
charge-hydrophobicity based measure of functional dissimilarity between the wild-type residue 
and the mutation residue. We compare our metric to individual chemical properties, substitution 
matrices, and the distance in the latent space of a VAE. We also experiment with incorporating 
glycosylation in our dissimilarity metric. 
Charge-hydrophobicity 
To compute a combined charge-hydrophobicity dissimilarity index, we standard-scaled the 
charge and hydrophobicity67 differences and then took the sum of the scaled differences. 
Chemical properties 
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We compared our metric to differences in residue size (side-chain mass), hydrophobicity, and 
charge.  
Substitution Matrices 
We compared our metric to the BLOSUM6266 matrix after dropping the null transition diagonal 
values.  
Latent space distances 
We also compared our metric to a metric of mutation distance learned by the EVE variational 
autoencoder. We calculated the L1 distance between the encoded representations of the wild-
type viral protein sequence and a given single-mutation sequence in the latent space of the 
model, inspired by a similar approach first introduced by Hie et al.22 
Glycosylation 
We developed a version of our model considering glycosylation loss as a contributor to 
dissimilarity. In this version, we maximize the charge-hydrophobicity dissimilarity term if a 
mutation is likely to result in loss of a surface N-glycan site. We identified surface N-glycan sites 
as NxS/T sequons (where x is any amino acid except proline) with the N residue having an 
RSA>0.2. A mutation is likely to result in loss of glycosylation if the N or S/T is lost.   
Imputing missing data 
We impute missing values of features in EVEscape using the mean value of the feature across 
the target protein. 
Strain-level EVEscape propensity predictions 
We aggregate across combinations of mutations by summing the EVEscape scores for each 
mutation.   
 
Evaluation: 
Comparison to functional assays 
We compared model predictions to continuous experimental metrics of viral function using 
spearman’s rank correlation coefficient as our main evaluation metric, as previously 
described19,20. 
Comparison to escape DMS 
Data processing  
As escape data is noisy at levels of low escape and a relatively low fraction of mutants exhibit 
escape, we chose to treat the escape outcome variable as binary. We selected a threshold for 
escape by fitting a gamma distribution to the data (combined across all screened antibodies and 
sera) and selecting the threshold corresponding to a 5% false discovery rate11. As the number 
of antibodies tested for RBD is much higher than for Flu and HIV, we bootstrapped the RBD 
data selecting 8 antibodies 1000 times and fitting a gamma distribution to these samples, then 
selected the average 5% false discovery rate threshold. As these thresholds are subject to our 
choice of a false discovery rate, we also plot performance for a range of thresholds (Figure S4). 
We identified a mutant as “escape” if its maximum escape value across any antibody tested 
exceeded the threshold (so a mutation for RBD is “escape” if it exceeds the threshold for any 
antibodies/sera in the Bloom or the Xie datasets (Data S4)). We use thresholds of 0.57 for 
Bloom RBD, 0.9 for Xie RBD, 0.054 for Flu, and 0.138 for HIV. Note that the downloaded RBD 
escape datasets were already filtered using thresholds on expression and ACE2 binding of -1 
and -2.35, respectively68. 
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To define a site-wise escape value, we averaged across the maximum escape values for each 
mutant at the site. For the sera RBD DMS data, we define a mutation as escaping Wuhan sera 
if it passes the Bloom RBD escape threshold for any Wuhan sera. Otherwise, if a mutation does 
not escape any Wuhan sera, but does escape Beta or Delta sera, it is labeled with the 
corresponding variant sera. For the antibody RBD DMS data, we define the antibody class of 
each mutation/site by determining the maximum number of antibodies for a given class that 
escape that mutation/site (Data S4).  
Metrics 
To quantify model performance in classifying escape mutants, we computed two metrics. We 
consider area under the receiver operating curve (AUROC) and area under the precision-recall 
curve (AUPRC). AUROC summarizes the tradeoff between true positives and false positives 
over a range of thresholds on the continuous model prediction score but is overly permissive in 
cases of imbalanced datasets–-although still suitable for assessing relative performance. The 
AUPRC metric summarizes the tradeoff between capturing all escape mutants (recall) and not 
incorrectly predicting escape mutants (precision). This approach is suitable for evaluating 
classification of imbalanced datasets but penalizes false positive predictions. In the case of 
escape predictors, false positive predictions may be due to insufficient sampling of the human 
antibody repertoire against the virus of interest, so this penalization is potentially too stringent. 
We normalize AUPRC by the “null” precision model AUPRC, which is equivalent to the fraction 
of escapes observed in the mutations experimentally screened. Therefore, AUPRC values are 
not comparable between viral proteins or subsets of DMS datasets with different fractions of 
escape mutations. 
Comparison to known antibody footprints 
We also evaluated the model’s ability to predict sites of antibody binding, as quantified by 
looking at antibody footprints in the RCSB PDB within a minimum all-atom distance of 3.5Å.  
Comparison to pandemic sequencing data 
Data Processing  
We evaluate the model against occurrence of single mutations and strains in GISAID. In 
determining the set of Spike mutations to compare EVEscape scores to GISAID data, we 
consider only those mutations that are a single RNA nucleotide mutation distance from Wuhan. 
Our set of pandemic strains are the combinations of mutations that have occurred together 
greater than 500 times in GISAID. The date of lineage emergence is the 5th percentile of dates 
for that variant (to avoid issues with outliers from GISAID data entry) and the variants are 
marked as high frequency VOCs if their mode lineage is a VOC and their count is greater than 
50,000, using the processed GISAID data table. We define PANGO lineages for the VOCs by 
the nonsynonymous Spike consensus mutations for that strain from COVID-19 CG that occur in 
greater than 10% of strain sequences, ignoring insertions and deletions. 
Metrics 
To evaluate sequence EVEscape propensities of the strains observed in GISAID, we use a z-
score to compare the EVEscape propensity to the scores of 10,000 sequences at the same 
mutation depth, randomly generated by sampling single mutations seen over 1000 times in 
GISAID.    
Regional Enrichment 
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We analyze enrichment of regions by the location of the average EVEscape score for the region 
as compared to a distribution of the average EVEscape score of random regions. For 
comparison to full Spike, we compare to the scores of 500 random contiguous regions (of the 
same length as the region of interest) within Spike. For comparison to RBD, we compare to 
scores of 100 contiguous regions, using the full Spike model.  
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