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Abstract 12 

Background: Feature selection is important in high dimensional data analysis. The wrapper approach 13 

is one of the ways to perform feature selection, but it is computationally intensive as it builds and 14 

evaluates models of multiple subsets of features. The existing wrapper approaches primarily focus 15 

on shortening the path to find an optimal feature set. However, these approaches underutilize the 16 

capability of feature subset models, which impacts feature selection and its predictive performance.  17 

Method and Results: This study proposes a novel Artificial Intelligence infused wrapper based 18 

Feature Selection (AIFS), a new feature selection method that integrates artificial intelligence with 19 

wrapper based feature selection. The approach creates a Performance Prediction Model (PPM) using 20 

artificial intelligence (AI) which predicts the performance of any feature set and allows wrapper 21 

based methods to predict and evaluate the feature subset model performance without building 22 

actual model. The algorithm can make wrapper based method more relevant for high-dimensional 23 

data and is flexible to be applicable in any wrapper based method. We evaluate the performance of 24 

this algorithm using simulated studies and real research studies. AIFS shows better or at par feature 25 

selection and model prediction performance than standard penalized feature selection algorithms 26 

like LASSO and sparse partial least squares. 27 

Conclusion: AIFS approach provides an alternative method to the existing approaches for feature 28 

selection. The current study focuses on AIFS application in continuous cross-sectional data. 29 

However, it could be applied to other datasets like longitudinal, categorical and time-to-event 30 

biological data. 31 

Keywords 32 

High dimensional data, wrapper feature selection, artificial intelligence, AIFS, machine learning, 33 

interaction terms 34 
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Background 35 

Large feature space (�) is an important aspect of high dimensional data owing to the risk of model 36 

overfitting and poor model generalizability [1] and increased computational complexity [2, 3]. 37 

Feature selection is a solution which reduces the input feature space to smaller feature space (�) in a 38 

given dataset of sample size (�), which provides a parsimonious best fit model for the outcome, �. 39 

� �  ���	 | � � ��	#�1	  

min ���, ���		  

where, � represents the model function, and � represents the error function. The approaches 40 

adopted for feature selection can be categorized into two groups. The first and simpler approach 41 

uses expert opinion for feature selection where features are selected using domain knowledge [4, 5] 42 

and allows feature selection before evaluating the data. This approach has limitation or no 43 

applicability if a feature has no or little availability of domain information, high dimensional feature 44 

space and/or presence of interactions among the features [6].   45 

The second and prominent approach uses the sampled data to perform the feature selection which 46 

is broadly classified into filter, embedded and wrapper methods [7–9]. These methods could be used 47 

in supervised, semi-supervised or unsupervised learning frameworks [9–11]. Filter methods rely on 48 

the internal data structure of the features for selecting features. Commonly, information gain based 49 

techniques are used for univariate filtering of features [9, 12] and correlation based techniques are 50 

used for multivariate filtering of features [13]. They are computationally efficient, but interactions 51 

between the features may hinder the model performance. Embedded methods incorporate feature 52 

selection within the model building step by adding a penalization step in the model building process. 53 

They are efficient and have the ability to handle interactions between the features. LASSO based 54 

techniques [14–16] are commonly used for linear combination models, while tree-based algorithm 55 

[17] are used in non-linear combination models. Wrapper methods use an iterative approach where 56 
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a model is built using a subset of features in which the performance is evaluated [18, 19]. The 57 

process is repeated until the best performance is obtained. It provides better performance than 58 

other methods, but it has a higher computational cost.  59 

Most techniques have focused on reducing the computational cost of wrapper based methods by 60 

designing algorithms that reduce the optimization route to the target feature set �, i.e., using the 61 

minimum number of iterations to get �. The studies achieve this objective by focusing on the 62 

sampling of feature subset. Feature subset sampling step is commonly performed using either 63 

random sampling, sequential sampling or evolutionary sampling [20–23]. The random sampling 64 

approach arbitrarily generates the feature subset [20]. The sequential sampling approach adds or 65 

removes a feature sequentially from a feature set like forward sampling and backward sampling [18, 66 

21]. The evolutionary sampling approach selects the feature subset based on the performance of 67 

features in the previous subset like genetic algorithm [22] and swarm optimization [23]. The number 68 

of iterations is an important bottleneck in improving the computation efficiency of the wrapper 69 

methods.  70 

The wrapper methods assume that feature subset with target features should provide better 71 

performance than other feature subsets. Thus, the wrapper methods build models to estimate the 72 

performance for evaluation. The need to build a model for every single feature subset obtained in 73 

the sampling step creates another critical bottleneck in reducing computational complexity. Our 74 

research suggests that model building may not be the only approach to obtain performance value.  75 

Currently, the existing wrapper methods partially or entirely discard the unselected models of 76 

feature subset in selecting the next population of feature subsets. Individually, each model may only 77 

be useful in providing performance information, but in combination, these models could help in 78 

identifying hidden relationships that could help in predicting the performance of unknown feature 79 

subset models. This may eliminate the need for building models for every single feature subset 80 

obtained in the sampling step. Accordingly, this study focuses on reducing the number of models 81 
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that need to be built for a given number of feature subsets obtained in the sampling step of wrapper 82 

based feature selection. 83 

In this study, we propose a novel Artificial Intelligence infused wrapper based Feature Selection 84 

(AIFS) algorithm. This algorithm can predict the performance of a feature subset using an existing 85 

artificial intelligence (AI) model rather than estimates the performance of a feature subset by 86 

building an actual AI model (like LASSO, Random Forest). AIFS is unique in many ways. Firstly, it is 87 

unique in its perspective as, unlike classical wrapper approaches of building models for every feature 88 

subset provided by feature subset sampling step, it builds models for only a fraction of the feature 89 

subset. Secondly, it provides a unique application of AI models, that are used to replace the AI 90 

model-based performance estimation step with AI model-based performance prediction step, which 91 

may reduce the computation time. Thirdly, AIFS is versatile, which allows its integration with existing 92 

statistical and machine learning techniques. 93 

This paper provides the “Conceptual Framework” section to explain the basic framework of AIFS. 94 

The “Methodology” section explains the AIFS algorithm used in this paper. The algorithm 95 

performance is evaluated and compared against the existing feature selection methodologies for 96 

simulations and real studies in the “Simulation Studies” and “Real Studies” sections. Finally, we 97 

summarize and provide future directions for research in the “Conclusion and Discussion” section. 98 

Results 99 

The performance of AIFS is evaluated and compared with standard methods like LASSO, adaptive 100 

LASSO, group LASSO, sparse partial least squares, elastic net and adaptive elastic net for both the 101 

simulated datasets and real data studies. 102 

Simulation Studies 103 

We perform simulation studies to evaluate the proposed method and compare its performance with 104 

other feature selection methods. The study uses multivariate normal distributions to generate high-105 
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dimensional datasets for marginal and interaction models. The regression model, � �  �� �106 

 ∑ ����
�
��� � �  and � �  �� � ∑ ����

�
��� � �

�
∑ ������

���,���
�	�,���,��� � � provides the outcome variable of 107 

the simulated data for marginal and interaction models, respectively. �~��0, ��	, ��  ~��0, 1	 and 108 

{���} represents the pairwise interactions between features ����, ��	, ��� , �
	, , … , �����,  ��	�. In 109 

the current study, only two-way interactions are considered for demonstration purposes, but it 110 

could be easily extended to higher-order interactions. Correlation is added between the first 15 111 

features out of � marginal features using the covariance matrix as given below. 112 

 !!
!" ���� .. .����� .

����� .. .������ .   . ����. .. �����.   .����   . .   .�����   . . .. ���� $%%
%& � '1 .. .5 5

5   .5   .1   .   . 0. .. 0. .0 . .   .0   .   . .. 1) 

Multiple scenarios are created with the different number of noise features (Table 1). Non-zero � 113 

value is assigned only to the true features. The AIFS approach is implemented both with and without 114 

a performance-based filter step. The final predictive model from selected features is prepared using 115 

either RIDGE regression (AIFS-LR) or non-penalized linear regression (AIFS-LLr). When no 116 

performance-based filter step is performed, model obtained from embedded feature selection stage 117 

is used as the final predictive model and is referred to as AIFS-L technique.  118 

Computation Time estimation 119 

We estimate computation time of the AIFS algorithm under different scenarios on a system with 120 

processor Intel® Core (TM) i7-8750H CPU@2.20GHz with 16 GB RAM on a Windows 10 64-bit 121 

operating system. The computation time is compared with the standard wrapper based approach 122 

that did not have the Performance Prediction Model (PPM). Since, standard wrapper (StW) does not 123 

have performance-based feature selection step, we compare it with AIFS-L method. Further, we add 124 

embedded feature selection step in StW. Thus, any performance difference is only associated with 125 

PPM model. Genetic algorithm is used to generate samples in feature subset sampling step with 126 

maximum number of iterations fixed to 200. Multiple scenarios are created for the comparative 127 
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analysis of two algorithms (Table 1). The training datasets vary from 50-100 samples, while the test 128 

datasets contain 500 samples. In each scenario, training samples and test samples are independent 129 

samples that came from same distribution. Along with computation time, we evaluated both 130 

methods on their ability to select the target features and predictive performance of selected 131 

features. F1 score is used to determine the accuracy of selecting target features. Root Mean Square 132 

Error (RMSE) from the test data is used to determine the predictive performance of the model 133 

obtained from the embedded feature selection step. All the analysis is conducted using R 4.0.3 [24]. 134 

In both the marginal and interaction models (Table 2), AIFS consumed more time as compared to 135 

standard wrapper approach. This is counter intuitive, but this behavior is possible due to the PPM 136 

model upgradation step in AIFS. During each upgrade, sample size used for training PPM model 137 

increases. The current approach uses random forest to update PPM model and uses LASSO to build 138 

the base model. LASSO needs to build the model on a sample size of 50 or 100 but random forest 139 

needs to build a PPM model using at least 225 samples (Model 1_I) with sample size increasing 140 

during the execution of genetic algorithm. 141 

However, AIFS has a better or at par ability to discriminate between the target and noise features, 142 

especially for interaction models as compared to standard wrapper method. Similarly, predictive 143 

performance of the features shortlisted from AIFS is better or at par with standard wrapper method, 144 

especially for high dimensional data and interaction models. AIFS performance suggests that this 145 

methodology framework can be used as an alternative to the standard wrapper framework.  146 

AIFS comparison with standard methods 147 

AIFS performance is compared with existing standard penalized regression methods namely LASSO, 148 

adaptive LASSO (ALASSO), group LASSO (GLASSO), elastic net (Enet), adaptive elastic net (AEnet) and 149 

sparse partial least squares (SPLS) in ten different trials. GLASSO is used only for interaction models. 150 

All the analysis is conducted using R 4.0.3 [24]. The standard methods are run using the inbuilt 151 

packages in statistical language R. glmnet package [25] is used for most methods except GLASSO and 152 
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SPLS for which glinternet [26] and spls [27] packages were used. In the case of adaptive models, 153 

adaptive weights are obtained from ridge regression [28]. In the case of interaction models, all 154 

possible two-way interaction terms were created and entered the model. AIFS is implemented using 155 

the algorithm programmed in R. 156 

The AIFS and the standard methods are evaluated on target feature selection and prediction 157 

performance. We evaluate the method’s ability to discriminate between true and noise features by 158 

measuring the selection of true features and rejection of noise features. We use RMSE from the test 159 

data as the predictive performance metric. 160 

Table 3 shows the feature selection performance of different methods for marginal models. All 161 

methods have selected the targeted ten features which means that they can identify the target 162 

features in the marginal dataset. However, in most cases, the number of selected features is much 163 

higher, indicating that methods also select noise features. Compared to standard methods, the AIFS 164 

method selected a similar or lesser number of noise features which suggests that it has better 165 

discrimination ability between noise and target features than standard methods. Further, results 166 

from Figure 1 indicates better discrimination ability of the AIFS method than the standard methods. 167 

It is shown that frequency of selecting a noise feature is consistently lesser than the target features 168 

in all methods, but the maximum separation is found only for AIFS method. In addition, the area 169 

under curve (AUC) of the features was higher for AIFS method as compared to standard methods. 170 

Thus, in the case of marginal datasets, while all methods can identify the target features, AIFS 171 

outperforms all other methods with a lesser selection of noise features.     172 

The results from the interaction models reiterate the results of the marginal scenario that the 173 

feature selection performance of AIFS is better or at par with the standard methods. Table 4 shows 174 

that like marginal models the number of features selected by all methods is more than the number 175 

of target features in most cases. This suggests that noise features are selected by all methods, but 176 

the number of noise features selected differs with methods. AIFS method selects a similar or lesser 177 
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number of noise features compared to the standard methods, and results from Figure 2 suggest that 178 

AIFS may be selecting a lesser number of noise features compared to other methods. The results 179 

show that in low dimensional space, all methods can discriminate between the target and noise 180 

features by selecting the target features at a higher frequency as compared to noise features. 181 

However, in very high dimensions, only AIFS and GLASSO can perform. AUC performance of different 182 

methods also shows better or at par performance of AIFS as it can predict the target and noise 183 

features with greater or similar accuracy than other methods.  184 

In AIFS, we used existing classic statistical techniques. The use of statistical techniques could have an 185 

important influence on the wrapper method performance [29]. However, a performance comparison 186 

between LASSO technique used in AIFS and as a standalone feature selection method clearly showed 187 

that AIFS could improve the LASSO performance. The AIFS performance suggests that the proposed 188 

methodology could enhance the feature selection performance of the existing statistical techniques 189 

by reducing the feature space and increasing the target feature percentage. 190 

Table 5 shows the prediction performance of different methods. RMSE performance of the tested 191 

methods suggests that AIFS method performs consistently better or at par with the existing 192 

methods. In low dimensionality data (2_M, 4_M and 1_I), it is expected that all methods should give 193 

similar performance as standard methods are primarily developed for handling low dimensionality 194 

data, and results support it. AIFS method can provide better performance even in high dimensional 195 

settings (1_M and 3_M) and in the presence of interaction terms (2_I). However, at very high 196 

dimensional data (3_I), all methods perform poorly. These findings suggest that the AIFS may 197 

provide better or at par prediction performance than existing methods. Overall, the proposed 198 

method could expand the capability of existing techniques like non-penalized regression to operate 199 

in high-dimensional settings. However, computational intensiveness will be a significant limitation 200 

for the proposed methodology compared to standard methods. In summary, when we compare the 201 

performance of FS methods across different data dimensionality, performance of all methods 202 
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deteriorates with an increase in data dimensionality, but performance of most standard methods 203 

decreases more drastically than AIFS. 204 

Real Studies: Population Health Data 205 

Four real studies are analyzed to evaluate the performance of AIFS and existing methods. 206 

Community Health Status Indicators (CHSI) study focuses on non-communicable diseases from US 207 

county with data (n=3141) containing 578 features [30] (Study I). National Social Life, Health and 208 

Aging Project (NSHAP) datasets focusing on the health and well-being of aged Americans contains 209 

multiple datasets. We chose two datasets (Study II and Study III) containing data for 4377 residents 210 

on 1470 features [31] and 3005 residents on 820 features [32]. Study IV is the Study of Women’s 211 

Health Across the Nation (SWAN), 2006-2008 dataset focusing on 887 physical, biological, 212 

psychological and social features in middle-aged women in the USA (n = 2245) [33]. 213 

The raw data of the real studies are processed for ease of analysis to obtain final cleaned datasets 214 

(Table 6). Features and samples are filtered to remove highly correlated features, non-continuous 215 

features, and missing values. Then, each dataset is randomly split into training and testing datasets. 216 

As the sample size is large, only 20% of data is used for training while remaining 80% of data is used 217 

for testing to create a high dimensional data setting. We compare the performance of different 218 

methods for marginal models and interaction models using mean RMSE of the test data in ten trials. 219 

Table 7 summarizes the feature selection results. It is shown that standard methods are selecting a 220 

lesser number of features as compared to AIFS methods. However, the results from the previous 221 

simulated data studies suggest that standard methods may struggle to discriminate between target 222 

and noise features (Figure 1 and Figure 2). Further, the predictive performance results of AIFS 223 

method is better than the standard methods for both marginal as well as interaction models (Table 224 

8). The better performance of the proposed method suggests that it may be more reliable than 225 

standard methods in identifying the target features. 226 
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The results show that in Study III, marginal models performed better than their interaction models 227 

for all methods. Better performance of the marginal model compared to the interaction model 228 

suggests that AIFS cannot completely reject noise features and is sensitive to an increase in feature 229 

space. However, AIFS is still more robust than standard methods and can perform in different 230 

dimensions and datasets. 231 

Real Studies: Genomic Data 232 

AIFS-L method is compared with StW method in the genomic datasets to determine the biological 233 

relevance of the solutions obtained from AIFS method. In many cancer studies, it is found that 234 

smoking can be detrimental to the cancer patient health [34, 35]. Further, an association between 235 

gene expression levels and cancer patient smoking habit has been reported [36]. Thus, it would be 236 

relevant to identify the genes in cancer patients which are associated with smoking-related traits. In 237 

this study, The Cancer Genomic Atlas (TCGA) program is used to get the data from nine cancer 238 

projects (Table 9) which maintained records related to amount smoked and gene expression profile 239 

of patients [37]. The sample size � for these projects range from 89 to 592 samples with feature 240 

space � of 56602 genes.  The gene expression profile is used as the input feature space and number 241 

of cigarettes smoked per day (CPD) is used as the outcome. 242 

Preliminary processing of all datasets is performed to reduce the input feature space and remove 243 

samples with missing values. The input feature space is reduced from 56602 to 50 features through 244 

multi-stage processing (Table 9). Step one involved removing the features which are not 245 

differentially expressed in cancer patients as compared to normal patients using TCGAbiolinks 246 

package [38]. Step two involved supervised dimensionality reduction of the differentially expressed 247 

genes using partial least squares technique and select top 100 features with highest absolute 248 

weights in first latent feature. Step three involved removing correlations among the features. Thus, 249 

among any pair of features with more than 0.8 absolute correlation, one feature is randomly 250 

selected. Step four involves selecting the top 50 features among the non-correlated features based 251 
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on their absolute weight in the first latent feature obtained in step two. No interaction effects are 252 

considered for this analysis. 253 

The performance of AIFS and StW in all datasets is compared on three metrics namely predictive 254 

performance, computation time and number of genes selected. The results are based on 10-fold 255 

cross-validation (Table 10). It observed that in all the datasets the predictive performance of AIFS 256 

based features is better or at par with StW based features. Further, it is observed that a smaller set 257 

of features are selected by AIFS as compared to StW which suggests AIFS could provide a more 258 

parsimonious set of features as compared to StW without compromising on the predictive 259 

performance of the features. In terms of computation time, the results are similar to those observed 260 

in simulation studies with StW taking less time than AIFS in most cases.  261 

In order to assess the biological relevance of the genes selected by each method, selected genes of 262 

each dataset are pooled together to create final list of genes selected by each method. The results 263 

show that some genes are selected at a very high frequency in dataset during 10-fold feature 264 

selection process. Genes need to fulfill one of the two criteria of either having highest selection 265 

frequency or selection frequency of more than 80%. Accordingly, across nine datasets, AIFS provided 266 

13 genes while StW provided 40 genes. 11 genes (VCX3A, WNT3A, CALHM5, ZMYND10, FOXE1, PLAT, 267 

BAAT, WFDC5, CGB5, FADD, APOE) are found to be common across the two methods. Among the 13 268 

genes from AIFS method, seven genes (WNT3A [39], TMEM45A [40], BAAT [40], WFDC5 [41], HS3ST5 269 

[42], CGB5 and APOE [43]) have been reported in literature to exert influence on tobacco or 270 

smoking-related traits. Further, AIFS identified six new genes (VCX3A, CALHM5, ZMYND10, FOXE1, 271 

PLAT, FADD) which could be related to smoking in cancer patients, thus providing an opportunity for 272 

identifying previously unknown biological functions.   273 
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Discussion 274 

Building models for each sample feature set obtained during the feature sampling stage of wrapper 275 

methods consume computational resources and may not always provide the best results. AIFS allows 276 

skipping the model building for many sample feature sets by training an AI model, i.e., the PPM 277 

model, which could predict the performance of sample feature sets. AIFS feature selection 278 

performance and predictive performance are better or at par than both the standard wrapper 279 

approach and penalized standard methods, namely LASSO, adaptive LASSO, group LASSO, Sparse 280 

PLS, Elastic net and adaptive elastic net. 281 

The proposed method has certain limitations. The current study primarily focuses on testing the 282 

concept; thus, the study performed testing on limited datatypes. Future research could focus on 283 

evaluating the robustness of the approach using different types of data such as temporal data and 284 

categorical data, and outcomes such as binary outcomes and time to event outcomes. Other than 285 

data types, the focus could also be directed towards the algorithm used. Currently, the study uses a 286 

linear combination function for building actual models, but future studies could also explore the 287 

non-linear combination function for model building. Further, the current study reduced the need to 288 

build actual models in the wrapper approach but could not eliminate it. Therefore, future research 289 

could use other PPM building techniques like an artificial neural network and support vector 290 

machines to eliminate the need for actual models. 291 

Conclusion 292 

In the paper, we propose AIFS, an innovative approach to perform wrapper based feature selection. 293 

The method is flexible enough to work with both marginal and interaction terms. The approach 294 

could be easily embedded with any of the wrapper techniques as it does not alter existing methods, 295 

which allows users to integrate the method in their existing wrapper pipelines. This approach could 296 

enhance the performance of existing wrapper techniques available in the literature for high 297 
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dimensional datasets by accelerating the algorithm. AIFS can identify both the marginal features and 298 

interaction terms without using interaction terms in PPM, which could be critical in reducing the 299 

feature space an algorithm has to process.  300 

The benefits of AIFS comes from using artificial intelligence to learn the dataset performance 301 

behavior and build the PPM, which replaces the actual model building process. The studies involving 302 

marginal effects with and without interaction effects in simulated data showed that AIFS could 303 

outperform existing methods in feature selection and prediction performance. Similar performance 304 

in real datasets also demonstrates the practical relevance of AIFS. 305 

Conceptual Framework 306 

In a wrapper approach, given a dataset * of sample size � with � feature space and outcome �, a 307 

subset feature set � is created from �. In the standard wrapper approach (Figure 3a), a model is built 308 

for the subset of * containing � features and performance is estimated. This performance is used to 309 

select the next subset of �. This dependence of a standard wrapper approach upon model building 310 

step for each subset of feature to estimate its performance is targeted in our AIFS algorithm.  311 

The conceptual framework used to design AIFS algorithm (Figure 3b) aims at reducing (or removing) 312 

the dependence of the wrapper algorithm on model building step for obtaining performance value 313 

of �. AIFS algorithm creates a random set �� �  + ���, |��� �  -�1�, … , �1, … , ��., / �  �1, … , 0� of 314 

0 feature samples, where each feature sample is a subset of �. The algorithm builds a model for �� 315 

samples to estimate their performance 1 �  -1�.. The algorithm creates a Performance Prediction 316 

Model (PPM) with �� as the input and 1 as the outcome using a machine learning model to enable 317 

performance prediction of any subset of �. Finally, the algorithm executes the standard wrapper 318 

approach, but uses PPM as a surrogate to the actual model building step that predicts rather than 319 

estimates the actual performance of �. 320 
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Methodology 321 

This section explains the design of AIFS algorithm based on the conceptual framework. The 322 

algorithm can be divided into four steps: performance prediction model, wrapper based coarse 323 

feature selection, embedded-feature selection and performance-based feature selection (Figure 4). 324 

Performance Prediction Model (PPM) 325 

The algorithm generates 0 random sample datasets containing ���features, and sample size � from 326 

*. A set of models 2 �  -3�. are created from 0 sample datasets for an outcome, � using any 327 

modeling technique.  328 

3�: �� � � 5���6 | / � �1, … , 0�#�2	  

A performance set 1 �  -1�.  contains the performance of 2  models. The algorithm creates a 329 

performance dataset *���� , a matrix of features used in each model of 2  (�� ) and their 330 

performance, 1.  331 

*���� �  |���� 8�||���� � 90, ���� : -3�. , ; � �1, ��, / � �1, … , 0�1, ���� � -3�. , ; � �1, ��, / � �1, … , 0�< #�3	  

As shown in equation 3, feature matrix (��) is a binary matrix that consists of � columns and 0 rows. 332 

The matrix takes the value of 0 for ;��  column and /��  row, if ;��  feature is not used in 3�  model, 333 

else ;��  column and /��  row takes the value of 1. PPM is constructed from *����  to provide a 334 

predictive model for the outcome, 1 using any machine learning technique. 335 

>>2: 1 � �?��@#�4	  

 In this study, we have used LASSO to prepare 3� models and random forest to build the PPM. 336 

During the preliminary analysis (Additional File 1), it is found that predicted performance and actual 337 

performance is strongly and positively correlated, but predicted performance may not match the 338 
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actual performance, as a result subset corresponding to best predicted performance may not be the 339 

best subset.    340 

Wrapper based coarse feature selection 341 

The standard wrapper approach as shown in Figure 3a is an iterative process where a subset of 342 

feature is evaluated, and performance of the feature subset is used to select the next subset of 343 

features. In our work, we used genetic algorithm to search through the feature space iteratively as it 344 

is used in wide range of datasets [44–46]. In the proposed algorithm, we use PPM for all iterations to 345 

predict the performance 1����  of a feature set �. Since, we found that best 1����  may correspond to 346 

one of the high performing feature sets but not the best feature set, we validate 1����  values by 347 

building a model using � features to estimate the performance 1����  (Figure 4). The algorithm uses 348 

user-defined criteria BCD����  to select sample feature sets for validation of 1����  values.   349 

In this study, the top quartile of C is used as the BCD���� criterion, thus � with 1����  in top quartile of 350 

C are selected for model building. *���� is updated with feature set � whose 1���� value is available 351 

and consequently, is used to update PPM.  The iteration stops when we get ����� features, which 352 

provide the best performance.  353 

Embedded feature selection 354 

The ����� features obtained from the wrapper step are processed to obtain the final features 355 

because the prediction model does not explicitly provide the non-linear combinations of  ����� 356 

features. Thus, an embedded feature selection model is used on ����� features for an outcome, � 357 

which allows the additional features χ like interactions terms to be incorporated. LASSO framework 358 

is used as the embedded model in the proposed algorithm. 359 

Performance-based feature selection 360 

The features selected from the embedded model ������  undergo the last stage of processing to 361 

provide final features �. This step selects features based on their contribution to the model 362 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 22, 2022. ; https://doi.org/10.1101/2022.07.21.501053doi: bioRxiv preprint 

https://doi.org/10.1101/2022.07.21.501053


17 

 

performance. D  models 3����� : �� � �������� E D	| D � �1, … , ������ �  are prepared with each 363 

model containing  ������ E 1  features. D  feature importance is determined from the 3�����  364 

performance. 365 

To obtain D feature robust importance, we create multiple models using bootstrapping of samples, 366 

and their performance 8̂� is pooled to get overall model performance 8̂����� . In this study, we use 367 

RIDGE regression for model building as we are focusing on high dimensional data and non-penalized 368 

linear regression could only work for cases with ������ G �. Goodness of fit (H�) of out of the bag 369 

(OOB) samples is used as the performance metric. Finally, the performance metric is pooled to 370 

provide a coefficient of variation of H� as the overall model performance for D feature. 371 

A performance threshold 8������ needs to be defined to select the features. Rather than using an 372 

arbitrary threshold, our algorithm uses a dynamic cutoff. The algorithm tries different performance 373 

thresholds and selects the threshold which provides the best performance 8����  for the smallest 374 

feature space ����� . In the current study, we use genetic algorithm to search through the 375 

performance threshold space. Two different techniques, namely non-penalized regression and 376 

adaptive RIDGE regression are used for the model building. Pseudo Algorithm summarizes the 377 

complete AIFS algorithm. 378 

Pseudo Algorithm: AIFS 

Input: Feature data X (p × n)  

          Target feature Y (1 × n) 

          Number of feature samples 0 

          PPM performance prediction validation criteria BCD���� 

          Number of bootstrap replicates I 

          Performance dataset *����= �J3�K�� 

          Wrapper based coarse selected features list ����� �  �J3�K�� 

          Embedded method based selected features list ������ �  �J3�K�� 

Output: Final Feature set ����� 

Begin: 

# Step I: Performance Prediction Model 

for i=1 to k do 

     Generate ��
�  random features from � 

     Generate samples 5L� , M�  �  H�  !"��
� #�$6 
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     Build embedded model (like LASSO) from ?L� , M�@ 

     Compute performance estimate 1�  of the model 

    Add ?��
� , 1�@ to *����  

end for 

Build a supervised machine learning model, PPM from *���� 

 

# Step II: Wrapper based Coarse Feature Selection 

Initialize a random sample feature set � 

while 1" G  1����  do  

         Predict � performance using PPM 

          if � fulfils BCD���� 

                   Build embedded model (like LASSO) from ?L" , M" � H�  %"#�&@ 

                   Compute performance estimate 1" of the model 

                     if 1" = 1����  

                              ����� �  � 

                              end while 

                     else 

                               Add (�, 1" ) to *����  

                               Update PPM from *���� 

 

# Step III: Embedded Feature Selection 

Compute embedded model (like LASSO) estimate NO��� from 5L, M �  H�  !"���	#�$6 

for j=1 to ����� 

     if NO���
� P 0 

          Add / to ������  feature list 

end for 

Add missing marginal features for selected interaction terms in ������  to get final feature selection 

 

# Step IV: Performance-based feature selection 

for i=1 to ������  

     Select all ������  features � except ; feature and its interaction terms 

    for j=1 to B 

                Compute statistical model (like RIDGE) performance 8̂� from ?L, M �  H�  %"#�&@ 

     end for 

     Compute pooled performance estimate 8̂����� 

     Rank ������  such that feature with highest 8�̂����  is considered best feature 

end for 

Initialize random performance cut off value 8������ 

while 8����� G  8����  do  

         Select � features such that 8̂����
 Q  8������  

         Compute statistical model (like RIDGE and linear regression) performance 8�����  from ?L, M �  H�  %"#�&@ 

end while 

End 

 379 
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List of abbreviations 380 

AEnet: Adaptive Elastic Net  381 

AI: Artificial Intelligence  382 

AIFS: Artificial Intelligence infused wrapper based Feature Selection  383 

ALASSO: Adaptive LASSO  384 

AUC: Area Under Curve  385 

CHSI: Community Health Status Indicators  386 

Enet: Elastic Net  387 

GLASSO: Group LASSO  388 

NSHAP: National Social Life, Health and Aging Project  389 

OOB: Out Of the Bag  390 

PPM: Performance Prediction Model  391 

RMSE: Root Mean Square Error  392 

SPLS: Sparse Partial Least Squares  393 

StW: Standard Wrapper  394 

SWAN: Study of Women’s Health Across the Nation 395 
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Table 1: Description of the simulation data 528 

Models Scenario � (Non-Zero coefficients) � 

Sample Size (�) 

�
 

Train Test 

Marginal 

1_M 

� ��| 	 
 �1, … ,10�� 
  

�0.5, �0.5,0.5, �0.5, … , 0.5� 

50 50 500 0.25 

2_M 50 100 500 0.25 

3_M 100 75 500 0.25 

4_M 100 100 500 0.25 

Interactions 

1_I 

� ��, ��� | 	 
 �1, … ,10�, � 
  	 � 1, � � 11�  
  

�0.5, �0.5,0.5, �0.5, … , 0.5� 

15 100 500 0.25 

2_I 25 100 500 0.25 

3_I 50 100 500 0.25 

 529 

 530 

 531 
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Table 2: Wrapper methods comparison of computation time, target feature selection and predictive 533 

performance534 

 Model p n 

Performance
 

Computation Time (minutes) 
Target Feature Selection 

(F1 Score) 

Predictive Performance 

(RMSE) 

StW AIFS-L StW AIFS-L StW AIFS-L 

1_M 50 50 7.57 24.85 0.48 0.47 0.55 0.43 

2_M 50 100 10.68 23.93 0.71 0.63 0.29 0.29 

3_M 100 75 11.30 18.22 0.29 0.33 0.64 0.48 

4_M 100 100 31.52 33.07 0.42 0.43 0.36 0.36 

1_I 15 50 0.97 2.18 0.41 0.73 1.20 0.38 

2_I 25 50 2.72 7.23 0.26 0.39 1.32 0.49 
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Table 3: Feature selection performance of different approaches in simulated scenarios for marginal 537 

models  538 
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T
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t 
F
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Existing Models AIFS 

A
L
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S
S
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A
S
S
O
 

S
P
L
S
 

E
n
e
t 

A
E
n
e
t 

A
IF
S
-L
 

A
IF
S
-L
L
r 

A
IF
S
-L
R
 

Mean (Range) 

1_M 
Marginal 

(p=50) 
10 

24 

(18-32) 

25 

(18-37) 

23 

(14-35) 

27 

(18-36) 

26 

(21-30) 

29 

(24-33) 

15 

(11-22) 

12 

(10-16) 

2_M 
Marginal 

(p=50) 
10 

16 

(11-35) 

23 

(14-40) 

16 

(10-39) 

25 

(14-41) 

18 

(11-35) 

24 

(19-31) 

16 

(10-31) 

12 

(10-16) 

3_M 
Marginal 

(p=100) 
10 

27 

(20-39) 

32 

(16-57) 

25 

(12-50) 

32 

(21-45) 

28 

(20-43) 

44 

(29-59) 

18 

(10-26) 

14 

(10-21) 

4_M 
Marginal 

(p=100) 
10 

28 

(14-46) 

33 

(14-55) 

19 

(11-47) 

32 

(17-55) 

30 

(15-48) 

44 

(34-51) 

19 

(10-45) 

13 

(10-22) 
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Table 4: Feature selection performance of different approaches in simulated scenarios for interaction 541 

models  542 
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Mean (Range) 

1_I 

Marginal 

(p=15) 
10 

15 

(15-15) 

15 

(14-15) 

15 

(15-15) 

14 

(12-15) 

15 

(15-15) 

15 

(15-15) 

12 

(12-14) 

12 

(12-14) 

12 

(12-14) 

Interaction 

(χ=105) 
9 

31 

(20-41) 

40 

(22-51) 

33 

(18-49) 

36 

(16-102) 

34 

(21-44) 

32 

(24-41) 

34 

(20-47) 

30 

(8-44) 

34 

(20-47) 

2_I 

Marginal 

(p=25) 
10 

24 

(22-25) 

25 

(24-25) 

24 

(22-25) 

19 

(9-25) 

22 

(14-25) 

24 

(22-25) 

18 

(14-21) 

16 

(10-20) 

18 

(14-21) 

Interaction 

(χ =300) 
9 

46 

(32-67) 

66 

(39-74) 

45 

(30-65) 

65 

(6-287) 

39 

(11-60) 

44 

(31-64) 

50 

(26-60) 

36 

(5-47) 

50 

(26-60) 

3_I 

Marginal 

(p=50) 
10 

32 

(2-45) 

47 

(45-49) 

16 

(1-45) 

38 

(6-50) 

29 

(2-50) 

37 

(2-49) 

29 

(27-32) 

24 

(8-30) 

28 

(24-30) 

Interaction 

(χ =1225) 
9 

36 

(1-67) 

76 

(72-81) 

16 

(0-71) 

417 

(1-1057) 

36 

(1-116) 

53 

(1-104) 

85 

(71-99) 

30 

(2-52) 

46 

(26-88) 
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Table 5: Outcome prediction performance of different approaches in simulated scenarios for the test 545 

dataset  546 

Methods 

Performance (RMSE) 

Marginal Model Scenarios Interaction Model Scenarios 

1_M 2_M 3_M 4_M 1_I 2_I 3_I 

Mean (95% Confidence Interval) 

ALASSO 
0.44 

(0.35-0.54) 

0.28 

(0.23-0.33) 

0.39 

(0.32-0.46) 

0.30 

(0.26-0.35) 

0.44 

(0.36-0.52) 

0.94 

(0.74-1.13) 

1.36 

(1.31-1.41) 

GLASSO     
0.36 

(0.3-0.43) 

0.65 

(0.51-0.80) 

1.20 

(1.15-1.26) 

LASSO 
0.45 

(0.36-0.54) 

0.29 

(0.24-0.34) 

0.40 

(0.33-0.47) 

0.31 

(0.26-0.36) 

0.40 

(0.33-0.47) 

0.94 

(0.76-1.13) 

1.36 

(1.32-1.40) 

SPLS 
0.45 

(0.35-0.55) 

0.26 

(0.21-0.31) 

0.43 

(0.28-0.58) 

0.27 

(0.23-0.31) 

0.52 

(0.38-0.66) 

1.33 

(1.21-1.45) 

1.47 

(1.38-1.56) 

Enet 
0.45 

(0.36-0.53) 

0.29 

(0.24-0.35) 

0.42 

(0.34-0.5) 

0.32 

(0.27-0.36) 

0.41 

(0.34-0.49) 

1.02 

(0.82-1.22) 

1.34 

(1.29-1.38) 

AEnet 
0.46 

(0.35-0.57) 

0.28 

(0.23-0.33) 

0.41 

(0.33-0.48) 

0.31 

(0.26-0.35) 

0.46 

(0.38-0.54) 

0.97 

(0.79-1.15) 

1.34 

(1.30-1.39) 

AIFS-L 
0.51 

(0.38-0.65) 

0.28 

(0.23-0.32) 

0.43 

(0.34-0.52) 

0.31 

(0.26-0.36) 

0.36 

(0.29-0.43) 

0.50 

(0.40-0.61) 

1.43 

(1.30-1.57) 

AIFS-LLr 
0.41 

(0.26-0.56) 

0.26 

(0.21-0.31) 

0.33 

(0.27-0.39) 

0.27 

(0.22-0.32) 

0.39 

(0.31-0.48) 

0.58 

(0.39-0.77) 

1.44 

(1.33-1.55) 

AIFS-LR 
0.46 

(0.33-0.58) 

0.30 

(0.26-0.33) 

0.34 

(0.30-0.38) 

0.29 

(0.26-0.33) 

0.56 

(0.48-0.65) 

0.79 

(0.68-0.91) 

1.35 

(1.28-1.41) 
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Table 6: Summary of the real datasets 549 

Real 

Studies 

Marginal 

Features (p) 
Outcome feature 

Sample size (n) 

Total Train Test 

Study I 44 Percentage of unhealthy days 1471 294 1177 

Study II 19 Height 1287 257 1030 

Study III 33 Height 943 189 754 

Study IV 26 Body Mass Index 1406 281 1125 
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Table 7: Number of features selected by different wrapper methods on the real studies 552 

R
e
a
l 
S
tu
d
ie
s 

P
e
rf
o
rm
a
n
c
e
 

(N
u
m
b
e
r 
o
f 
F
e
a
tu
re
s 

S
e
le
c
te
d
) 

Existing Models AIFS 

A
L
A
S
S
O
 

G
L
A
S
S
O
 

L
A
S
S
O
 

S
P
L
S
 

E
n
e
t 

A
E
n
e
t 

A
IF
S
-L
 

A
IF
S
 -
L
L
r
 

Mean (Range) 

Marginal Models 

I 
Marginal 

(p=44) 

7 

(4-14) 
 

7 

(3-16) 

23 

(3-44) 

13 

(4-22) 

11 

(4-21) 

13 

(7-21) 

10 

(5-16) 

II 
Marginal 

(p=19) 

5 

(1-10) 
 

7 

(1-12) 

9 

(1-15) 

8 

(1-15) 

7 

(1-12) 

9 

(4-13) 

6 

(3-9) 

III 
Marginal 

(p=33) 

8 

(4-11) 
 

12 

(6-16) 

11 

(4-33) 

13 

(5-18) 

10 

(4-18) 

13 

(10-18) 

9 

(4-13) 

IV 
Marginal 

(p=26) 

6 

(5-7) 
 

7 

(5-9) 

7 

(5-14) 

8 

(5-11) 

7 

(5-12) 

7 

(5-9) 

5 

(3-9) 

  Interaction Models 

I 

Marginal 

(p=44) 

13 

(7-24) 

42 

(41-43) 

12 

(7-23) 

12 

(3-44) 

22 

(10-36) 

21 

(7-32) 

21 

(15-26) 

20 

(14-26) 

Interaction 

(χ = 946) 

4 

(1-11) 

170 

(156-183) 

4 

(0-11) 

63 

(0-591) 

13 

(1-46) 

11 

(0-23) 

23 

(8-47) 

17 

(5-35) 

II 

Marginal 

(p=19) 

10 

(2-18) 

19 

(19-19) 

9 

(1-16) 

11 

(1-19) 

9 

(1-15) 

10 

(1-16) 

12 

(9-15) 

10 

(1-14) 

Interaction 

(χ =171) 

6 

(0-19) 

94 

(87-108) 

4 

(0-8) 

24 

(0-117) 

6 

(0-21) 

6 

(0-14) 

15 

(5-37) 

8 

(0-13) 

III 

Marginal 

(p=33) 

15 

(6-26) 

33 

(32-33) 

15 

(3-23) 

4 

(1-10) 

14 

(4-23) 

16 

(10-23) 

16 

(10-21) 

15 

(2-21) 

Interaction 

(χ =528) 

6 

(1-25) 

125 

(113-137) 

5 

(0-16) 

1 

(0-4) 

4 

(0-16) 

5 

(1-15) 

22 

(1-49) 

19 

(1-49) 

IV 

Marginal 

(p=26) 

5 

(3-6) 

7 

(5-9) 

6 

(3-9) 

9 

(6-12) 

7 

(4-10) 

5 

(3-6) 

10 

(6-13) 

10 

(6-13) 

Interaction 

(χ =299) 

3 

(1-4) 

7 

(5-10) 

4 

(2-6) 

12 

(7-16) 

5 

(2-7) 

3 

(1-5) 

13 

(7-26) 

13 

(7-26) 
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Table 8: RMSE performance of different methods on the real studies for test data  555 

Methods 

Performance (RMSE) 

Marginal Model Scenarios 

I II III IV 

Mean (95% Confidence Interval) 

ALASSO 
0.95 

(0.95-0.96) 

3.76 

(3.67-3.84) 

3.08 

(3.01-3.14) 

0.86 

(0.81-0.90) 

LASSO 
0.96 

(0.95-0.97) 

3.75 

(3.65-3.85) 

3.10 

(3.03-3.16) 

0.84 

(0.8-0.87) 

SPLS 
0.97 

(0.95-0.99) 

3.61 

(3.54-3.69) 

3.35 

(3.03-3.66) 

0.77 

(0.76-0.79) 

Enet 
0.95 

(0.94-0.96) 

3.79 

(3.7-3.87) 

3.15 

(3.08-3.23) 

0.85 

(0.81-0.90) 

AEnet 
0.96 

(0.94-0.97) 

3.76 

(3.67-3.85) 

3.11 

(3.07-3.15) 

0.84 

(0.8-0.87) 

AIFS-L 
0.94 

(0.93-0.94) 

3.65 

(3.59-3.71) 

3.02 

(2.98-3.06) 

0.83 

(0.8-0.86) 

AIFS-LLr 
0.96 

(0.94-0.97) 

3.59 

(3.55-3.64) 

2.97 

(2.91-3.03) 

0.75 

(0.73-0.78) 

AIFS-LR 
0.95 

(0.94-0.96) 

3.80 

(3.72-3.87) 

3.19 

(3.11-3.28) 

1.20 

(1.17-1.24) 

Methods 

Interaction Model Scenarios 

I II III IV 

Mean (95% Confidence Interval) 

ALASSO 
0.94 

(0.93-0.95) 

3.69 

(3.61-3.76) 

3.12 

(3.02-3.23) 

0.52 

(0.49-0.55) 

GLASSO 
1.44 

(1.2-1.68) 

4.46 

(4.35-4.57) 

8.24 

(5.37-11.11) 

0.31 

(0.28-0.34) 

LASSO 
0.95 

(0.94-0.96) 

3.74 

(3.67-3.81) 

3.15 

(3.02-3.27) 

0.43 

(0.39-0.47) 

SPLS 
1.03 

(0.91-1.15) 

3.81 

(3.76-3.86) 

4.34 

(3.26-5.42) 

0.24 

(0.22-0.26) 

Enet 
0.94 

(0.93-0.95) 

3.78 

(3.72-3.84) 

3.24 

(3.13-3.34) 

0.44 

(0.4-0.48) 

AEnet 
0.93 

(0.92-0.94) 

3.73 

(3.65-3.81) 

3.14 

(3.06-3.21) 

0.53 

(0.5-0.56) 

AIFS-L 
0.94 

(0.92-0.95) 

3.58 

(3.53-3.63) 

3.07 

(2.98-3.17) 

0.29 

(0.26-0.33) 

AIFS-LLr 
1.04 

(0.99-1.1) 

3.76 

(3.58-3.93) 

3.65 

(3.26-4.04) 

0.26 

(0.21-0.31) 

AIFS-LR 
0.93 

(0.92-0.94) 

3.70 

(3.64-3.76) 

3.22 

(3.18-3.26) 

1.11 

(0.99-1.24) 
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Table 9: Summary of the genomic datasets 558 

Datasets 
Number of cigarettes smoked per day 

(µ(σ)) 

Sample Size 

(n) 

Feature Space 

(p) 

TCGA-BLCA 1.16 (2.34) 433 56602 

TCGA-CESC 0.30 (0.62) 307 56602 

TCGA-ESCA 0.95 (1.21) 172 56602 

TCGA-HNSC 1.41 (1.89) 544 56602 

TCGA-KICH 0.21 (0.67) 89 56602 

TCGA-KIRP 0.42 (1.04) 320 56602 

TCGA-LUAD 1.53 (1.59) 592 56602 

TCGA-LUSC 2.44 (1.88) 551 56602 

TCGA-PAAD 0.46 (0.88) 181 56602 
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Table 10: Wrapper methods comparison of predictive performance, number of genes selected and 561 

computation time 562 

Dataset 

Performance (µ [95% CI])
* 

Predictive Performance (RMSE) 
Number of Genes 

Selected 
Computation Time (minutes) 

StW AIFS-L StW AIFS-L StW AIFS-L 

TCGA-BLCA 0.79[0.31,1.27] 0.78[0.30,1.26] 4[0,9] 1[0,3] 5.9[3.2,8.6] 12.2[10.1,14.3] 

TCGA-CESC 1.00[0.84,1.16] 0.98[0.84,1.13] 10[7,13] 5[4,6] 11[7.7,14.2] 14.6[9.9,19.3] 

TCGA-ESCA 1.04[0.87,1.20] 1.00[0.85,1.15] 11[5,17] 8[2,14] 7.2[4.9,9.5] 27.9[3.6,52.2] 

TCGA-HNSC 0.99[0.82,1.16] 0.98[0.81,1.15] 16[12,20] 6[3,9] 11.4[8.7,14] 20.3[9.3,31.2] 

TCGA-KICH 1.03[0.61,1.46] 0.82[0.39,1.25] 11[9,13] 6[4,8] 50.2[24.7,75.7] 10.6[7.5,13.7] 

TCGA-KIRP 0.95[0.66,1.24] 0.95[0.65,1.24] 19[18,20] 15[11,19] 10.4[8.8,12] 41.1[12.5,69.8] 

TCGA-LUAD 1.02[0.93,1.11] 1.02[0.94,1.09] 25[22,28] 21[16,26] 11.6[9.1,14.1] 42.3[11.6,72.9] 

TCGA-LUSC 0.99[0.91,1.08] 0.99[0.91,1.08] 2[1,3] 1[0,2] 5.7[4.4,7] 12[8.8,15.2] 

TCGA-PAAD 1.26[0.74,1.79] 1.24[0.75,1.73] 22[20,24] 14[9,19] 10.8[7.6,14.1] 29[0.6,57.4] 
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Figure 1: Comparison of different methods’ feature selection performance in marginal models a) 565 

Frequency of selection of target and noise features. b) AUC for predicting the target and noise 566 

features. 567 

Figure 2: Feature selection performance comparison of different methods in interaction models a) 568 

Frequency of selection of target and noise features. b) AUC for predicting the target and noise 569 

features. 570 

Figure 3: Flow chart of A) Standard wrapper approach and B) Proposed wrapper (AIFS) conceptual 571 

approach. 572 

Figure 4: AIFS algorithm graphical flow chart. Dark Background represents main steps and light 573 

background represents sub-steps. 574 
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