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ABSTRACT
Biological networks for bacterial species are used to assign func-
tional information to newly sequenced organisms but network
quality can be largely affected by poor gene annotations. Current
methods of gene annotation use homologous alignment to deter-
mine orthology, and have been shown to degrade network accuracy
in non-model bacterial species. To address these issues in the KEGG
pathway database, we investigated the ability for machine learning
(ML) algorithms to re-annotate bacterial genes based on motif or ho-
mology information. The majority of the ensemble, clustering, and
deep learning algorithms that we explored showed higher predic-
tion accuracy than CD-hit in predicting EC ID, Map ID, and partial
Map ID. Motif-based, machine-learning methods of annotation in
new species were more accurate, faster, and had higher precision-
recall than methods of homologous alignment or orthologous gene
clustering. Gradient boosted ensemble methods and neural net-
works also predicted higher connectivity of networks, finding twice
as many new pathway interactions than blast alignment. The use of
motif-based, machine-learning algorithms in annotation software
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will allow researchers to develop powerful network tools to inter-
act with bacterial microbiomes in ways previously unachievable
through homologous sequence alignment.
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1 INTRODUCTION
The human gut microbiome is inextricably linked to human health,
contributing to the progression of inflammatory disease [25], neu-
rological conditions [20], and even cancer [18, 62]. Since the advent
of large scale genome sequencing, many projects have sought to
sequence and characterize the bacteria found colonizing the hu-
man gut system [19]. Much of the work done to characterize these
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Figure 1: The effect of poor annotation quality on KEGG pathway networks and the strategy for benchmark analysis of machine
learning algorithms. (A) Edge node circle diagram shows the effect of lack of annotation depth on network topology for
KEGG pathways. Edges unique to E. coli are displayed in red, edges unique to S. macedonicus are displayed in blue, and edges
common between both species are shown in yellow. (B) The three ensemble methods use multiple learners to make separate
classifications on sampled data and then aggregate the most common classifier as the predicted set. In comparison, clustering
is an unsupervised algorithm that groups similar data points to predict commonalities between them. We used aggregation
of predictors within each cluster to classify the test data set in order to compare performance against supervised methods.
A neural network was used to benchmark against the 6 classifiers to understand how classical machine learning algorithms
could perform in comparison to a deep-learning algorithm. Four feature sets were trained on the models to determine the
effect that motif based and homology based information has on the outcome of each learner. Each model was asked to predict 3
different labels given a test feature set, Enzyme Commission number (EC ID), a string of KEGG pathway identifiers (Map ID)
and individual Map IDs specific to each gene (Partial Map ID).
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species has focused on taxonomic diversity analysis through 16S
sequencing, but more studies now perform genome assembly or
metatranscriptomics to ascribe functional relevance to populations
and diseases [11, 14, 32]. Such studies have been known to assem-
ble 100’s to 1000’s of bacterial genomes per sequencing run, which
requires a significant amount of computational power and high
quality functional information to annotate [1].

Many large database networks hold annotation information for
microbial genes such as PFAM [34], Interpro [4], Uniprot [54], SEED
[38], and the Refseq database [37]. The KEGG database contains
curated information on protein pathways vital to the cellular func-
tion of gut bacteria [22]. Enrichment of specific KEGG pathways
have been previously associated with disease prevalence [26, 27, 56].
However, pathway annotations in the database are notoriously poor,
with surveys of sequenced species showing proteomic annotation
as low as 14% in some cases [16, 33, 47]. This disparity is largest
in evolved taxa furthest from well characterized species such as
Escherichia coli and Bacillus subtilis. This issue of quality in biologi-
cal networks is currently of major concern in the field of network
biology. Many well curated networks remain incomplete with as
much as 80% missing data in protein-protein interaction networks
[17]. The effects of network completeness from poor annotation
can be seen between a model bacterial organism like E. coli and
a non-model gut microbe like Streptococcus macedonicus (Fig 1a).
Recent reports show how poorly curated data can effect network
performance, such as how a lack of curation of the blast nr data-
base has resulted in misclassification of disease causing microbes
[3]. It stands that in order to better understand the role of the gut
microbiome in human disease, we first need to improve the quality
of protein annotations.

Currently, the most widely used method to annotate newly se-
quenced bacterial genes is BLAST (Basic Local Alignment Search
Tool) [45] alignment of proteins to previously assembled genomes
[50]. New sequence alignment algorithms like Diamond [6], domain
based alignment algorithms like HMMer [9], and nucleotide k-mer
alignment algorithms like kraken2 [58] have been developed to
improve the speed and fidelity of annotation. However, these tradi-
tional methods lead to the problem that newly sequenced genomes
are annotated by alignment to other newly sequenced genomes and
the loss of functional information compounds as more genomes
are assembled [36]. To reduce this loss of data, some groups have
published new methods of annotation, such as CD-hit [30], that
work by clustering orthologous gene groups and can be applied
to entire databases. Orthologous clusters of bacterial Open Read-
ing Frames (ORFs) may retain functional similarity at rates greater
than 95% and thus can be used to assign functional relation to
newly predicted genes [28, 29]. Although homologous alignment
of protein or DNA sequence is the norm for bacterial gene annota-
tions, it has been shown that alignment to Hidden Markov Models
(HMMs) describing conserved domains results in higher annotation
completeness [33]. At the same time, new programs such as the
meme-suite [2], have been published to identify functional subunits
of proteins and DNA, called motifs, that are found ubiquitous to a
cadre of proteins agnostic of predescribed function.

Machine learning algorithms are the ideal methods of computa-
tional classification, and have been successfully applied to the field
of disease prediction [53]. A few studies have explored the abil-
ity for machine learning to functionally annotate bacterial genes,
specifically through naive bayes classifiers [44], support vector
machines [55], and deep learning neural networks [31]. A classi-
fication model that has not been investigated yet are ensemble
methods, which have shown high success for classification in large,
multi-class problems from imbalanced data sets [24]. We sought to
compare ensemble, clustering, and deep learning models on their
ability to predict Enzyme Commision (EC) identifiers and Map IDs
from the KEGG database. We also pursued the efficacy of using
protein motifs as features for the models in comparison to sequence
homology in an effort to increase prediction accuracy and reduce
computational time.

2 METHODS
2.1 Data Mining and Curation
Data from the KEGG database was queried by custom python script
to obtain information on all genes from species of interest through
the KEGG Rest API. The following identifiers were retrieved by
“gene_id”: “ko_id”, “ec_id”, ”map_id”, “aa_seq”, and “nt_seq”, and
were output as a comma delineated table. We queried the database
for genes from E. coli, Bacteroides intestinalis, and S. macedonicus
and subsetted only genes with annotations to KEGG pathways.

2.2 Feature Preparation
Protein sequences from pathway annotated genes were aligned by
multiple sequence alignment through the MAFFT program [23].
Resulting alignments were then used to construct a phylogenetic
tree using the neighbor joining algorithm with the phangorn pack-
age in R [46]. Motifs were predicted in all query genes through the
meme program and resulting HMM models were used to identify
motifs in each gene through fimo [15]. A custom R script was used
to construct feature sets from motif hit files and phylogenetic tree
data with the assistance of the tidytree R package [59]. We utilized
4 different feature sets named “Motif_present”, “Motif_number”,
“Nodes_present”, and “Nodes_number”. Node based feature sets
utilize phylogenetic alignments of genes from the training data but
could be reconstructed solely from motif alignments, represent-
ing an increase in performance speed over traditional annotation
techniques that rely on homologous sequence alignment.

2.3 Machine Learning Algorithms
Machine learning algorithms were compared for accuracy in their
ability to predict functional annotation in bacterial genes using
various feature sets. All classifiers were built to predict a single
class from a multi-class problem using 2 different sets of labels,
“ec_id” and “map_id”. In order to calculate prediction accuracy of
labels we used the following formula:

𝑎 =

∑𝑛
𝑖=1 1(𝑝𝑖=𝑙𝑖 )

𝑛 (1)

Where the accuracy is equal to the sum of predictions p that
match the true string l as a boolean divided by the n number of test
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genes. Because Map IDs are actually a string of multiple Map IDs
we also predicted partial accuracy of map ID prediction:

𝑎𝑝 =

∑𝑛
𝑖=1

∑𝑥
𝑢=1 1(𝑝𝑖𝑐𝑢=𝑝𝑖𝑙𝑢 )

𝑛 (2)

The accuracy of partial map IDs is equal to the average of the
number of Map IDs c within each predicted string p that match an
identifier l divided by the n number of test genes.
We assessed metrics that could be determined and compared be-
tween all models. True positive (3), false positive (4), true negative
(5), and false negatives (6) were computed from confusion matrices
using the following algorithms.

𝑇𝑝 =

∑𝑘
𝑦=1

∑
𝑗=1 (𝐴·𝐵𝑇 )𝑖 𝑗
𝑘

(3)

𝐹𝑝 =

∑𝐵
𝑖=1

∑𝐴
𝑗=1 𝑥 𝑗

𝐵
−

∑𝑘
𝑦=1

∑
𝑗=1 (𝐴·𝐵𝑇 )𝑖 𝑗
𝑘

(4)

𝑇𝑛 =

∑𝐴
𝑗=1

∑𝐵
𝑖=1 𝑥𝑖

𝐴
−

∑𝑘
𝑦=1

∑
𝑗=1 (𝐴·𝐵𝑇 )𝑖 𝑗
𝑘

(5)

𝐹𝑛 = 𝑘 −𝑇𝑝 − 𝐹𝑝 −𝑇𝑛 (6)

Where k is the total number of classes, A and B are the column
and row dimensions, i and j are iterators of columns and rows
respectively. Precision (7), recall (8), false positive rate (9), and log
loss (10) were calculated for each machine learning algorithm.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑝

𝑇𝑝+𝐹𝑝 (7)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑝

𝑇𝑝+𝐹𝑛 (8)

𝐹𝑃𝑟𝑎𝑡𝑒 =
𝐹𝑝

𝐹𝑝+𝑇𝑛 (9)

𝐿𝑜𝑔𝐿𝑜𝑠𝑠 = − 1
𝑁

𝑁∑︁
𝑖

𝑀∑︁
𝑗

𝑦𝑖 𝑗 ∗ 𝐿𝑛(𝑝𝑖 𝑗 ) (10)

Where N is the number of genes, M is the number of different
labels, 𝑦𝑖 𝑗 is the binary variable with the expected labels and 𝑝𝑖 𝑗
is the classification probability output by the classifier for the i-th
instance and j-th label. Genes from E. coli and B. intestinalis were
used as training data for the models. Models were trained on 75%
of the training data and tested against 25% of the training data
for validation. When tested against genes from S. macedonicus we
trained the models on all of the training data.

2.3.1 Random Forest Classifier. We implemented a random forest
[5] classifier through the sklearn python library. Random Forest
algorithms apply multiple decision trees to solve classification prob-
lems and then use ensemble voting to determine the most common
predicted label from all trees. Hyper parameterization led us to
use the following parameters in all models: ‘n_estimators’ = 5000,
‘min_samples_split’ = 2, ‘min_samples_leaf’ = 1, ‘max_features’ =
sqrt’, ‘max_depth’ = 10’ . Hyper parameterization was conducted
with 5 fold cross validation.

2.3.2 AdaBoost Classifier. The ada boost classifier [12] was imple-
mented through the sklearn python library. Ada boosting works
similar to random forests, but uses a forest of weak learners, often
called stumps, and weighs each weak learner by contribution to
accurate prediction. We used the following parameters as a result
of hyper parameterization: ‘learning_rate’ = 0.4, ‘n_estimators’ =
7500, ‘max_depth’ = 9 . Hyper parameterization was conducted with
5 fold cross validation.

2.3.3 Histogram Gradient Boosting Classifier. Histogram gradient
boosting algorithms provide the iterative weighting of a gradient
boosting algorithm in a fast histogram based learner algorithm
[13]. We implemented the Histogram gradient boosting through the
sklearn python library. Hyper parameterization of themodel yielded
the following good parameters: ‘learning_rate’ = 0.1, ‘max_depth’ =
1, ‘max_iter’, ‘max_leaf_nodes’ = 40, ‘min_samples_leaf’ = 20 . Hyper
parameterization was conducted with 5 fold cross validation.

2.3.4 Hierarchical and K-means clustering. Clustering methods
cluster data together using distance values allowing us to categorize
data by common attributes. Agglomerative heriarchical clusters
were built from the bottom up to each of the clusters using an n
of 700. K-means clusters were determined from a starting 700 cen-
troids. Clustering was performed using gower distances from motif
and node features through the stats package in R [41] . Cluster size
was determined by hyperparamaterization for highest accuracy in
all feature sets. Accuracy was determined by psuedolabels given
based on common IDs within clusters.

2.3.5 CD-Hit. CD-HIT is an incremental greedy clustering method
that sorts input sequences from long to short and processes them
sequentially where the first sequence is identified automatically as
the first cluster representative sequence [30]. The remaining query
sequences are then compared heuristically by short (3-mer to 10-
mer) word search with the first sequence and grouped by ascending
levels of homology into clusters. We clustered genes by thresholds
ranging from 40% to 50% and assessed for the greatest accuracy. All
runs were performed using 8 cores and 32 GB of memory.

2.3.6 Deep Learning. We designed 8 fully connected, 7-layer net-
works with SoftMax activation to train and perform classification
on each data set. Labels were encoded into one hot vectors and
an ADAM optimizer was used to train the network by element-
wise binary cross entropy loss. Over fitting was corrected for by
adding Dropout and Batch normalization layers as well as weight
decay through ADAM. All tests were run with hyper paramateri-
zation using 5 fold cross validation, splitting training data sets in
a 7:2:1 ratio, on 4 NVIDIA A100-SXM-80GB GPUs. Final parame-
ters were: ’epochs’ = 25, ’batch_size’ = 256’, ’learning_rate’ = 10−3,
’weight_decay’ = 10−5.

2.4 Network Analysis
Networks were constructed from annotations in each model using
the edge node lists of E. coli gathered with the Kegglinc R package
[57]. Comparative metrics were determined using R and networks
were visualized with the igraph pathway [7]. In order to calculate
the topological similarity of the predicted networks to the E. coli
network as a baseline, we used normalized adjacency similarity.
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This similarity metric is a type of Known node-correspondence
(KNC) methods ([49]) which measures the sum of equal non-zero
entries in the adjacency matrices, and tries to encapsulate how
structurally close to networks are. Having the same vertex order-
ing, this metric mainly indicates how much the of gene interactions
is being predicted by our models. We used the implementation avail-
able in graph-tool package ([39].) which calculates the following
value:

𝑆 (A1,A2) =
©­«
∑︁
𝑖≤ 𝑗

���𝐴(1)
𝑖 𝑗

���𝑝 +
���𝐴(2)

𝑖 𝑗

���𝑝ª®¬
1
𝑝

− ©­«
∑︁
𝑖≤ 𝑗

���𝐴(1)
𝑖 𝑗

−𝐴
(2)
𝑖 𝑗

���𝑝ª®¬
1
𝑝

(11)

2.5 Data Availability
Data was collected from the KEGG database v102.0. Python and R
code used in this study is available at https://github.com/RobbenUTA/
Functional-ML. Training and testing data sets have also been made
available through the github repository, along with additional re-
sults for the deep learning model.

3 RESULTS
3.1 Experimental design
We developed a methodology to benchmark the performance and
accuracy of machine learning models to make multi-class predic-
tions of KEGG pathway annotations and improve the quality of
pathway networks (Fig 1b). We chose to evaluate the ability for 3
ensemble, 2 clustering, and 1 deep learning model to assign func-
tion to previously annotated genes. To avoid re-annotation bias in
comparison to traditional methodologies, we chose an established
method of clustering-based, database alignment annotation, CD-hit,
to represent homologous alignment methodologies. All machine
learning models utilized the same data, with KEGG annotated genes
from the genomes of E. coli (1,321 genes) and B. intestinalis (986
genes) being used for both training and validation, and genes from
the genome S. macedonicus (583 genes) being used as a test data set.

We also compared the relative performance of homologous align-
ment (node) and structural sequence (motif) based feature sets. This
comparison will tell us if motif or homologous sequence alignment
results in better annotations. The KEGG database classifies genes by
two identifiers, EC ID, biochemical and Map ID, and we determined
accuracy in predicting both for each model. The EC ID groups genes
by common biochemical reaction while the Map ID is typically a
string of multiple identifiers that each point to a unique protein
pathway in the KEGG database. We only evaluated accuracy as
direct matches between predicted and real EC IDs but for Map IDs
we also calculated accuracy when predicting a fraction of the Map
ID numbers from the string. This allowed us to predict annota-
tions for proteins that retain partial function when compared to a
homologous gene, commonly found in truncated proteins [10].

3.2 Comparison of machine learning
algorithms for the prediction of KEGG
identifiers in training data

We determined the accuracy of each model when predicting KEGG
annotations from genes in the training data set. Training data sets
consisted of 1,132 genes with binary or quantitative values for 97
motifs or 3,160 nodes, and was used to determine accuracy of EC
id and Map id predictions of 385 genes in a validation set. A neural
network of node feature sets yielded the highest accuracy in all
three class predictions (Fig. 2). Validation on the trained feature
data sets suggest that homology based features are able to predict
labels with greater accuracy than motif based, except for in the
prediction of partial Map IDs from strings. Ensemble, clustering, and
deep learning methods were shown to have increased prediction
accuracy over CD-hit alignments, with Hierarchical and K Means
clustering able to cluster more test genes (66% and 76% respectively)
than CD-hit (10%).
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Figure 2: Prediction accuracy of classifier models when pre-
dicting class labels of the training data set. (A) EC ID, (B) Map
ID, or (C) Partial Map feature set prediction accuracies are
reported separately. Feature sets within each model were run
under the same settings as determined by hyper parameteri-
zation. CD-Hit only accepts sequence information and thus
was not compared for each feature set.
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3.3 Analysis of performance metrics among
models

We demonstrate that most machine learning algorithms represent
an increase in speed over traditional sequence homology based
methods such as CD-hit (Fig. 3a). The exception being Ada boost
algorithms that took nearly 100x as long as other ensemble algo-
rithms and 10x as long as the neural network.
To evaluate the performance of each model, we examined various
metrics of predictive power. The average False Positive Rate (FPR)
among ensemble methods was fairly stagnant among feature sets
and was lower than clustering and deep learning methods in every
case (Fig. 3b). The surprisingly high FPR in hierarchical clustering
and neural networks was not consistent with the high accuracy in
the model and feature set combinations and may represent accurate
predictions over fit to the training data set. Low false positive rates
are reported are reported in CD-Hit, however, the algorithm only
made predictions on 10% of genes.

Loss, as estimated only in ensemble and deep learning methods,
was found lowest in neural networks yet is quite high across all
models, potentially because only 2 species are represented in the
training data set (Fig 3c). The random forest model had the highest
average precision and recall across classes with both predictors (Fig
3d).

3.4 Motif aware machine learning models
generalize predictions to new species

To validate the performance of our models on generalized data,
we predicted labels from an untrained species, S. macedonicus. All
genes in the training data set were used to predict EC id and Map
id in the 583 test genes. We found that the ability for most models
to generalize to a new species was fairly low, with the majority
being reduced in accuracy by a factor of 10x (Fig 4). CD-hit retained
high prediction accuracy in EC ID and Map ID predictions yet this
did not result in increased partial Map ID prediction, presumably
because it was predicting exact labels on a small subset of genes but
failed to make any predictions for non-clustered genes. Every other
model excluding gradient boosting yielded high partial accuracy
prediction of partialMap IDswithmotif data but only random forest,
adaboost, and deep learning algorithms had comparable prediction
accuracy with node information. Blast alignment of the test genes
to those from the training data resulted in roughly 75% accuracy
in all measurements, an expected result of re-annotation methods
but not comparable to the machine learning algorithms used in this
study, which report accuracy regardless of misannotation in the
initial data set.

3.5 Gradient Boost and Neural Network
architectures improve network
reconstruction of KEGG pathways

KEGG pathways are complex undirected acyclic networks con-
structed from biochemical evidence. As such, we can evaluate the
networks reconstructed from each model annotation, and deter-
mine if the reconstructed networks lead to higher quality topology
or the discovery of new pathways (Fig 5a). We found that gradient
boost and neural network algorithms lead to more interconnected
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Figure 3: Performance and model error. (A) Computational
time to train and run each machine learning model. Ensem-
ble and clustering algorithmswere all run single core, CD-Hit
was multi-threaded with 8 cores and the Neural network was
performed using 4 A100 GPU’s. (B) Average false positive
rate among all classes reported for each model. (C) Average
loss among each model, only ensemble methods and deep
learning were able to report probability for each class predic-
tion and thus loss in unsupervised methods was not shown.
(D) Average precision and recall for each model was reported
by percent of total gene predictions. Average precision and
recall are shown for amax threshold of 100% probability only.
Precision and recall was not reported for CD-hit because of
low prediction resolution.

networks than CD-hit (Fig 5b). This was confirmed by the number
of edges and level of pathway completion for each model (Fig 5c-d).
These models also displayed a higher degree of similarity to E. coli
pathways than CD-hit annotations (Fig 5e). No model had quality
metrics higher than the original annotation or a BLAST alignment
annotation due to a larger database with which these were anno-
tated from. However, gradient boost and neural networks predicted
more novel pathways connections than CD-hit or BLAST (Fig 5f).

4 DISCUSSION
In this study, we sought to determine if machine learning algorithms
could predict the functional annotations of bacterial genes from
large scale bacterial pathway databases with higher success rates
than traditional methods of sequence homology based annotation.
This is an important challenge for large scale sequencing studies of
the gut metagenome, as differences in metabolic pathways of gut
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Figure 4: Accuracy of models to predict labels of S. mace-
donicus genes using genes from E. coli and B. intestinalis
as training data. (A) EC ID, (B) Map ID, or (C) Partial Map
ID feature set prediction accuracies are reported separately.
Feature sets within each model were run under the same set-
tings as determined in the previous experiment. CD-Hit only
accepts sequence information and thus was not compared
for each feature set. Clustering methodologies could not be
trained by E. coli and B. intestinalis data separately by virtue
of method.

flora have heavy ramifications on human health and disease [8].
Currently, no other study has sought to evaluate machine learn-
ing models on their ability to annotate database gene collections.
Yet, related research shows an increased ability of deep learning
models and SVMs to classify metagenomic read data at a higher
accuracy than homologous alignment based techniques[31, 55]. Re-
annotation experiments using modern algorithms has proven that
clustering based algorithms can solve many misannotations within
databases [52].

For our experiment, we selected 7 machine learning models and
one commonly used annotation methodology. Three of the models
were classical ensemble machine learning algorithms which classify
a test feature based on aggregate voting of labels through many
individual learners. One model was a deep learning classifier that
used a weighted neural network to predict labels using the same
feature datasets as the ensemble methods. Two models used unsu-
pervised learning methods to cluster the datasets by similarity to be
further analyzed through pseudo-label prediction. These replicated

the methods of our traditional classifier, CD-hit, which clusters or-
thologous genes based on sequence homology [30]. Feature dataset
construction from sequence data is difficult and hampered by non-
important alignment of sequence regions.We chose to utilize motifs,
short regions of similar protein sequence that occur in proteins of
the same function, as feature sets, either through their presence
in annotated genes or combined with homology information in
orthologous sequences.

While overall prediction in both validation and test data sets was
rather low (<25%) for both labels, prediction of individual Map IDs
from strings was far more accurate. This is likely reflective of poor
gene annotation in the training data [33]. Low accuracy will also
likely improve with the addition of more training data, a common
effect of database size on learning models [55].

Time is an important factor for database scale annotation pro-
grams, as some commonly used sequence alignment algorithms
can take weeks to process large numbers of genes. Most ML models
that we tested ran as fast or faster single core than CD-hit did on
multi-core tasks, and will likely also scale better (complexity (𝑂)𝑚)
than CD-hit (complexity (𝑂)𝑛) because the 𝑚 number of motifs
will not increase linearly [30].

Perfect annotation of newly sequenced bacterial species is the
goal of annotation algorithms but annotation quality decreases
linearly with genetic distance from model species [33]. Similarly,
when we validated our models on their ability to predict labels in
S. macedonicus using E. coli and B. intestinalis genes as training
data, we observed a drastic decrease in the accuracy of EC ID and
Map ID predictions and reduced ability to generalize to new data.
This decrease was less noticeable in partial accuracy predictions,
where motif based feature sets retained consistently high results
in comparison to homology based feature sets. We believe that
this indicates that motif data will allow models to better generalize
to new species and predict new gene function. While CD-hit had
consistent accuracy across all predictors, the model only predicted
function in 25% of genes as compared to 100% in ensemble and deep
learning models and about 80% in clustering methods. Previous
implementations of CD-hit also observed a concerningly high lack
of annotation in new gene sets [52].
The most interesting aspect of this study is how each machine
learning algorithm effects the quality of the KEGG network. As
we demonstrate in Fig 5a, reconstruction of biological networks
can lead to the discovery of new biology. Correctly annotating pre-
dicted proteins can determine the kinds of metabolites a species
can process or connect entire parts of pathway networks together.
In our case, we were able to find new pathways that did not exist in
the original annotation when classifying genes by gradient boost-
ing and neural network architectures. This improved connectivity
correlated with general measures of pathway connectivity and in-
creased node degrees. Because of their application to non-curated
data, reconstructed networks can be used for the elucidation of
new biology, such as the discovery of new species and metabolic
pathways in gut microbiome samples [60]. Reconstructed networks
can also be created from individually sequenced faecal samples to
catch incidents of horizontal gene transfer and random mutation
that lead to novel metabolic function [51].
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Figure 5: Analysis of reconstructed networks in machine learning annotations. (A) Annotation can have drastic effects on
network topology, leading to the development of new metabolic and signaling pathways. Predicted protein sequences are
represented as annotating to pathway nodes (circles) by dotted lines. (B) Network topology from 2 species, E. coli and S.
macedonicus, and the reconstructed topologies from 4 annotation algorithms. (C) The sum of total numbers of edges and (D) the
distribution of percent completion of each pathway among bench marked annotation algorithms. (E) Similarity measurements
of reconstructed pathways to original pathways for each machine learning algorithm. (F) The number of unique pathway
connections that were found in each machine learning model and BLAST alignment of test genes.

Due of its ability to retain high accuracy and network connectiv-
ity when used to predict generalized classifications of gene function,
neural networks represent the best use case of machine learning for
this application. Other models had admirable aspects as well, with
random forests producing the lowest FPR and highest precision-
recall, and gradient boosting algorithms classifying the greatest

amount of novel pathway function. The choice from this bench-
mark as to which algorithm to apply to a new tool would depend
highly on the intended purpose of the tool. Whether the priority is
recreation of network topology and high accuracy or the discovery
of new biology. We believe that the results presented in this study
will assist future researchers in determining the best algorithm to
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Figure 6: Pipeline for the discovery of bacterial metabolic pathways in the effects on human health.

use with their tools.

The machine learning algorithms we investigated in this study
and the networks that can be reconstructed from them can be
applied to many practical uses in network computational biology.
Obviously, database quality is a major concern for many researchers
as it affects the quality of experiments that rely on good annotations
[40, 47]. Many integrated pipelines to annotate newly sequenced
genomes restrict the researchers ability to use new or better annota-
tion methods to annotate genomes prior to submission to databases
[21, 35, 50]. Also, annotation of non-model bacterial genomes is
highly sensitive to the data in which it is annotated from, and higher
accuracy in predictions is a priority for these experiments, espe-
cially in the case of horizontal gene transfer between gut bacteria
[11, 32, 43, 48]. Genetic screening of human metabolic pathways
in disease progression is one field which could benefit from bet-
ter annotation of metabolic genes [61]. Using machine learning
assisted annotation we can develop pipelines to investigate bac-
terial pathway effects on human health, which will increase the
amount of data that can be applied to large scale networks of path-
ways and diseases (Fig 6). Metabolic pathway screening for gut
microbiomes requires high fidelity gene annotations [42] and this
problem cannot be solved without annotation methodologies that
more accurately recreate function. We have shown that motif based
machine learning classification of gene functional annotation in
two human gut microbes, B. intestinalis and S. macedonicus, re-
sults in higher accuracy and better network reconstruction when

compared to functional annotation by equivalent sequence align-
ment technology. From what we have shown in this study, machine
learning algorithms can be used to improve networks that rely on
annotation of sequenced genomes. Our results represent a powerful
next step in utilizing machine learning to solve the problems of
network construction from sequencing data in biological databases.
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